一种兼具大量程和高精度的双环式微机械陀螺结构

文档序号:507130 发布日期:2021-05-28 浏览:22次 >En<

阅读说明:本技术 一种兼具大量程和高精度的双环式微机械陀螺结构 (Double-ring type micromechanical gyroscope structure with wide range and high precision ) 是由 曹慧亮 刘俊 石云波 唐军 申冲 赵锐 刘宇鹏 于 2021-04-15 设计创作,主要内容包括:本发明具体是一种兼具大量程和高精度的双环式微机械陀螺结构。解决了现有微机械振动陀螺无法兼具大量程和高精度的问题。一种兼具大量程和高精度的双环式微机械陀螺结构,包括玻璃基底、谐振子部分、电极部分;所述谐振子部分包括圆环状内层谐振质量、圆环状外层谐振质量、圆柱状中心锚点、八个块状外围锚点、八根轮辐状内侧弹性支撑悬梁、八根轮辐状外侧弹性支撑悬梁;所述电极部分包括四个弧形内层驱动模态位移测量电极、四个弧形外层驱动模态位移测量电极、四个弧形内层检测模态位移测量电极、四个弧形外层检测模态位移测量电极、八对弧形内层控制电极、八对弧形外层控制电极。本发明适用于武器制导、航空航天、生物医学、消费品电子等领域。(The invention particularly relates to a double-ring type micromechanical gyroscope structure with wide range and high precision. The problem that the existing micro-mechanical vibration gyro cannot have both wide range and high precision is solved. A dual-ring type micromechanical gyroscope structure with wide range and high precision comprises a glass substrate, a resonator part and an electrode part; the resonance part comprises circular ring-shaped inner layer resonance mass, circular ring-shaped outer layer resonance mass, a cylindrical central anchor point, eight block-shaped peripheral anchor points, eight spoke-shaped inner elastic support suspension beams and eight spoke-shaped outer elastic support suspension beams; the electrode part comprises four arc inner layer driving modal displacement measuring electrodes, four arc outer layer driving modal displacement measuring electrodes, four arc inner layer detection modal displacement measuring electrodes, four arc outer layer detection modal displacement measuring electrodes, eight pairs of arc inner layer control electrodes and eight pairs of arc outer layer control electrodes. The invention is suitable for the fields of weapon guidance, aerospace, biomedicine, consumer electronics and the like.)

一种兼具大量程和高精度的双环式微机械陀螺结构

技术领域

本发明涉及微机械振动陀螺,具体是一种兼具大量程和高精度的双环式微机械陀螺结构。

背景技术

微机械振动陀螺是基于科里奥利效应的一种角速度敏感装置,具有体积小、质量轻、功耗低、寿命长、可批量生产、价格便宜等优点,广泛应用于武器制导、航空航天、生物医学、消费品电子等领域,具有极其广泛的应用前景。微机械振动陀螺的具体工作原理如下:当没有角速度输入时,微机械振动陀螺的谐振子在驱动模态下工作,微机械振动陀螺的输岀为零。当有角速度输入时,微机械振动陀螺的谐振子在检测模态下工作,微机械振动陀螺实时测岀输入角速度。然而实践表明,现有微机械振动陀螺由于其谐振子的几何结构和电极的结构所限,无法兼具大量程和高精度。为此有必要发明一种兼具大量程和高精度的双环式微机械陀螺结构,以解决现有微机械振动陀螺无法兼具大量程和高精度的问题。

发明内容

本发明为了解决现有微机械振动陀螺无法兼具大量程和高精度的问题,提供了一种兼具大量程和高精度的双环式微机械陀螺结构。

本发明是采用如下技术方案实现的:

一种兼具大量程和高精度的双环式微机械陀螺结构,包括玻璃基底、谐振子部分、电极部分;

所述谐振子部分包括圆环状内层谐振质量、圆环状外层谐振质量、圆柱状中心锚点、八个块状外围锚点、八根轮辐状内侧弹性支撑悬梁、八根轮辐状外侧弹性支撑悬梁;

所述电极部分包括四个弧形内层驱动模态位移测量电极、四个弧形外层驱动模态位移测量电极、四个弧形内层检测模态位移测量电极、四个弧形外层检测模态位移测量电极、八对弧形内层控制电极、八对弧形外层控制电极;

其中,圆环状内层谐振质量和圆环状外层谐振质量均置放于玻璃基底的上表面,且圆环状内层谐振质量的中心线和圆环状外层谐振质量的中心线相互重合;

圆柱状中心锚点键合于玻璃基底的上表面,且圆柱状中心锚点位于圆环状内层谐振质量的内腔;圆柱状中心锚点的中心线和圆环状内层谐振质量的中心线相互重合;

八个块状外围锚点均键合于玻璃基底的上表面,且八个块状外围锚点均位于圆环状外层谐振质量的外部;八个块状外围锚点围绕圆柱状中心锚点的中心线对称分布;

八根轮辐状内侧弹性支撑悬梁均位于圆柱状中心锚点和圆环状内层谐振质量之间,且八根轮辐状内侧弹性支撑悬梁围绕圆柱状中心锚点的中心线对称分布;

每根轮辐状内侧弹性支撑悬梁均由第一直形梁段、第一S形梁段、第二直形梁段构成;第一直形梁段的尾端与圆柱状中心锚点的外侧面固定;第一S形梁段的尾端与第一直形梁段的首端固定;第二直形梁段的尾端与第一S形梁段的首端固定;第二直形梁段的首端与圆环状内层谐振质量的内侧面固定;

八根轮辐状外侧弹性支撑悬梁一一对应地位于圆环状外层谐振质量和八个块状外围锚点之间,且八根轮辐状外侧弹性支撑悬梁围绕圆柱状中心锚点的中心线对称分布;

每根轮辐状外侧弹性支撑悬梁均由第三直形梁段、第二S形梁段、第四直形梁段构成;第三直形梁段的尾端与圆环状外层谐振质量的外侧面固定;第二S形梁段的尾端与第三直形梁段的首端固定;第四直形梁段的尾端与第二S形梁段的首端固定;第四直形梁段的首端与对应的块状外围锚点的内侧面固定;

四个弧形内层驱动模态位移测量电极和四个弧形内层检测模态位移测量电极均键合于玻璃基底的上表面,且四个弧形内层驱动模态位移测量电极和四个弧形内层检测模态位移测量电极均位于圆环状内层谐振质量和圆环状外层谐振质量之间;四个弧形内层驱动模态位移测量电极和四个弧形内层检测模态位移测量电极围绕圆柱状中心锚点的中心线对称分布且交错排列;四个弧形内层驱动模态位移测量电极的中点位置与第一根第二直形梁段的首端、第三根第二直形梁段的首端、第五根第二直形梁段的首端、第七根第二直形梁段的首端一一正对;四个弧形内层检测模态位移测量电极的中点位置与第二根第二直形梁段的首端、第四根第二直形梁段的首端、第六根第二直形梁段的首端、第八根第二直形梁段的首端一一正对;四个弧形内层驱动模态位移测量电极的内侧面与圆环状内层谐振质量的外侧面共同构成四个微电容器;四个弧形内层检测模态位移测量电极的内侧面与圆环状内层谐振质量的外侧面共同构成四个微电容器;

四个弧形外层驱动模态位移测量电极和四个弧形外层检测模态位移测量电极均键合于玻璃基底的上表面,且四个弧形外层驱动模态位移测量电极和四个弧形外层检测模态位移测量电极均位于圆环状内层谐振质量和圆环状外层谐振质量之间;四个弧形外层驱动模态位移测量电极和四个弧形外层检测模态位移测量电极围绕圆柱状中心锚点的中心线对称分布且交错排列;四个弧形外层驱动模态位移测量电极的中点位置与第一根第三直形梁段的尾端、第三根第三直形梁段的尾端、第五根第三直形梁段的尾端、第七根第三直形梁段的尾端一一正对;四个弧形外层检测模态位移测量电极的中点位置与第二根第三直形梁段的尾端、第四根第三直形梁段的尾端、第六根第三直形梁段的尾端、第八根第三直形梁段的尾端一一正对;四个弧形外层驱动模态位移测量电极的外侧面与圆环状外层谐振质量的内侧面共同构成四个微电容器;四个弧形外层检测模态位移测量电极的外侧面与圆环状外层谐振质量的内侧面共同构成四个微电容器;

八对弧形内层控制电极均键合于玻璃基底的上表面,且八对弧形内层控制电极均位于圆柱状中心锚点和圆环状内层谐振质量之间;八对弧形内层控制电极围绕圆柱状中心锚点的中心线对称分布,且八对弧形内层控制电极一一对应地对称分布于八根第二直形梁段的两侧;八对弧形内层控制电极的外侧面与圆环状内层谐振质量的内侧面共同构成八对微电容器;其中,与四个弧形内层驱动模态位移测量电极位置对应的四对微电容器作为四对内层驱动模态激励电容,与四个弧形内层检测模态位移测量电极位置对应的四对微电容器作为四对内层检测模态力反馈电容;

八对弧形外层控制电极均键合于玻璃基底的上表面,且八对弧形外层控制电极均位于圆环状外层谐振质量的外部;八对弧形外层控制电极围绕圆柱状中心锚点的中心线对称分布,且八对弧形外层控制电极一一对应地对称分布于八根第三直形梁段的两侧;八对弧形外层控制电极的内侧面与圆环状外层谐振质量的外侧面共同构成八对微电容器;其中,与四个弧形外层驱动模态位移测量电极位置对应的四对微电容器作为四对外层驱动模态激励电容,与四个弧形外层检测模态位移测量电极位置对应的四对微电容器作为四对外层检测模态力反馈电容。

工作时,四个弧形内层驱动模态位移测量电极、四个弧形外层驱动模态位移测量电极、四个弧形内层检测模态位移测量电极、四个弧形外层检测模态位移测量电极、八对弧形内层控制电极、八对弧形外层控制电极均通过金属导线与控制系统连接。

具体工作过程如下:控制系统分别产生两路驱动电压信号:第一路驱动电压信号通过金属导线传输至四对内层驱动模态激励电容,使得圆环状内层谐振质量在静电力的作用下同时维持环向波数为2的四波腹振动。在振动过程中,四个弧形内层驱动模态位移测量电极实时测量圆环状内层谐振质量的位移,并通过金属导线将测量结果实时传输至控制系统。控制系统根据测量结果实时控制第一路驱动电压信号,由此一方面使得圆环状内层谐振质量的位移幅值保持恒定,另一方面使得圆环状内层谐振质量在其谐振频率点上振动。第二路驱动电压信号通过金属导线传输至四对外层驱动模态激励电容,使得圆环状外层谐振质量在静电力的作用下同时维持环向波数为2的四波腹振动。在振动过程中,四个弧形外层驱动模态位移测量电极实时测量圆环状外层谐振质量的位移,并通过金属导线将测量结果实时传输至控制系统。控制系统根据测量结果实时控制第二路驱动电压信号,由此一方面使得圆环状外层谐振质量的位移幅值保持恒定,另一方面使得圆环状外层谐振质量在其谐振频率点上振动。

当没有角速度输入时,圆环状内层谐振质量在四对内层驱动模态激励电容的激励下,以驱动模态作面内四波腹弯曲振动,此时四个弧形内层检测模态位移测量电极位于四波腹弯曲振动的波节处,四个弧形内层检测模态位移测量电极均不产生检测电压信号。同时,圆环状外层谐振质量在四对外层驱动模态激励电容的激励下,以驱动模态作面内四波腹弯曲振动,此时四个弧形外层检测模态位移测量电极位于四波腹弯曲振动的波节处,四个弧形外层检测模态位移测量电极均不产生检测电压信号。此时,本发明的输出为零。

当有角速度输入时,圆环状内层谐振质量在哥氏力耦合作用下,以检测模态作面内四波腹弯曲振动,此时四个弧形内层检测模态位移测量电极位于四波腹弯曲振动的波腹处,四个弧形内层检测模态位移测量电极均产生检测电压信号,且检测电压信号与输入角速度相关。同时,圆环状外层谐振质量在哥氏力耦合作用下,以检测模态作面内四波腹弯曲振动,此时四个弧形外层检测模态位移测量电极位于四波腹弯曲振动的波腹处,四个弧形外层检测模态位移测量电极均产生检测电压信号,且检测电压信号与输入角速度相关。

在检测开环工作状态下,控制系统一方面根据四个弧形内层检测模态位移测量电极产生的检测电压信号实时解算出输入角速度,另一方面根据四个弧形外层检测模态位移测量电极产生的检测电压信号实时解算出输入角速度(当输入角速度较小时,圆环状外层谐振质量作为高精度陀螺,使得控制系统输出高精度的角速度解算结果;圆环状内层谐振质量作为大量程陀螺,使得控制系统输出低精度的角速度解算结果。当输入角速度较大时,由于输入角速度超出了圆环状外层谐振质量的量程,使得控制系统输出的角速度解算结果处于饱和状态;圆环状内层谐振质量作为大量程陀螺,使得控制系统输出大量程的角速度解算结果)。

进一步地,在检测闭环工作状态下,控制系统还会根据四个弧形内层检测模态位移测量电极产生的检测电压信号实时解算出圆环状内层谐振质量的振动幅值,并根据解算结果实时生成第一路控制信号,然后通过金属导线将第一路控制信号实时传输至四对内层检测模态力反馈电容,由此形成检测反馈静电力,该力作用于圆环状内层谐振质量上以抵消哥氏力,使得圆环状内层谐振质量的振动幅值降至最低,由此提高其精度等参数。同时,控制系统还会根据四个弧形外层检测模态位移测量电极产生的检测电压信号实时解算出圆环状外层谐振质量的振动幅值,并根据解算结果实时生成第二路控制信号,然后通过金属导线将第二路控制信号实时传输至四对外层检测模态力反馈电容,由此形成检测反馈静电力,该力作用于圆环状外层谐振质量上以抵消哥氏力,使得圆环状外层谐振质量的振动幅值降至最低,由此提高其精度等参数。

基于上述过程,本发明所述的一种兼具大量程和高精度的双环式微机械陀螺结构通过采用全新结构,具备了如下优点:其一,本发明一方面采用圆环状外层谐振质量作为高精度陀螺(其振动质量较大,受角速度输入时的哥氏力较大),另一方面采用圆环状内层谐振质量作为大量程陀螺(其振动质量较小,受角速度输入时的哥氏力较小),由此兼具了大量程和高精度。其二,本发明的谐振子采用双环式结构,且圆环状内层谐振质量和圆环状外层谐振质量可以同时维持四波腹振动,二者各自拥有自己的模态谐振频率,相互之间不干扰,为两个独立的陀螺结构,由此整个结构能够兼具大量程和高精度。其三,本发明中各电容电极工作方式灵活,可根据不同的工作需求配置电极的工作功能(包括完成圆环状谐振质量的运动位移检测、静电力驱动、圆环状谐振质量谐振模态频率调节、正交校正等功能)。

本发明结构合理、设计巧妙,有效解决了现有微机械振动陀螺无法兼具大量程和高精度的问题,适用于武器制导、航空航天、生物医学、消费品电子等领域。

附图说明

图1是本发明的结构示意图。

图2是本发明的部分结构示意图。

图中:11-圆环状内层谐振质量,12-圆环状外层谐振质量,21-圆柱状中心锚点,22-块状外围锚点,31-轮辐状内侧弹性支撑悬梁,32-轮辐状外侧弹性支撑悬梁,41-弧形内层驱动模态位移测量电极,42-弧形外层驱动模态位移测量电极,51-弧形内层检测模态位移测量电极,52-弧形外层检测模态位移测量电极,61-弧形内层控制电极,62-弧形外层控制电极,31a-第一直形梁段,31b-第一S形梁段,31c-第二直形梁段,32a-第三直形梁段,32b-第二S形梁段,32c-第四直形梁段。

具体实施方式

一种兼具大量程和高精度的双环式微机械陀螺结构,包括玻璃基底、谐振子部分、电极部分;

所述谐振子部分包括圆环状内层谐振质量11、圆环状外层谐振质量12、圆柱状中心锚点21、八个块状外围锚点22、八根轮辐状内侧弹性支撑悬梁31、八根轮辐状外侧弹性支撑悬梁32;

所述电极部分包括四个弧形内层驱动模态位移测量电极41、四个弧形外层驱动模态位移测量电极42、四个弧形内层检测模态位移测量电极51、四个弧形外层检测模态位移测量电极52、八对弧形内层控制电极61、八对弧形外层控制电极62;

其中,圆环状内层谐振质量11和圆环状外层谐振质量12均置放于玻璃基底的上表面,且圆环状内层谐振质量11的中心线和圆环状外层谐振质量12的中心线相互重合;

圆柱状中心锚点21键合于玻璃基底的上表面,且圆柱状中心锚点21位于圆环状内层谐振质量11的内腔;圆柱状中心锚点21的中心线和圆环状内层谐振质量11的中心线相互重合;

八个块状外围锚点22均键合于玻璃基底的上表面,且八个块状外围锚点22均位于圆环状外层谐振质量12的外部;八个块状外围锚点22围绕圆柱状中心锚点21的中心线对称分布;

八根轮辐状内侧弹性支撑悬梁31均位于圆柱状中心锚点21和圆环状内层谐振质量11之间,且八根轮辐状内侧弹性支撑悬梁31围绕圆柱状中心锚点21的中心线对称分布;

每根轮辐状内侧弹性支撑悬梁31均由第一直形梁段31a、第一S形梁段31b、第二直形梁段31c构成;第一直形梁段31a的尾端与圆柱状中心锚点21的外侧面固定;第一S形梁段31b的尾端与第一直形梁段31a的首端固定;第二直形梁段31c的尾端与第一S形梁段31b的首端固定;第二直形梁段31c的首端与圆环状内层谐振质量11的内侧面固定;

八根轮辐状外侧弹性支撑悬梁32一一对应地位于圆环状外层谐振质量12和八个块状外围锚点22之间,且八根轮辐状外侧弹性支撑悬梁32围绕圆柱状中心锚点21的中心线对称分布;

每根轮辐状外侧弹性支撑悬梁32均由第三直形梁段32a、第二S形梁段32b、第四直形梁段32c构成;第三直形梁段32a的尾端与圆环状外层谐振质量12的外侧面固定;第二S形梁段32b的尾端与第三直形梁段32a的首端固定;第四直形梁段32c的尾端与第二S形梁段32b的首端固定;第四直形梁段32c的首端与对应的块状外围锚点22的内侧面固定;

四个弧形内层驱动模态位移测量电极41和四个弧形内层检测模态位移测量电极51均键合于玻璃基底的上表面,且四个弧形内层驱动模态位移测量电极41和四个弧形内层检测模态位移测量电极51均位于圆环状内层谐振质量11和圆环状外层谐振质量12之间;四个弧形内层驱动模态位移测量电极41和四个弧形内层检测模态位移测量电极51围绕圆柱状中心锚点21的中心线对称分布且交错排列;四个弧形内层驱动模态位移测量电极41的中点位置与第一根第二直形梁段31c的首端、第三根第二直形梁段31c的首端、第五根第二直形梁段31c的首端、第七根第二直形梁段31c的首端一一正对;四个弧形内层检测模态位移测量电极51的中点位置与第二根第二直形梁段31c的首端、第四根第二直形梁段31c的首端、第六根第二直形梁段31c的首端、第八根第二直形梁段31c的首端一一正对;四个弧形内层驱动模态位移测量电极41的内侧面与圆环状内层谐振质量11的外侧面共同构成四个微电容器;四个弧形内层检测模态位移测量电极51的内侧面与圆环状内层谐振质量11的外侧面共同构成四个微电容器;

四个弧形外层驱动模态位移测量电极42和四个弧形外层检测模态位移测量电极52均键合于玻璃基底的上表面,且四个弧形外层驱动模态位移测量电极42和四个弧形外层检测模态位移测量电极52均位于圆环状内层谐振质量11和圆环状外层谐振质量12之间;四个弧形外层驱动模态位移测量电极42和四个弧形外层检测模态位移测量电极52围绕圆柱状中心锚点21的中心线对称分布且交错排列;四个弧形外层驱动模态位移测量电极42的中点位置与第一根第三直形梁段32a的尾端、第三根第三直形梁段32a的尾端、第五根第三直形梁段32a的尾端、第七根第三直形梁段32a的尾端一一正对;四个弧形外层检测模态位移测量电极52的中点位置与第二根第三直形梁段32a的尾端、第四根第三直形梁段32a的尾端、第六根第三直形梁段32a的尾端、第八根第三直形梁段32a的尾端一一正对;四个弧形外层驱动模态位移测量电极42的外侧面与圆环状外层谐振质量12的内侧面共同构成四个微电容器;四个弧形外层检测模态位移测量电极52的外侧面与圆环状外层谐振质量12的内侧面共同构成四个微电容器;

八对弧形内层控制电极61均键合于玻璃基底的上表面,且八对弧形内层控制电极61均位于圆柱状中心锚点21和圆环状内层谐振质量11之间;八对弧形内层控制电极61围绕圆柱状中心锚点21的中心线对称分布,且八对弧形内层控制电极61一一对应地对称分布于八根第二直形梁段31c的两侧;八对弧形内层控制电极61的外侧面与圆环状内层谐振质量11的内侧面共同构成八对微电容器;其中,与四个弧形内层驱动模态位移测量电极41位置对应的四对微电容器作为四对内层驱动模态激励电容,与四个弧形内层检测模态位移测量电极51位置对应的四对微电容器作为四对内层检测模态力反馈电容;

八对弧形外层控制电极62均键合于玻璃基底的上表面,且八对弧形外层控制电极62均位于圆环状外层谐振质量12的外部;八对弧形外层控制电极62围绕圆柱状中心锚点21的中心线对称分布,且八对弧形外层控制电极62一一对应地对称分布于八根第三直形梁段32a的两侧;八对弧形外层控制电极62的内侧面与圆环状外层谐振质量12的外侧面共同构成八对微电容器;其中,与四个弧形外层驱动模态位移测量电极42位置对应的四对微电容器作为四对外层驱动模态激励电容,与四个弧形外层检测模态位移测量电极52位置对应的四对微电容器作为四对外层检测模态力反馈电容。

圆环状内层谐振质量11的高度、圆环状外层谐振质量12的高度、八根轮辐状内侧弹性支撑悬梁31的高度、八根轮辐状外侧弹性支撑悬梁32的高度均一致;八个块状外围锚点22的尺寸一致;八根轮辐状内侧弹性支撑悬梁31的尺寸、八根轮辐状外侧弹性支撑悬梁32的尺寸均一致;四个弧形内层驱动模态位移测量电极41的尺寸、四个弧形内层检测模态位移测量电极51的尺寸均一致;四个弧形外层驱动模态位移测量电极42的尺寸、四个弧形外层检测模态位移测量电极52的尺寸均一致;八对弧形内层控制电极61的尺寸一致;八对弧形外层控制电极62的尺寸一致。

圆环状内层谐振质量11、圆环状外层谐振质量12、圆柱状中心锚点21、八个块状外围锚点22、八根轮辐状内侧弹性支撑悬梁31、八根轮辐状外侧弹性支撑悬梁32均采用单晶硅片加工而成,且圆环状内层谐振质量11、圆环状外层谐振质量12、圆柱状中心锚点21、八个块状外围锚点22、八根轮辐状内侧弹性支撑悬梁31、八根轮辐状外侧弹性支撑悬梁32采用体硅加工工艺制造为一体。

每个弧形内层驱动模态位移测量电极41的内侧面面积均等于与之对应的一对弧形内层控制电极61的外侧面面积之和;每个弧形内层检测模态位移测量电极51的内侧面面积均等于与之对应的一对弧形内层控制电极61的外侧面面积之和;每个弧形外层驱动模态位移测量电极42的外侧面面积均等于与之对应的一对弧形外层控制电极62的内侧面面积之和;每个弧形外层检测模态位移测量电极52的外侧面面积均等于与之对应的一对弧形外层控制电极62的内侧面面积之和。工作时,这一设计可以使得测量电极与控制电极实现功能互换。

虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种具有良好抗冲击性能的冗余双环式微机械陀螺结构

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类