一种高热导、净尺寸氮化硅陶瓷基片的制备方法

文档序号:580576 发布日期:2021-05-25 浏览:16次 >En<

阅读说明:本技术 一种高热导、净尺寸氮化硅陶瓷基片的制备方法 (Preparation method of high-thermal-conductivity and net-size silicon nitride ceramic substrate ) 是由 张辉 刘学建 蒋金弟 姚秀敏 黄政仁 陈忠明 于 2021-01-20 设计创作,主要内容包括:本发明涉及一种高热导、净尺寸氮化硅陶瓷基片的制备方法,包括:(1)将氮化硅粉和硅粉中至少一种作为原始粉体、烧结助剂、分散剂、消泡剂、粘结剂和增塑剂在保护气氛中混合后,再经真空脱气,得到混合浆料;(2)在氮气气氛中进行流延成型和干燥,得到第一素坯;(3)将所得第一素坯进行整形预处理,得到第二素坯;(4)将所得第二素坯在微正压的氮气气氛中、500~900℃下进行脱粘,得到第三素坯;(5)将所得第三素坯置于氮气气氛中、1800~2000℃下进行气压烧结,得到所述高热导、净尺寸氮化硅陶瓷基片。(The invention relates to a preparation method of a high-thermal-conductivity and net-size silicon nitride ceramic substrate, which comprises the following steps: (1) mixing at least one of silicon nitride powder and silicon powder serving as original powder, a sintering aid, a dispersing agent, a defoaming agent, a binder and a plasticizer in a protective atmosphere, and then performing vacuum degassing to obtain mixed slurry; (2) carrying out tape casting molding and drying in a nitrogen atmosphere to obtain a first biscuit; (3) carrying out shaping pretreatment on the obtained first biscuit to obtain a second biscuit; (4) de-bonding the obtained second biscuit in a micro-positive pressure nitrogen atmosphere at 500-900 ℃ to obtain a third biscuit; (5) and placing the obtained third biscuit in a nitrogen atmosphere, and sintering at 1800-2000 ℃ under air pressure to obtain the high-thermal-conductivity net-size silicon nitride ceramic substrate.)

一种高热导、净尺寸氮化硅陶瓷基片的制备方法

技术领域

本发明涉及一种高热导、净尺寸氮化硅陶瓷基片的制备方法,属于陶瓷材料制备领域。

背景技术

近年来,半导体器件沿着大功率化、高频化、集成化的方向迅猛发展。半导体器件工作产生的热量是引起半导体器件失效的关键因素,而绝缘基板的导热性是影响整体半导体器件散热的关键。此外,如在电动汽车、高铁等领域,半导体器件使用过程中往往要面临颠簸、震动等复杂的力学环境,这对所用材料的力学可靠性提出了严苛的要求。

高导热氮化硅(Si3N4)陶瓷具有优异的力学和热学性能,优良的力学性能和良好的高导热潜质使氮化硅陶瓷有望弥补现有氧化铝、氮化铝等基板材料的不足,在高端半导体器件、特别是大功率半导体器件应用方面极具市场前景。

目前,商业应用对氮化硅陶瓷基片的厚度要求集中在0.2~0.8mm左右,对于如此薄的样品,成型难度非常大。因此,基片的成型是实现其批量化及后续应用的核心技术。目前陶瓷基片的成型方法主要有流延成型、干压成型、轧膜成型等。其中,干压成型的基片因粉体流动的不均匀性和机械加压的工艺特性,往往存在难以直接制备出厚度0.5mm以下的陶瓷基片、厚度不能精确控制和厚度不均匀等难题,因此需要后续机械加工。轧膜成型工艺复杂,需要反复轧膜以消除工艺本身局限性带来的厚度不均匀和因原料结团带来的疙瘩料,导致制备的基片容易出现起泡和表面的凹凸不平,同样需要机械加工才能满足后续的覆铜工艺要求。相比之下,流延成型工艺的生产效率高、成本低,可实现全自动化,便于连续批量化生产,是陶瓷基片成型最有发展前景和潜力的工艺技术,但同样存在制备的流延膜容易起泡、开裂、变形、厚度不均匀等现象,导致成品率低下、平面度低、厚度不均匀、需要后续机械加工等难题。而陶瓷基片具有高平面度、厚度均匀、表面光滑等特性是其后续覆铜的工艺要求。

发明内容

为此,本发明提供了一种高热导、净尺寸氮化硅陶瓷基片的制备方法,包括:

(1)将氮化硅粉和硅粉中至少一种、烧结助剂、分散剂、消泡剂、粘结剂和增塑剂在保护气氛中混合后,再经真空脱气,得到混合浆料;

(2)在氮气气氛中流延成型和干燥,得到第一素坯;

(3)将所得第一素坯进行整形预处理,得到第二素坯;

(4)将所得第二素坯在微正压的氮气气氛中、500~900℃下进行脱粘,得到第三素坯;

(5)将所得第三素坯置于氮气气氛中,1800~2000℃下进行气压烧结,得到所述高热导、净尺寸氮化硅陶瓷基片。

在本公开中,通过流延成型制备工艺过程中的浆料制备、真空脱气、流延成型、素坯干燥、素坯整形、脱粘和烧结工艺的设计与调控,解决流延基片易起泡、开裂、变形、厚度不均匀等难题,实现高热导氮化硅陶瓷基片的净尺寸成型。具体包括:通过流延浆料制备过程中在保护气氛下充分球磨混料、并结合低真空长时间脱气处理,达到减少或消除浆料中的气泡、减少浆料中团聚的目的。通过流延成型过程中圆筒形刮刀及其高度的精密控制、以及温度递增的连续热N2气氛对流延膜素坯干燥处理措施,实现高质量、无缺陷流延膜的制备及其厚度均匀性的精确控制。通过球磨混料和流延成型过程中的N2保护气氛等措施,抑制氮化硅粉体原料的二次氧化,保证所制备氮化硅陶瓷基片具有高热导率特性。通过等静压整形预处理工艺,进一步提高所制备流延膜的致密度、厚度均匀性和平整度。采取微正压脱粘工艺,通过精密控制脱粘过程中有机物分解所产生气体的逸出速率,阻止素坯脱粘过程中的开裂、表面起皮和气泡的产生,避免基片素坯产生表面缺陷。通过烧结过程中高氮气压力烧结,控制烧结过程中基片素坯的形变,抑制氮化硅的分解,进而精密调节氮化硅基片的表面粗糙度。通过上述工艺技术的共同作用,最终实现高热导、高平面度、高厚度均匀性、表面粗糙度可控、表面质量均匀一致的高性能氮化硅陶瓷基片的净尺寸制备,不需后续机械加工便可直接用于后续覆铜工艺。

较佳的,步骤(1)中,所述烧结助剂为稀土氧化物和碱土金属氧化物,加入量为氮化硅粉、硅粉氮化形成的氮化硅、和烧结助剂的总质量的4.0~5.0wt%。优选地,所述稀土氧化物含有Y2O3,所述碱土金属氧化物含有MgO。

较佳的,步骤(1)中,所述分散剂选自聚乙二醇(PEG)、磷酸三乙酯(TEP)中的至少一种,加入量为氮化硅粉、硅粉完全氮化形成的氮化硅和烧结助剂总质量的0.2~1.0wt%。

较佳的,步骤(1)中,所述消泡剂可为油酸,加入量为氮化硅粉、硅粉完全氮化形成的氮化硅和烧结助剂总质量的0.2~1.0wt%。

较佳的,步骤(1)中,所述粘结剂可为聚乙烯醇缩丁醛(PVB),加入量为氮化硅粉、硅粉完全氮化形成的氮化硅和烧结助剂总质量的5~9wt%。

较佳的,步骤(1)中,所述增塑剂选自邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、聚乙二醇(PEG)中的至少一种,加入量为氮化硅粉、硅粉完全氮化形成的氮化硅和烧结助剂总质量的2~6wt%。

较佳的,步骤(1)中,所述保护气氛为氮气气氛或惰性气氛,保护气氛的压力为0.1MPa。

较佳的,步骤(1)中,所述混合的方式为球磨混合,所述球磨混合的转速为30~100转/分钟,总时间为6~24小时;所述真空脱气的真空度为-0.1~-10kPa,时间为6~24小时。

又,较佳的,步骤(1)中,先将氮化硅粉和硅粉中至少一种、烧结助剂、分散剂和消泡剂球磨混合3~12小时后,再加入粘结剂和增塑剂继续球磨混合3~12小时,得到所述混合浆料。

较佳的,步骤(2)中,当流延成型时,所述氮气气氛的压力为0.1~0.2MPa。

较佳的,步骤(2)中,当进行干燥时,所述氮气气氛为流动的氮气,压力为0.1~0.2MPa,温度为40~85℃,干燥的总时间为15~60分钟;优选地,采用至少两个阶段的方式进行干燥,且后一个阶段的氮气温度>前一个阶段的氮气温度;更优选,阶段数为3个,包括:第一阶段的温度为40~60℃、干燥时间为5~20分钟,第二阶段的温度范围为55~70℃、干燥时间为5~20分钟,第三阶段的温度范围为65~85℃、干燥时间为5~20分钟,且第一阶段的温度<第二阶段的温度<第三阶段的温度。

较佳的,步骤(3)中,所述整形预处理为采用冷等静压的方式处理第一素坯;所述冷等静压的压力为40~200MPa,时间为2~10分钟。

较佳的,步骤(4)中,所述微正压的氮气气氛的气氛压力为0.1~0.2MPa;所述脱粘的时间为1~3小时。

较佳的,当原始粉体中含有硅粉时,硅粉的质量不低于原始粉体质量的75%,其中原始粉体质量为氮化硅粉体和硅粉完全氮化之后所生成氮化硅的质量总和;优选地,在气压烧结之前,将第三素坯进行氮化处理,所述氮化处理的参数包括:氮气气氛为氢气含量不高于5%的氢气/氮气混合气氛,气体的压力为0.1~0.2MPa,氮化处理温度为1350~1450℃,氮化处理时间为3~6小时。

较佳的,步骤(5)中,所述气压烧结中氮气气氛的压力为0.5~10MPa;所述气压烧结的保温时间为4~12小时。又,较佳的,所述气压烧结所用坩埚得高纯BN坩埚或表面附着有高纯BN隔离层的石墨坩埚。其中高纯BN坩埚的纯度>99%。高纯BN隔离层的纯度>99%。

再一方面,本发明提供了一种根据上述制备方法制备的高热导、净尺寸氮化硅陶瓷基片,所述高热导、净尺寸氮化硅陶瓷基片厚度为0.2~1.0mm,厚度均匀性为±0.04mm,平面度为0~0.002mm/mm,表面粗糙度为0.3~0.8μm;所述氮化硅陶瓷基片的热导率大于80W·m-1·K-1。当基片的平面度、厚度均匀性及其表面粗糙度分别控制在0.002mm/mm、±0.04mm以及0.3~0.8μm范围时,就可以不需机械加工、直接用于后续覆铜工艺。

较佳的,所述氮化硅陶瓷基片的尺寸至少为90mm×90mm,优选为(114~140)mm×(114~190)mm。

有益效果:

本发明的显著特征在于,所制备的氮化硅陶瓷基片可实现烧结尺寸和表面质量的精密控制,不需后续加工便可以直接使用,具有制备工艺简单、经济实用的特点。本发明的另一个显著特征在于,通过控制制备工艺过程中的氧化和杂质引入,实现氮化硅陶瓷基片的高热导性能。

附图说明

图1为实施例1制备的氮化硅陶瓷基片;

图2为实施例1制备的氮化硅陶瓷基片的微观结构;

图3为对比例3制备的氮化硅陶瓷基片;

图4为对比例5制备的氮化硅陶瓷基片。

具体实施方式

以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。

在本公开中,通过流延成型制备工艺过程中浆料制备、真空脱气、流延成型、素坯干燥、素坯整形、脱粘和烧结工艺的设计与调控,解决了氮化硅陶瓷基片的易起泡、开裂、变形、厚度不均匀等难题,实现厚度均匀、无表面气孔与色斑、不需后续机械加工、可以直接用于后续覆铜工艺的氮化硅陶瓷基片的制备。以下示例性地说明高热导、净尺寸氮化硅陶瓷基片的制备方法。

无团聚、无气泡浆料的制备。将氮化硅粉和硅粉中至少一种、烧结助剂、分散剂、消泡剂、粘结剂和增塑剂在保护气氛(例如N2气氛,压力可为0.1MPa)下的球磨混料后,再进行真空脱气,制备出无团聚、无气泡的混合浆料。球磨过程中,采用氮化硅陶瓷研磨球。其中烧结助剂可为稀土氧化物和碱土金属氧化物。所述稀土氧化物至少含有Y2O3,所述碱土金属氧化物至少含有MgO。所述稀土氧化物和碱土金属氧化物之间的摩尔比可为(1.0~1.4):(2.5~2.9)。其中当含有硅粉时,所述硅粉含量可为75~100wt%。对制备的浆料进行抽真空除气泡处理,真空度可为-0.1~-10kPa,脱气时间可为6~24h。

厚度均匀、表面无气泡的流延膜素坯制备。在N2气氛(0.1~0.2MPa)下流延成型。在流动热N2气氛(流速可为10~1000升/分钟)下进行干燥,实现厚度均匀、表面无气泡的流延膜素坯的制备。作为一个示例,在N2气氛下采用圆筒形刮刀流延成型,并通过控制刮刀高度实现对流延膜素坯厚度的调节。采用温度递增的流动热N2气氛对流延膜素坯进行干燥,热N2气氛的温度范围可为40~85℃,气氛压力可为0.1~0.2MPa。例如,通过温度阶段数为2个,包括:第一阶段的温度可为40~65℃、干燥时间为15~30分钟,第二阶段的温度范围可为60~85℃、干燥时间为15~30分钟,且第一阶段的温度<第二阶段的温度。例如,通过温度阶段数为3个,包括:第一阶段的温度可为40~60℃、干燥时间可为5~20分钟,第二阶段的温度范围可为55~70℃、干燥时间可为5~20分钟,第三阶段的温度范围可为65~85℃、干燥时间可为5~20分钟,且第一阶段的温度<第二阶段的温度<第三阶段的温度。

流延膜素坯的整形预处理。在一定压力(40~200MPa)条件下,对切割后的流延膜素坯(基片素坯)进行冷等静压整形预处理,保证流延膜的厚度均匀性和平整度。其中,整形预处理的时间可为2~10分钟。

基片素坯的脱粘。在微正压、一定温度条件下对基片素坯进行热处理。作为一个示例,通过通入N2气氛产生微正压,气氛压力可为0.1~0.2MPa,处理温度为500~900℃,处理时间为1~3h。

基片素坯的氮化。当原始粉体中含有硅粉时,硅粉的质量不低于原始粉体质量的75%,其中原始粉体质量为氮化硅粉体和硅粉完全氮化之后所生成氮化硅的质量总和。而且,当原始粉体中含有硅粉时,在氢气含量不高于5%的氢气/氮气混合气氛、一定温度条件下对基片素坯进行氮化处理。作为一个示例,在氢气含量不高于5%的氢气/氮气混合气氛,气氛压力可为0.1~0.2MPa,氮化处理温度可为1350~1450℃,氮化处理时间可为3~6小时。

基片素坯的烧结。在高压N2气氛条件下进行气压烧结。作为一个示例,基片素坯的烧结,置于BN坩埚中、在高压N2气氛条件下进行气压烧结,其中N2气氛压力优选为0.5~10MPa,在此范围内更有利于提高材料的力学/热学/电学性能、降低基片表面的粗糙度。烧结温度可为1800~2000℃,保温时间可为4~12小时。

综上所述,本发明中高热导、净尺寸氮化硅陶瓷基片的制备过程全部是在氮气气氛中进行。采用千分尺测试所得氮化硅陶瓷基片的厚度均匀性为±0.04mm。采用轮廓仪测试所得氮化硅陶瓷基片的平面度可为0~0.002mm/mm。采用轮廓仪测试所得氮化硅陶瓷基片的表面粗糙度可为0.3~0.8μm。采用激光导热仪测试所得氮化硅陶瓷基片的所述氮化硅陶瓷基片的热导率大于80W·m-1·K-1

下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。

实施例1

首先,将起始陶瓷粉体(氮化硅95g)、烧结助剂(5g,Y2O3:MgO=1.2:2.5,摩尔比)、消泡剂(油酸,0.5g)、分散剂(PEG,0.5g)、研磨球(氮化硅球,200g)、有机溶剂(无水乙醇,80g)置入密封的尼龙材质球磨罐中,抽真空后通入N2气氛保护,在100rpm下球磨混料4h;在上述浆料中进一步加入粘结剂(PVB,7g)和增塑剂(DBP,4g),继续在N2气氛保护下球磨8h后得到分散均匀、无团聚的浆料;

其次,对制备的浆料进行抽真空除气泡处理12h,真空度为-0.5kPa;

随后,在N2保护气氛下采用圆筒形刮刀对上述除气泡后的浆料进行流延成型,通过控制刮刀高度使流延膜素坯厚度精确控制在0.4±0.04mm;

采用流动的温度递增的热N2气氛(流速为100升/分钟)对流延膜素坯进行干燥,N2气氛压力为0.1MPa,温度递增的热N2气氛包括温度分别为45℃(8分钟)、65℃(8分钟)和80℃(8分钟)等前、中、后三段组成;

采用自动切片机切割成143.0mm×143.0mm的方片,并在100MPa下冷等静压整形处理5分钟;

将整形后基片素坯在0.15MPa的N2气氛下700℃保温2h脱粘;

将脱粘后的基片素坯装入高纯度BN坩埚(纯度>99%)后再放入气压烧结炉中,在5MPa的N2气氛下1900℃保温10h烧结后,随炉冷却至室温。

本实施例1中制备的氮化硅陶瓷基片见图1,尺寸为114.4mm×114.4mm,尺寸偏差为±0.1mm,厚度为0.32±0.02mm,平面度为0.2mm,表面粗糙度为0.4μm。材料的热导率为95W/(m·K),弯曲强度为780MPa。该基片无需后续机械加工,可以直接用于后续的覆铜工艺。其断面微观结构见图2,微观结构均匀、致密。

实施例2-5

原料配比与组成、工艺过程参照实施例1,浆料制备、真空脱气、流延成型、素坯整形、脱粘和烧结工艺等具体参数按照表1所示,所制备基片材料特性如表2所示。

实施例6

首先,将起始陶瓷粉体(氮化硅3g、硅粉55g)、烧结助剂(4.5g,Y2O3:MgO=1.1:2.9,摩尔比)、消泡剂(油酸,0.3g)、分散剂(PEG,0.3g)、研磨球(氮化硅球,120g)、有机溶剂(无水乙醇,50g)置入密封的尼龙材质球磨罐中,抽真空后通入N2气氛保护,在100rpm下球磨混料4h;在上述浆料中进一步加入粘结剂(PVB,5g)和增塑剂(DBP,3g),继续在N2气氛保护下球磨8h后得到分散均匀、无团聚的浆料;

其次,对制备的浆料进行抽真空除气泡处理12h,真空度为-0.5kPa;

随后,在N2保护气氛下采用圆筒形刮刀对上述除气泡后的浆料进行流延成型,通过控制刮刀高度使流延膜素坯厚度精确控制在0.5±0.05mm;

采用流动的温度递增的热N2气氛(流速为50升/分钟)对流延膜素坯进行干燥,N2气氛压力为0.2MPa,温度递增的热N2气氛包括温度分别为45℃(6分钟)、65℃(6分钟)和80℃(6分钟)等前、中、后三段组成;

采用自动切片机切割成142.6mm×194.4mm的方片,并在150MPa下冷等静压整形处理3分钟;

将整形后基片素坯在0.15MPa的N2气氛下700℃保温2h脱粘;

将脱粘后基片素坯在0.2MPa N2(含有5%H2)气氛下1450℃氮化处理6h;

将氮化处理后的基片素坯装入高纯度BN坩埚(纯度>99%)后再放入气压烧结炉中,在5MPa的N2气氛下1900℃保温10h烧结后,随炉冷却至室温。所制备基片材料特性如表2所示。

实施例7-9

原料配比与组成、工艺过程参照实施例6,浆料制备、真空脱气、流延成型、素坯整形、脱粘、氮化处理和烧结工艺等具体参数按照表1所示,所制备基片材料特性如表2所示。

实施例10

本实施例10中氮化硅陶瓷基片的制备过程参照实施例1,区别在于:采用自动切片机切割成200mm×200mm的方片,并在100MPa下冷等静压整形。

实施例11

本实施例11中氮化硅陶瓷基片的制备过程参照实施例6,区别在于:采用自动切片机切割成200mm×200mm的方片,并在100MPa下冷等静压整形。

对比例1

原料配比与组成、浆料制备、真空脱气、流延成型、脱粘和烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,区别在于:未进行素坯整形预处理。所制备基片材料特性如表2所示。因未对流延成型基片素坯进行等静压整形预处理,所制备基片的厚度均匀性和平面度明显降低,热导率也有些微降低。

对比例2

原料配比与组成、浆料制备、真空脱气、流延成型、素坯整形、脱粘和烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,区别在于:未采用高氮气压力进行高温烧结,仅采用0.1MPa的N2保护气氛。所制备基片材料特性如表2所示。因未采用高氮气气氛的气压烧结,所制备基片的表面粗糙度明显增大,不能满足后续覆铜工艺对基片表面粗糙度的要求。

对比例3

原料配比与组成、浆料制备、真空脱气、流延成型、素坯整形、脱粘和烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,区别在于:未采用微正压脱粘(采用真空条件脱粘)。所制备基片材料特性如表2所示。因采用真空脱粘,有机物在脱粘过程中分解产生气体的逸出速度不可控(过快),所制备基片表面局部存在微裂纹缺陷(见图3)。

对比例4

原料配比与组成、浆料制备、流延成型、素坯整形、脱粘和烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,区别在于:未采取真空脱气措施。所制备基片材料特性如表2所示。因未采用真空脱气措施,浆料中存在少量气泡,所制备基片表面局部存在小气泡缺陷。

对比例5

原料配比与组成、浆料制备、真空脱气、流延成型、素坯整形、脱粘和烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,区别在于:未采用高纯度BN坩埚作为氮化硅基片素坯高温烧结用容器,而是直接置于石墨坩埚中。所制备基片材料特性如表2所示。因未采用高纯度BN坩埚,石墨坩埚容易污染基片,所制备基片表面均匀性较差,存在局部色斑缺陷(见图4)。

对比例6

原料配比与组成、浆料制备、真空脱气、流延成型、素坯整形、脱粘和烧结工艺等具体参数按照表1所示,工艺过程参照实施例1,区别在于:在浆料球磨过程中采用空气气氛。因为未采用氮气气氛保护,氮化硅粉体原料在球磨过程中产生了一定程度的氧化,导致所制备氮化硅陶瓷基片的热导率偏低。

表1为本发明制备的氮化硅陶瓷基片的工艺参数:

表2为本发明制备的氮化硅陶瓷基片的性能参数:

15页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种无压烧结用碳化硼造粒粉的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!