一种耐温1300℃频率选择透波/隔热/隐身结构及其制备方法

文档序号:523823 发布日期:2021-06-01 浏览:5次 >En<

阅读说明:本技术 一种耐温1300℃频率选择透波/隔热/隐身结构及其制备方法 (1300-DEG C-resistant frequency-selective wave-transmitting/heat-insulating/stealth structure and preparation method thereof ) 是由 刘海韬 姜如 黄文质 甘霞云 张琳 孙逊 于 2021-02-02 设计创作,主要内容包括:本发明涉及高温功能材料技术领域,具体公开了一种耐温1300℃频率选择透波/隔热/隐身结构及其制备方法,所述频率选择透波/隔热/隐身结构以电磁波入射方向定义为外表面,由内至外依次包括隔热层、透波层、频率选择层、陶瓷防护层。本发明还提供了频率选择透波/隔热/隐身结构的制备方法。本发明的频率选择透波/隔热/隐身结构具有隔热、透波、频率选择、隐身多功能一体化优点,通过结构与材料优化,可以耐受1300℃的高温,外表面制备了陶瓷防护层,具有抗烧蚀、隔热等优点。(The invention relates to the technical field of high-temperature functional materials, and particularly discloses a 1300 ℃ temperature-resistant frequency-selective wave-transmitting/heat-insulating/stealth structure and a preparation method thereof. The invention also provides a preparation method of the frequency selective wave-transparent/heat-insulating/stealth structure. The frequency selection wave-transmitting/heat-insulating/stealth structure has the advantages of integration of heat insulation, wave transmission, frequency selection and stealth, can resist the high temperature of 1300 ℃ through structure and material optimization, is provided with a ceramic protective layer on the outer surface, and has the advantages of ablation resistance, heat insulation and the like.)

一种耐温1300℃频率选择透波/隔热/隐身结构及其制备方法

技术领域

本发明属于高温功能材料技术领域,特别涉及一种耐温1300℃频率选择透波/隔热/隐身结构及其制备方法。

背景技术

透波材料以及结构(天线罩、天线窗、雷达罩等)是天线以及通讯系统的重要组成部分,它具有保护天线以及通讯系统、维持飞行器外形等重要作用,同时满足天线以及通讯系统的透波功能要求,使之可以正常工作。此外,为确保飞行器天线系统的隐身和抗干扰能力,要求透波材料以及结构具有选频透波特性。

频率选择表面是由大量的无源谐振单元组成的单屏或多屏周期性阵列结构,它由周期性排列的导体贴片单元或在导体屏上周期性排列的孔径单元构成。这种表面可以在单元谐振频率附近呈现全反射(贴片型)或全传输特性(孔径型),分别称为带阻或带通型频率选择表面。大量的理论以及实践证明,通过合理的结构设计,将频率选择表面技术应用于透波结构中,可实现天线工作频段电磁波的宽频段(或多频点)、大角度范围内的高透过率,带外实现高反射特性,可以赋予天线系统优异的隐身和抗干扰能力。

随着飞行器飞行速度的增加,对频率选择透波结构提出了耐温和隔热性能新要求。现有技术报道的频率选择表面主要通过印刷电路板工艺、光刻镀膜工艺以及丝网印刷工艺制备,选用的频率选择表面基材以及导电周期图案材料均不具备耐受400℃以上的能力。针对现有技术的不足,201410551086.7号中国专利提出了一种耐高温频率选择表面透波材料及其制备方法,该专利以多孔氮化硅陶瓷材料为基材,以耐高温导电陶瓷(TiB2或TiN)或耐高温金属(铂、钨或钼中的一种)为频率选择表面材料,从选用的材料体系看,具有一定的耐温能力,但也存在以下明显不足:1)采用的多孔氮化硅陶瓷材料强度低、韧性差、抗热震性能不足,可靠性差;2)采用的TiB2或TiN导电陶瓷材料以及钨、钼金属材料高温抗氧化性能差,高温富氧环境下使用时会由于氧化出现严重的电性能下降问题,从而影响频率选择表面的电性能。同时,该专利采用的透波材料为多层结构形式,较为复杂,而且不同层间通过磷酸二氢铝粘结剂粘接,具有层间强度低的问题。此外,该专利公开的技术方案并未采用相应的技术对多孔氮化硅基材表面进行处理,因此在多孔基材上制备的频率选择表面必然存在质量较差的缺点,周期图案的尺寸稳定性以及各周期单元的电性能均无法得到有效保证。2011610837457.7号中国专利发明了一种耐高温频率选择透波结构,该专利通过材料体系与结构优化,可以较好的解决201410551086.7号中国专利存在的材料力学性能差、频率选择表面抗氧化能力不足等问题,但仍然存在以下不足:1)该耐高温频率选择透波结构不具备隔热功能;2)耐温仅能达到700~800℃,耐温能力不高;3)透波层复合材料表面需要制备修饰粘结层才能实现高质量频率选择表面的制备,工艺复杂;4)频率选择层外表面无有效防护,在高热力载荷情况下频率选择层存在剥落风险。

发明内容

本发明的目的在于提供一种耐温1300℃频率选择透波/隔热/隐身结构及其制备方法,从而克服背景技术中提到的不足与缺陷。

为实现上述目的,本发明提供了一种耐温1300℃频率选择透波/隔热/隐身结构,其特征在于,所述频率选择透波/隔热/隐身结构以电磁波入射方向定义为外表面,由内至外依次包括隔热层、透波层、频率选择层、陶瓷防护层。

优选的,上述频率选择透波/隔热/隐身结构中,所述隔热层为纤维毡增强气凝胶复合材料,纤维毡为石英、莫来石或氧化铝材料,气凝胶为二氧化硅、莫来石或氧化铝材料,所述纤维毡增强气凝胶复合材料微波介电常数不大于1.4,介电损耗不大于0.01,密度不大于0.6g/cm3,室温热导率不大于0.07W/m·K,且经过疏水处理,质量吸湿率低于1%。

优选的,上述频率选择透波/隔热/隐身结构中,所述透波层为连续纤维织物增强陶瓷基透波复合材料,其中,连续纤维为石英或铝硅酸盐材料,织物形式为针刺、缝合、2.5D或3D,陶瓷基体为二氧化硅、莫来石或氧化铝;所述连续纤维织物增强陶瓷基透波复合材料经过溶胶泥浆后致密化处理,表面缺陷尺寸不大于0.5mm,粗糙度低于3μm。

优选的,上述频率选择透波/隔热/隐身结构中,所述频率选择层为呈现周期性阵列排布的贴片或孔径高温导体涂层,所述高温导体涂层以Pt为导电相,ZnO-Bi2O3玻璃为粘结相,且涂层中Pt的含量为95~98wt%,涂层含有5~15%孔隙率,涂层的方阻不大于30mΩ/sq。

优选的,上述频率选择透波/隔热/隐身结构中,所述陶瓷防护层为二氧化硅与莫来石复相陶瓷涂层,莫来石含量为30~70wt%;所述陶瓷防护层的微波介电常数不大于4,介电损耗不大于0.008,厚度为0.05~0.1mm,孔隙率为10~20%。

一种上述的频率选择透波/隔热/隐身结构的制备方法,其特征在于,包括以下步骤:

(1)按照设计要求准备隔热层纤维毡增强气凝胶复合材料;

(2)按照设计要求准备透波层连续纤维织物,并经过去胶处理;

(3)采用与透波层连续纤维织物相同的纤维缝合线将步骤(1)得到的纤维毡增强气凝胶复合材料和步骤(2)得到的透波层连续纤维织物缝合成为整体,制成预制件;

(4)对步骤(3)得到的预制件进行反复溶胶真空浸渍和干燥处理,完成预制件初期致密化;

(5)继续对预制件进行反复溶胶泥浆真空浸渍和干燥处理,完成预制件后致密化;

(6)对步骤(5)处理得到的预制件进行高温烧结,然后对透波层表面进行打磨处理;

(7)在步骤(6)打磨处理的透波层表面制备频率选择层,具体步骤为:

A. 最小线宽小于0.2mm的频率选择层图案采用如下步骤制备:

以高温导体浆料为原料,采用空白丝网按照丝网印刷工艺在透波层表面印制高温导体浆料,再经干燥和烧结工艺,在透波层表面获得高温导体涂层;采用激光刻蚀工艺,在高温导体涂层表面刻蚀出周期结构图案,制成频率选择层;

B. 最小线宽大于0.2mm的频率选择层图案采用如下步骤制备:

以高温导体浆料为原料,采用带图案丝网按照丝网印刷工艺在透波层表面印制高温导体浆料形成周期结构图案,再经干燥和烧结工艺,在透波层表面制成频率选择层;

(8)采用大气等离子喷涂工艺将陶瓷粉末喷涂于频率选择层表面,制备出陶瓷防护层,然后进行打磨处理,使陶瓷防护层厚度满足要求,完成耐温1300℃频率选择透波/隔热/隐身结构制备。

优选的,上述制备方法中,所述步骤(2)中,去胶具体过程:将透波层连续纤维织物放置在马弗炉中,空气中升温至600~700℃,保温1~2h,直接取出或随炉冷却至室温取出;

所述步骤(3)中,缝合针距为5~30mm;

所述步骤(6)中,高温烧结的工艺参数为:温度为800℃~1000℃,处理时间为30~60min;

所述步骤(7)中,干燥和烧结工艺参数为:干燥温度为150℃~200℃,干燥时间为0.5~1h;烧结温度为900~1000℃,烧结时间为10~30min;激光刻蚀工艺为:激光功率为2W~8W,扫描速度为800~1500mm/min,频率为50~200kHz,扫描次数为2~6次;

所述步骤(8)中,大气等离子喷涂工艺参数为:控制氩气流量为30~45L/min,电流大小为500~600A,功率为33~42kW,送粉量为6~10g/min,喷涂距离为100~150mm;陶瓷粉末为类球形喷涂粉末;所述类球形喷涂粉末的粒度为100~400目,流动性为80~100s/50g,松装密度为0.7~1.0g/cm3

优选的,上述制备方法中,所述步骤(4)中,反复溶胶真空浸渍和干燥处理具体操作步骤包括:将预制件用框架式工装夹紧后进行真空浸渍溶胶,浸渍过程压力不大于-0.09MPa,浸渍时间不低于4h,然后取出预制件在150~170℃的温度下干燥处理2~4h,如此反复进行6~8次,所述溶胶为二氧化硅溶胶、氧化铝溶胶、莫来石溶胶中的一种或几种,溶胶的固含量不低于15wt%。

优选的,上述制备方法中,所述步骤(5)中,反复溶胶泥浆真空浸渍和干燥处理具体操作步骤包括:将预制件进行真空浸渍溶胶泥浆,浸渍过程压力不大于-0.09MPa,浸渍时间不低于4h,然后取出预制件在150~170℃的温度下干燥处理2~4h,如此反复进行4~6次,所述溶胶泥浆为掺入粉体的溶胶,所述粉体为二氧化硅粉、莫来石粉或氧化铝粉,所述粉体粒径不大于10μm,所述粉体与溶胶的质量比为1:5~1:1,所述溶胶为二氧化硅溶胶、氧化铝溶胶或莫来石溶胶中的一种或几种。

优选的,上述制备方法中,所述步骤(7)中,高温导体浆料的制备方法,包括以下步骤:

①将玻璃原料粉体混合均匀,在1200~1400℃下进行高温熔炼1~3h,将熔体倒入去离子水中进行淬冷,得到玻璃渣;所述玻璃原料粉体包括以下质量百分数的各组分:Bi2O380~90 wt%,ZnO 10~20 wt%;

②将步骤①得到的玻璃渣以乙醇为球磨介质,按球料比为(2~3):1、球磨转速为380~450r/min进行球磨4~8h,烘干,过200~400目筛,得到玻璃粉;

③将铂粉与步骤②得到的玻璃粉按照(95~98):(2~5)的质量比混匀,得到混合粉体;

④将有机载体与步骤③得到的混合粉体按(20~25):(75~80)的质量比混合,通过研磨后得到粘度为70~100Pa·s的高温导体浆料;所述有机载体主要由松油醇、二乙二醇二丁醚、邻苯二甲酸二丁酯、乙基纤维素组成。

与现有的技术相比,本发明具有如下有益效果:

1. 本发明的频率选择透波/隔热/隐身结构具有隔热、透波、频率选择、隐身一体化功能,通过结构与材料优化,可以耐受1300℃的高温,外表面制备了陶瓷防护层,具有抗烧蚀、隔热等优点。

2. 本发明的频率选择透波/隔热/隐身结构中透波层进行了溶胶泥浆后致密化处理,透波层表面质量高,可以直接在其表面实现高质量频率选择层的制备。

3. 本发明采用的高温导体涂层具有一定孔隙率,可以较好的缓解高温导体涂层与透波层的热失配问题,且高温导体涂层可以通过烧结工艺以化学结合的方式附着于透波层表面,具有结合强度高、抗热冲击能力强的优点。

4. 本发明采用的陶瓷防护层具有耐高温、抗烧蚀、低介电特性,对频率选择透波/隔热/隐身结构电性能影响小;陶瓷防护层采用大气等离子喷涂工艺制备,具有工艺简单、沉积效率高、对基材热效应低的特点,并且形成的陶瓷防护层具有多孔特性,具备较好的隔热性能。

5. 本发明采用的原料易得,工艺成熟,避免了大量有机溶剂和铅玻璃的应用,环保性好,易于实现大规模工程化应用。

附图说明

图1是本发明的频率选择透波/隔热/隐身结构示意图。

图2是本发明实施例1中制备的高温导体涂层微观形貌以及能谱。

图3是本发明实施例1中制备的频率选择层。

图4是本发明实施例1中的陶瓷防护层喷涂粉末。

图5是本发明实施例1中制备的陶瓷防护层。

主要附图标记说明:

1-隔热层,2-透波层,3-频率选择层,4-陶瓷防护层。

具体实施方式

下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。

实施例1

一种耐温1300℃频率选择透波/隔热/隐身结构如图1所示,以电磁波入射方向定义为外表面,由内至外依次包括隔热层1、透波层2、频率选择层3、陶瓷防护层4。隔热层为莫来石纤维毡增强二氧化硅气凝胶复合材料,莫来石纤维毡增强二氧化硅气凝胶复合材料微波介电常数为1.35,介电损耗为0.008,密度为0.4g/cm3,室温热导率为0.004W/m·K,且经过疏水处理,质量吸湿率低于1%。透波层为石英纤维针刺件增强二氧化硅复合材料,表面孔洞等缺陷尺寸不大于0.5mm,粗糙度为2μm。频率选择层为具有周期结构图案的高温导体涂层,高温导体涂层以Pt为导电相,ZnO-Bi2O3玻璃为粘结相,且涂层中Pt的含量为97wt%,涂层含有约10%孔隙率,涂层的方阻为26mΩ/sq。陶瓷防护层为二氧化硅与莫来石复相陶瓷涂层,莫来石含量为65wt%,陶瓷防护层的微波介电常数为3.9,介电损耗为0.006,厚度为0.05mm,孔隙率约为15%。

本实施例还提供频率选择透波/隔热/隐身结构的制备方法,包括以下步骤:

(1)按照设计要求准备隔热层莫来石纤维毡增强二氧化硅气凝胶复合材料;

(2)按照设计要求准备透波层石英纤维针刺件,将透波层石英纤维针刺件放置在马弗炉中,空气中升温至600℃,保温2h进行去胶,随炉冷却至室温取出;

(3)采用石英纤维缝合线将莫来石纤维毡增强二氧化硅气凝胶复合材料和步骤(2)得到的石英纤维针刺件缝合成为整体,缝合针距为10mm,制成预制件;

(4)将步骤(3)得到的预制件用框架式工装夹紧后进行真空浸渍溶胶,浸渍过程压力不大于-0.09MPa,浸渍时间为6h,然后取出预制件在170℃的温度下干燥处理2h,反复浸渍-干燥6次,溶胶为二氧化硅溶胶,溶胶的固含量为20wt%,完成预制件初期致密化;

(5)对预制件进行真空浸渍溶胶泥浆,浸渍过程压力不大于-0.09MPa,浸渍时间为6h,然后取出预制件在170℃的温度下干燥处理2h,反复浸渍-干燥6次,溶胶泥浆为掺入二氧化硅粉的二氧化硅溶胶,二氧化硅粉体粒径5μm,粉体与溶胶的质量比为1:3,完成预制件后致密化;

(6)将预制件800℃高温下烧结处理60min,然后对透波层表面进行打磨处理;

(7)以高温导体浆料为原料,采用空白丝网按照丝网印刷工艺在步骤(6)打磨处理的透波层表面印制高温导体浆料,在150℃下干燥0.5h,900℃下烧结处理10min,在透波层表面获得高温导体涂层,图2为高温导体涂层的微观形貌图,从图中可以看出高温导体涂层呈多孔状,孔隙率约为10%;采用激光刻蚀工艺在高温导体涂层表面刻蚀出周期结构图案,激光刻蚀工艺参数为:激光功率为4W,扫描速度为1000mm/min,频率为200kHz,扫描次数为4次,制成频率选择层(见图3);

(8)采用大气等离子喷涂工艺将二氧化硅与莫来石复相陶瓷粉末(见图4)喷涂于频率选择层表面,大气等离子喷涂工艺参数为:控制氩气流量为40L/min,电流大小为550A,功率为36kW,送粉量9g/min,喷涂距离为120mm;陶瓷粉末为类球形喷涂粉末,类球形喷涂粉末的粒度为100~400目,流动性为85s/50g,松装密度为0.85g/cm3,制备出陶瓷防护层(见图5),然后进行打磨处理,使陶瓷防护层厚度满足要求,完成频率选择透波/隔热/隐身结构制备。

步骤(7)中,高温导体浆料的制备方法,包括以下步骤:

①将玻璃原料粉体混合均匀,在1300℃下进行高温熔炼2h,熔化后在去离子水中进行淬冷,得到玻璃渣;所述玻璃原料粉体包括以下质量百分数的各组分:Bi2O3 85 wt%,ZnO 15 wt%;

②将步骤①得到的玻璃渣以乙醇为球磨介质,按球料比为3:1、球磨转速为400r/min进行球磨8h,烘干,过200~400目筛,得到玻璃粉;

③将铂粉与步骤②得到的玻璃粉按照97:3的质量比混匀,得到混合粉体;

④将有机载体与步骤③得到的混合粉体按25:75的质量比混合,通过研磨后得到粘度为90Pa·s的高温导体浆料;所述有机载体主要由松油醇、二乙二醇二丁醚、邻苯二甲酸二丁酯、乙基纤维素组成。

本实施例制备的频率选择透波/隔热/隐身结构可耐受1300℃高温,中心频点透过率可以达到90%以上,通过了峰值温度1300℃的电弧风洞2300s热考核验证,具有优异的防热、隔热、频率选择透波特性。

前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种阻燃绝缘材料板材及其生产方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!