一种基于同步锁相的无刷直流电机换相误差提取方法

文档序号:553630 发布日期:2021-05-14 浏览:7次 >En<

阅读说明:本技术 一种基于同步锁相的无刷直流电机换相误差提取方法 (Brushless direct current motor commutation error extraction method based on synchronous phase locking ) 是由 张海峰 李海涛 毛琨 陈宝栋 金浩 郑世强 于 2020-12-31 设计创作,主要内容包括:本发明公开了一种基于同步锁相的无刷直流电机换相误差提取方法,属于永磁电机控制的技术领域。该发明的换相误差提取方法主要包括电流积分及磁链观测器、双二阶广义积分-正序提取器和换相误差提取器等部分。首先通过坐标变换将采集的无刷直流电机的相电压和相电流转换到α-β坐标系,并利用电流积分及磁链观测器获得电流的积分及磁链;其次利用双二阶广义积分-正序提取器抑制电流和磁链中的直流分量和高次谐波成分并提取正序分量;然后使用换相误差提取器获得脉冲形式的换相误差;最后通过低通滤波器对脉冲形式的换相误差进行平滑,并进行PI控制获得无刷直流电机的换相误差。本发明的基于同步锁相的无刷直流电机换相误差提取方法可以实现对换相误差的提取,该方法具有检测精度高、抗干扰能力强等优点。(The invention discloses a brushless direct current motor commutation error extraction method based on a synchronous phase lock, and belongs to the technical field of permanent magnet motor control. The commutation error extraction method mainly comprises a current integration and flux linkage observer, a biquad generalized integration-positive sequence extractor, a commutation error extractor and the like. Firstly, converting collected phase voltage and phase current of the brushless direct current motor into an alpha-beta coordinate system through coordinate transformation, and obtaining current integral and flux linkage by using a current integral and flux linkage observer; secondly, a biquadratic generalized integral-positive sequence extractor is utilized to inhibit direct-current components and higher harmonic components in current and flux linkage and extract a positive sequence component; then, a commutation error extractor is used for obtaining a pulse-form commutation error; and finally, smoothing the commutation error in the pulse form through a low-pass filter, and performing PI control to obtain the commutation error of the brushless direct current motor. The phase-change error extraction method of the brushless direct current motor based on the synchronous phase-lock can realize the extraction of the phase-change error, and has the advantages of high detection precision, strong anti-interference capability and the like.)

一种基于同步锁相的无刷直流电机换相误差提取方法

技术领域

本发明涉及电机控制领域,尤其涉及一种无刷直流电机换相误差提取方法。

背景技术

随着永磁材料的发展及价格的降低,无刷直流电机得到了更加广泛的应用,被认为是21世纪最有发展前途和应用前景的电子控制电机,在航空航天、国防装备、科学仪器、医疗器械等应用中发挥了巨大的作用。无刷直流电机相对普通的有刷直流电机,采用电子换相取代了传统的电刷,避免了换相时产生的火花,极大提高了电机的运行转速,延长了电机的使用寿命。转子位置是用于电子换相必不可少的信息,可以通过间隔120°安装的三个开关霍尔传感器获得,也可以利用反电动势获取。

采用霍尔传感器获取转子位置信息进行换相的方式称为有位置传感器控制,不使用位置传感器而采用反电动势等信息获得转子位置信息进行换相的方式称为无位置传感器控制。为了避免干扰并增加位置信息获取的可靠性,在位置获取过程中需要使用低通滤波器、触发器等对信号进行处理。在对信号进行处理的过程中,不可避免的导致信号滞后,使得用于换相的转子位置滞后于实际的转子位置,用于换相的转子位置与实际转子位置的差叫做换相误差。换相误差降低了电机的运行效率,甚至会导致换相失败,因此必须对换相误差进行补偿以提高电机的运行效率及提高可靠性。

针对换相误差的问题,目前主要有两种解决思路。第一种解决思路是,对可能产生换相误差的环节进行分析,通过建模的方式获取并补偿不同转速下的换相误差,这种方法也叫做开环补偿法。该方法较为简单,可以实现对绝大部分换相误差的有效估计和补偿,但是换相误差补偿的精度有限,特别是受到扰动或者转速变化时。第二种解决思路是以电机的相电压、相电流、母线电流等信号的特性进行闭环控制以达到换相误差补偿的目的。该方法虽然运算量稍大,但具有补偿精度高、实时性好、抗干扰能力强的优点。随着数字信号处理器处理能力的不断发展,更多先进的信号处理及控制算法得以应用到电机控制系统中,降低了参数变化及扰动对系统的影响,大大提高了电机的运行性能。因此,第二种采用闭环控制的方式解决换相误差问题的方法成为了研究的趋势。

发明内容

本发明技术解决问题:针对换相误差对无刷直流电机运行效率及可靠性的影响,提供一种基于同步锁相的无刷直流电机换相误差提取方法,通过所提取的换相误差可以对电机的换相过程进行校正和补偿,以提高电机的运行效率。该发明的换相误差提取方法主要包括电流积分及磁链观测器、双二阶广义积分-正序提取器和换相误差提取器等部分。首先通过坐标变换将采集的无刷直流电机的相电压和相电流转换到坐标系,并利用电流积分及磁链观测器获得电流的积分及磁链;其次利用双二阶广义积分-正序提取器抑制电流和磁链中的直流分量和高次谐波成分并提取正序分量;然后使用换相误差提取器获得脉冲形式的换相误差;最后通过低通滤波器对脉冲形式的换相误差进行平滑,并进行PI控制获得无刷直流电机的换相误差。

本发明采用的技术方案如下:一种基于同步锁相的无刷直流电机换相误差提取方法,主要包括电流积分及磁链观测器、双二阶广义积分-正序提取器和换相误差提取器,其包括下述步骤:

步骤A)通过坐标变换将采集的无刷直流电机ABC坐标系下的相电压和相电流转换到α-β坐标系;

步骤B)利用电流积分及磁链观测器获得α-β坐标系下α轴、β轴的电流积分和磁链;

步骤C)利用双二阶广义积分-正序提取器抑制步骤B)中电流积分和磁链中的直流分量和高次谐波成分并提取α-β坐标系下α轴、β轴的电流积分和磁链的正序分量;

步骤D)基于α-β坐标系下α轴、β轴的电流积分和磁链的正序分量,基于同步锁相的原理,使用换相误差提取器获得脉冲形式的换相误差;

步骤E)通过低通滤波器对脉冲形式的换相误差进行平滑,并进行PI控制获得无刷直流电机的换相误差。

所述步骤A中的坐标变换采用如下形式:

式中,ua、ub、uc和ia、ib、ic分别为ABC坐标系下A相、B相、C相的相电压和相电流,uα、uβ和iα、iβ分别为α-β坐标系下α轴、β轴的电压和电流;

所述步骤B中电流积分及磁链观测器分别为:

式中,hα、hβ和ψα、ψβ分别为α-β坐标系下α轴、β轴的电流积分和磁链,R和L分别为无刷直流电机的相电阻和相电感;

所述步骤C中电流积分和磁链的正序分量通过一下方式获得:

首先,二阶广义积分器的传递函数为:

式中,Gd(s)和Gq(s)分别为二阶广义积分器同向输出和正交输出的传递函数、k为增益系数、ωe为电机的角速度;

然后,利用正序提取器提取hα、hβ、ψα、ψβ的正序分量:

式中,分别为hα、hβ、ψα、ψβ的正序分量;

所述步骤D中脉冲形式的换相误差通过以下方式获得:

首先,对进行如下变换:

式中,分别为的二值形式,基于同步锁相的原理,进行异或运算得无符号的换相误差脉冲:

式中,分别为α轴和β轴的无符号的换相误差脉冲;

然后,检测的边沿用于判断当前的换相状态为超前换相还是滞后换相;当的上升沿和下降沿分别对应的为0和1时,表明当前的换相状态为滞后换相;当的上升沿和下降沿分别对应的为0和1时,表明当前的换相状态为超前换相;

最后,根据当前的换相状态给出带符号的换相误差脉冲,当换相状态为滞后换相时,给的输出乘以-1,获得带符号的换相误差脉冲当换相状态为超前换相时,给的输出乘以1,获得带符号的α轴和β轴换相误差脉冲

所述步骤E中的换相误差通过以下方式获得:

首先通过以下低通滤波器对进行平滑,获得平滑的换相误差:

式中,分别为α轴和β轴平滑后的换相误差,ωc为低通滤波器的截止频率;

然后对进行相加,并通过PI进行调节获得换相误差。

本发明带来的有益效果可体现在如下方面:

(1)本发明的双二阶广义积分-正序提取器可以抑制电流积分和磁链的直流偏置及高次谐波成分并提取其正序分量,降低了反电动势非对称及信号处理过程中引入的非理想因素对换相误差提取精度的影响。

(2)本发明的换相误差提取器可以根据电流积分和磁链采用简单的异或运算提取出换相误差脉冲,并根据两种信号的相位关系利用边沿检测和幅值判定的方法得到带符号的换相误差脉冲,实现对超前换相和滞后换相的区分,便于确定补偿角度的符号。

(3)由于本发明的换相误差提取方法基于电流积分和磁链同步锁相的原理,从根本上消除了电感导致的电流滞后问题,提高了检测精度。

附图说明

图1为本发明基于同步锁相的无刷直流电机换相误差提取方法原理框图;

图2为本发明中电流积分及磁链观测器原理框图;

图3为本发明中二阶广义积分器原理框图;

图4为本发明中双二阶广义积分-正序提取器原理框图;

图5为本发明中换相误差提取器原理框图。

具体实施方式

下面结合附图对本发明的技术方案做进一步的详细说明。

如图1所示,本发明的基于同步锁相的无刷直流电机换相误差提取方法包括坐标变换部分1、电流积分及磁链观测器部分2和3、双二阶广义积分-正序提取器部分4和5、换相误差提取器部分6和7、低通滤波器部分8和9、PI控制部分10。

在具体实施中,所述的一种基于同步锁相的无刷直流电机换相误差提取方法包括以下步骤:

步骤A)通过坐标变换将采集的无刷直流电机ABC坐标系下的相电压和相电流转换到α-β坐标系;

步骤B)利用电流积分及磁链观测器获得α-β坐标系下α轴、β轴的电流积分和磁链;

步骤C)利用双二阶广义积分-正序提取器抑制步骤B)中电流积分和磁链中的直流分量和高次谐波成分并提取α-β坐标系下α轴、β轴的电流积分和磁链的正序分量;

步骤D)基于α-β坐标系下α轴、β轴的电流积分和磁链的正序分量,基于同步锁相的原理,使用换相误差提取器获得脉冲形式的换相误差;

步骤E)通过低通滤波器对脉冲形式的换相误差进行平滑,并进行PI控制获得无刷直流电机的换相误差。

所述步骤A中的坐标变换采用如下形式:

式中,ua、ub、uc和ia、ib、ic分别为ABC坐标系下A相、B相、C相的相电压和相电流,uα、uβ和iα、iβ分别为α-β坐标系下α轴、β轴的电压和电流;

如图2所示,所述步骤B中电流积分及磁链观测器分别为:

式中,hα、hβ和ψα、ψβ分别为α-β坐标系下α轴、β轴的电流积分和磁链,R和L分别为无刷直流电机的相电阻和相电感;

如图3和图4所示,所述步骤C中电流积分和磁链的正序分量通过一下方式获得:

首先,二阶广义积分器的传递函数为:

式中,Gd(s)和Gq(s)分别为二阶广义积分器同向输出和正交输出的传递函数、k为增益系数、ωe为电机的角速度;

然后,利用正序提取器提取hα、hβ、ψα、ψβ的正序分量:

式中,分别为hα、hβ、ψα、ψβ的正序分量;

如图5所示,所述步骤D中脉冲形式的换相误差通过以下方式获得:

首先,对进行如下变换:

式中,分别为的二值形式,基于同步锁相的原理,进行异或运算得无符号的换相误差脉冲:

式中,分别为α轴和β轴的无符号的换相误差脉冲;

然后,检测的边沿用于判断当前的换相状态为超前换相还是滞后换相;当的上升沿和下降沿分别对应的为0和1时,表明当前的换相状态为滞后换相;当的上升沿和下降沿分别对应的为0和1时,表明当前的换相状态为超前换相;

最后,根据当前的换相状态给出带符号的换相误差脉冲,当换相状态为滞后换相时,给的输出乘以-1,获得带符号的换相误差脉冲当换相状态为超前换相时,给的输出乘以1,获得带符号的α轴和β轴换相误差脉冲

所述步骤E中的换相误差通过以下方式获得:

首先通过以下低通滤波器对进行平滑,获得平滑的换相误差:

式中,分别为α轴和β轴平滑后的换相误差,ωc为低通滤波器的截止频率;

然后对进行相加,并通过PI进行调节获得换相误差。

本发明未详细阐述部分属于本领域公知技术。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:变步长变角度搜索遗传算法优化转子振动补偿系统及方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!