Transparent ion conductive cellulose paper and preparation method thereof

文档序号:503593 发布日期:2021-05-28 浏览:11次 中文

阅读说明:本技术 一种透明离子导电纤维素纸及其制备方法 (Transparent ion conductive cellulose paper and preparation method thereof ) 是由 汤树海 李仁爱 陈广学 朱琦 于 2021-02-23 设计创作,主要内容包括:一种透明离子导电纤维素纸的制备方法,包括如下步骤:(1)使用溶剂将纤维素溶解成澄清透明液体,得到纤维素溶液;(2)向纤维素溶液中加入氯丙酰氯,制备氯丙酰氯改性的纤维素;(3)向氯丙酰氯改性的纤维素溶液中引入丙烯酸类氨基乙酯,制备含有双键的改性离子化纤维素;(4)含有双键的改性离子化纤维素经自由基聚合后,得到透明离子导电纤维素纸。本发明还提供上述制备方法制备得到的透明离子导电纤维素纸。本发明将纤维素用于制备透明离子导电纤维素纸,无需添加导电纳米材料,所制备出的透明离子导电纤维素纸具有高的透光性、导电性和优异可弯曲性,且环境稳定性好;本发明的透明离子导电纤维素纸的制备方法工艺简单、污染小、成本低。(A preparation method of transparent ion-conductive cellulose paper comprises the following steps: (1) dissolving cellulose into clear transparent liquid by using a solvent to obtain a cellulose solution; (2) adding chloropropionyl chloride into the cellulose solution to prepare chloropropionyl chloride modified cellulose; (3) introducing acrylic amino ethyl ester into a cellulose solution modified by chloropropionyl chloride to prepare modified ionized cellulose containing double bonds; (4) and carrying out free radical polymerization on the modified ionized cellulose containing the double bonds to obtain the transparent ion-conductive cellulose paper. The invention also provides the transparent ion-conductive cellulose paper prepared by the preparation method. The cellulose is used for preparing the transparent ion conductive cellulose paper, and a conductive nano material is not required to be added, so that the prepared transparent ion conductive cellulose paper has high light transmittance, conductivity and excellent bendability, and has good environmental stability; the preparation method of the transparent ion conductive cellulose paper has the advantages of simple process, small pollution and low cost.)

1. A preparation method of transparent ion-conductive cellulose paper is characterized by comprising the following steps:

(1) dissolving cellulose into clear transparent liquid by using a solvent to obtain a cellulose solution;

(2) adding chloropropionyl chloride into the cellulose solution to prepare chloropropionyl chloride modified cellulose;

(3) introducing acrylic amino ethyl ester into a cellulose solution modified by chloropropionyl chloride to prepare modified ionized cellulose containing double bonds;

(4) and carrying out free radical polymerization on the modified ionized cellulose containing the double bonds to obtain the transparent ion-conductive cellulose paper.

2. The method for producing a transparent ion-conductive cellulose paper according to claim 1, characterized in that: in the step (1), the cellulose is added into the solvent, and the mixture is stirred until the cellulose is completely dissolved to form clear transparent liquid, so that a cellulose solution is obtained.

3. The method for producing a transparent ion-conductive cellulose paper according to claim 1 or 2, characterized in that: the solvent in the step (1) is 1-butyl-3-methylimidazole chloride salt or 1-allyl-3-methylimidazole chloride salt; the weight of the solvent is 20-100 times of that of the cellulose;

in the step (1), the cellulose is microcrystalline cellulose.

4. The method for producing a transparent ion-conductive cellulose paper according to claim 1, characterized in that: in the step (2), adding N, N-dimethylformamide into the cellulose solution, uniformly stirring, adding chloropropionyl chloride into the cellulose solution in an ice-water bath environment, and reacting at room temperature for 2-4 hours to obtain chloropropionyl chloride modified cellulose.

5. The method for producing a transparent ion-conductive cellulose paper according to claim 4, characterized in that: the chloropropionyl chloride in the step (2) is one or the combination of 2-chloropropionyl chloride and 3-chloropropionyl chloride; the addition amount of chloropropionyl chloride is 1-3 times of the weight of cellulose; the addition amount of the N, N-dimethylformamide is 5-8 times of the weight of the cellulose.

6. The method for producing a transparent ion-conductive cellulose paper according to claim 1, characterized in that: and (3) adding acrylic amino ethyl ester into the chloropropionyl chloride modified cellulose solution, and reacting at room temperature for 24-48 hours to obtain the double-bond-containing modified ionized cellulose solution.

7. The method for producing a transparent ion-conductive cellulose paper according to claim 6, characterized in that: the acrylic amino ethyl ester in the step (3) is one or a combination of more of dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate and N, N-diethylaminoethyl acrylate;

in the step (3), the weight ratio of the added amino ethyl acrylate to the chloropropionyl chloride is 1:1 to 1.2: 1.

8. The method for producing a transparent ion-conductive cellulose paper according to claim 1, characterized in that: and (4) adding an initiator into the modified ionized cellulose solution containing the double bonds, carrying out free radical polymerization, washing with deionized water, and drying to obtain the transparent ion conductive cellulose paper.

9. The method for producing a transparent ion-conductive cellulose paper according to claim 8, characterized in that: the initiator in the step (4) is one or a combination of more of ammonium persulfate, potassium persulfate, sodium persulfate, azobisisobutyronitrile and benzoyl peroxide; the addition amount of the initiator is 1-5% of the weight of the cellulose;

in the step (4), the free radical polymerization reaction is carried out at 60 ℃ for 24-48 hours.

10. A transparent ion-conductive cellulose paper produced by the production method described in any one of claims 1 to 9.

Technical Field

The invention relates to the technical field of cellulose papermaking, in particular to transparent ion conductive cellulose paper and a preparation method thereof.

Background

In recent years, the development of electronic products has been rapidly advanced, and the development track of the society has been completely changed. Especially in the field of flexible electronics, from wearable electronic devices to flexible foldable electronic screens, people's consumption concepts are constantly being refreshed and people's productive lifestyles are being changed. However, with the mass production and rapid renewal of electronic devices in recent years, the contamination of electronic wastes has attracted much attention. Especially in the field of flexible electronics, equipment is more prone to failure due to long-term large-scale deformation or external force damage. For this reason, it is desirable that electronic products be able to "metabolize" themselves spontaneously and easily in the face of performance degradation or damage without placing a burden on the surrounding environmental system. Therefore, in order to solve the problems of the current electronic products, it is necessary to develop a functional substrate with biodegradable properties.

For degradable materials, cellulose is a natural high molecular polymer with the most abundant content on the earth, has the advantages of reproducibility, biocompatibility, biodegradability, chemical stability, safety, non-toxicity and the like, and is widely applied to the fields of paper, textiles, building materials, composite materials and the like. Cellulose is a linear polysaccharide formed by linking a series of D-glucopyranose rings by 1, 4 glycosidic linkages. However, cellulose molecules have a rigid structure and molecular segments move slowly in dynamics due to strong hydrogen bonds and considerable van der waals forces between and within the cellulose molecules. The functional modification of cellulose is an important means for improving the high-value utilization of cellulose. The modified cellulose which has been commercialized successfully at present includes cellulose esters (cellulose nitrate and cellulose acetate) and cellulose ethers (carboxymethyl cellulose and hydroxyethyl cellulose). In recent years, cellulose-based functional hydrogels have opened up new doors for the functional application of cellulose, such as conductive, stimuli-responsive, shape-memory, self-repairing cellulose hydrogels, and the like. However, hydrogels generally suffer from problems such as easy volatilization of water at high temperature or room temperature, easy crystallization at low temperature, and the like, resulting in poor device stability and durability. Therefore, it is still far and diligent to develop a cellulose-based functional material having versatility and excellent stability.

Disclosure of Invention

The technical problem to be solved by the invention is to provide the transparent ion conductive cellulose paper and the preparation method thereof, the preparation method of the transparent ion conductive cellulose paper uses cellulose for preparing the transparent ion conductive cellulose paper, the process is simple, the pollution is little, the cost is low, and the prepared transparent ion conductive cellulose paper has high light transmittance, conductivity, excellent stretchability and bendability and good environmental stability. The technical scheme is as follows:

a preparation method of transparent ion-conductive cellulose paper is characterized by comprising the following steps:

(1) dissolving cellulose into clear transparent liquid by using a solvent to obtain a cellulose solution;

(2) adding chloropropionyl chloride into the cellulose solution to prepare chloropropionyl chloride modified cellulose;

(3) introducing acrylic amino ethyl ester into a cellulose solution modified by chloropropionyl chloride to prepare modified ionized cellulose containing double bonds;

(4) and carrying out free radical polymerization on the modified ionized cellulose containing the double bonds to obtain the transparent ion-conductive cellulose paper.

Preferably, in step (1), the cellulose is added to the solvent and stirred until the cellulose is completely dissolved to form a clear and transparent liquid, thereby obtaining a cellulose solution.

Preferably, the solvent in step (1) is an ionic liquid. More preferably, the solvent used in step (1) is 1-butyl-3-methylimidazolium chloride (BMIMCl) or 1-allyl-3-methylimidazolium chloride (AMIMCl). Before dissolving cellulose, 1-butyl-3-methylimidazole chloride salt and 1-allyl-3-methylimidazole chloride salt are heated and dissolved into liquid.

In the step (1), microcrystalline cellulose is preferably used as the cellulose.

Preferably, in the step (1), the weight of the solvent is 20 to 100 times that of the cellulose.

Preferably, in the step (2), N-dimethylformamide is added into the cellulose solution and is uniformly stirred, then chloropropionyl chloride is added into the cellulose solution in an ice-water bath environment, and then the reaction is carried out for a period of time (preferably 2 to 4 hours) at room temperature (20 to 30 ℃) to obtain the chloropropionyl chloride modified cellulose. The purpose of adding N, N-dimethylformamide in the step (2) is to reduce the viscosity of the cellulose solution system. And (2) carrying out substitution reaction of acyl chloride and hydroxyl on cellulose.

Preferably, the chloropropionyl chloride in the step (2) is one or a combination of 2-chloropropionyl chloride and 3-chloropropionyl chloride.

The amount of the N, N-dimethylformamide added is preferably 5 to 8 times the weight of the cellulose.

Preferably, the addition amount of the chloropropionyl chloride is 1-3 times of the weight of the cellulose.

Preferably, in the step (3), the acrylic amino ethyl ester is added into the cellulose molecular solution modified by chloropropionyl chloride, and the reaction is carried out for a period of time (preferably 24-48 hours) at room temperature to obtain the modified ionized cellulose molecular solution containing double bonds. And (3) carrying out quaternary ammonium salinization reaction.

Preferably, the amino ethyl acrylate in the step (3) is one or more of dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate and N, N-diethylaminoethyl acrylate.

Preferably, in step (3), the weight ratio of the amino ethyl acrylate to the chloropropionyl chloride is between 1:1 and 1.2: 1.

Preferably, in the step (4), an initiator is added into the modified ionized cellulose molecular solution containing double bonds, and after free radical polymerization, the transparent ion conductive cellulose paper is obtained after washing and drying by deionized water.

Preferably, the initiator in the step (4) is one or more of ammonium persulfate, potassium persulfate, sodium persulfate, azobisisobutyronitrile and benzoyl peroxide.

The amount of the initiator added is preferably 1 to 5% by weight based on the weight of the cellulose.

Preferably, in step (4), the radical polymerization is carried out at 60 ℃ for 24 to 48 hours.

The invention also provides the transparent ion-conductive cellulose paper prepared by the preparation method.

Compared with the prior art, the method has the following beneficial effects that the cellulose is used for preparing the transparent ion conductive cellulose paper, and a conductive nano material is not required to be added, so that the prepared transparent ion conductive cellulose paper has high light transmittance, conductivity and excellent bendability, and has good environmental stability; the preparation method of the transparent ion conductive cellulose paper has the advantages of simple process, small pollution and low cost.

Drawings

FIG. 1 is a graph showing UV-visible light transmittance curves of transparent ion-conductive cellulose papers prepared in examples 1-2;

FIG. 2 is a thermogravimetric plot of the transparent ion-conductive cellulose paper prepared in examples 1-2;

FIG. 3 is a stress-strain curve of the transparent ion-conductive cellulose paper prepared in example 1-2;

FIG. 4 is a test for electrical property characterization of the transparent ion-conductive cellulose paper prepared in examples 1-2.

Detailed Description

Example 1

In this embodiment, the preparation method of the transparent ion-conductive cellulose paper includes the following steps:

(1) dissolving cellulose into clear transparent liquid by using a solvent to obtain a cellulose solution;

in the step (1), 0.972g of cellulose (all microcrystalline cellulose) is added into 30g of solvent (the solvent adopts 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium chloride can be stirred for 1 hour at 100 ℃ to obtain clear and transparent ionic liquid, then the microcrystalline cellulose is added into the ionic liquid, and the stirring is carried out until the cellulose is completely dissolved to form clear and transparent liquid (the stirring time is 4 hours), so as to obtain cellulose solution;

(2) adding chloropropionyl chloride into the cellulose solution to prepare chloropropionyl chloride modified cellulose;

in the step (2), adding 5.5 mL of N, N-dimethylformamide into a cellulose solution, uniformly stirring, adding 1g of chloropropionyl chloride (all 2-chloropropionyl chloride) into the cellulose solution in an ice-water bath environment, and reacting at room temperature for 2 hours to obtain chloropropionyl chloride modified cellulose;

(3) introducing acrylic amino ethyl ester into a cellulose solution modified by chloropropionyl chloride to prepare modified ionized cellulose containing double bonds;

in the step (3), 1.2g of acrylic amino ethyl ester (all of which are dimethylaminoethyl methacrylate) is added into the cellulose molecular solution modified by chloropropionyl chloride, and the mixture reacts for 24 hours at room temperature to obtain a modified ionized cellulose molecular solution containing double bonds;

(4) adding 0.04g of initiator (ammonium persulfate) into the double-bond-containing modified ionized cellulose molecular solution, carrying out free radical polymerization (the free radical polymerization reaction is carried out at 60 ℃ and is carried out for 24 hours), washing by deionized water, and drying to obtain the transparent ion conductive cellulose paper.

Preparing various raw materials according to the proportion in batch production.

Example 2

In this embodiment, the preparation method of the transparent ion-conductive cellulose paper includes the following steps:

(1) dissolving cellulose into clear transparent liquid by using a solvent to obtain a cellulose solution;

in the step (1), 0.972g of cellulose (all microcrystalline cellulose) is added into 30g of solvent (the solvent adopts 1-allyl-3-methylimidazolium chloride, 1-allyl-3-methylimidazolium chloride can be stirred for 1 hour at 100 ℃ to obtain clear and transparent ionic liquid, then the microcrystalline cellulose is added into the ionic liquid, and the stirring is carried out until the cellulose is completely dissolved to form clear and transparent liquid (the stirring time is 4 hours), so as to obtain cellulose solution;

(2) adding chloropropionyl chloride into the cellulose solution to prepare chloropropionyl chloride modified cellulose;

in the step (2), adding 8 mL of N, N-dimethylformamide into a cellulose solution, uniformly stirring, adding 1g of chloropropionyl chloride (all 3-chloropropionyl chloride) into the cellulose solution in an ice-water bath environment, and reacting at room temperature for 3 hours to obtain chloropropionyl chloride modified cellulose;

(3) introducing acrylic amino ethyl ester into a cellulose solution modified by chloropropionyl chloride to prepare modified ionized cellulose containing double bonds;

in the step (3), 1g of acrylic amino ethyl ester (all of which are dimethylaminoethyl acrylate) is added into the cellulose molecular solution modified by chloropropionyl chloride, and the mixture reacts for 36 hours at room temperature to obtain a modified ionized cellulose molecular solution containing double bonds;

(4) adding 0.02g of initiator (ammonium persulfate) into the modified ionized cellulose molecular solution containing double bonds, carrying out free radical polymerization (the free radical polymerization reaction is carried out at 60 ℃ and is carried out for 48 hours), washing by deionized water, and drying to obtain the transparent ion conductive cellulose paper.

Preparing various raw materials according to the proportion in batch production.

The transparent ion-conductive cellulose paper prepared in example 1-2 was subjected to optical property test, and its ultraviolet-visible light transmittance curve is shown in FIG. 1. As can be seen from FIG. 1, the prepared transparent ion-conducting cellulose paper has excellent optical transmittance, and the average transmittance in the visible light range of 400-800 nm is about 90%.

The transparent ion-conductive cellulose paper prepared in example 1-2 was tested for thermal stability and its thermogravimetric curve is shown in FIG. 2. As can be seen from fig. 2, the prepared transparent ion-conductive cellulose paper has good thermal stability, in which the thermal decomposition temperature is around 250 ℃.

The transparent ion-conductive cellulose paper prepared in examples 1-2 was tested for mechanical properties and the stress-strain curve is shown in FIG. 3. As can be seen from FIG. 3, the prepared transparent ion-conductive cellulose paper has good mechanical flexibility, the maximum tensile deformation of the paper is between 15% and 20%, and the maximum tensile stress of the paper is between 8 MPa and 9 MPa.

The electrical properties of the transparent ion-conducting cellulose paper prepared in examples 1-2 were characterized and tested and can be placed in series in a circuit to light a small bulb, see in particular fig. 4. As can be seen from fig. 4, the prepared transparent ion-conductive cellulose paper has excellent conductivity, and the small bulbs can be kept to emit light continuously and stably after the transparent ion-conductive cellulose paper is connected into a circuit.

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种光学防近视纸的制作工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!