一种有机磷光组合物及其制备方法和应用

文档序号:61550 发布日期:2021-10-01 浏览:58次 >En<

阅读说明:本技术 一种有机磷光组合物及其制备方法和应用 (Organic phosphorescent composition and preparation method and application thereof ) 是由 李志强 毕海 宋小贤 王悦 于 2021-07-22 设计创作,主要内容包括:本发明公开一种有机磷光组合物及其制备方法和应用,包括基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物以及基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物,通过简单的混合即具有室温磷光发光特性。(The invention discloses an organic phosphorescent composition and a preparation method and application thereof, wherein the organic phosphorescent composition comprises an organic compound based on dimethylamino aniline or substituted fluorene ring of derivative thereof and an organic compound based on diphenoxyphosphorus or substituted dibenzothiophene or dibenzofuran of derivative thereof, and the organic compound has room-temperature phosphorescent light-emitting characteristics through simple mixing.)

一种有机磷光组合物及其制备方法和应用

技术领域

本发明涉及磷光组合物

技术领域

,主要涉及一种有机磷光组合物及其制备方法和应用。

背景技术

近几十年来,由于有机光电器件、传感、生物成像、信息加密存储等领域的重要应用,纯有机室温磷光(Room Temperature Phosphorescence,RTP)材料在科学界和产业界得到了广泛的研究和关注而迅速成为一个热门的研究领域。无机物和有机金属配合物(如铱、铂和镧配合物)的室温磷光现象发现较早且已有成熟的应用,目前,采用重金属配合物的磷光材料器件已实现了接近100%的内量子效率。但是,由于Ir、Pt等贵金属磷光材料资源有限,稀有昂贵,生物毒性较高,不利于可持续发展,因此严重限制了他们的应用前景。与之相比,纯有机 RTP 材料就具有原料易得,已与合成修饰,容易加工,生物毒性小的优点。然而,由于磷光的辐射跃迁过程会发生电子自旋的改变,是自旋禁阻的过程,由于缺少重原子的的旋轨耦合效应,在纯有机小分子中实现RTP现象并不容易。

与传统的磷光材料相比,由于磷光辐射过程会涉及到电子自旋翻转过程,因此RTP材料通常具有较小的辐射速率和较长的磷光寿命,因此在三线态激子跃迁回到基态这一过程中,非常容易受到外界环境的影响例如空气的温度,湿度,氧气等因素。目前,纯的有机小分子呈现出的室温磷光行为还比较少见,发光效率也普遍较低,而且均局限于光致磷光发射的范围,限制了其进一步应用。唐本忠等人最早证明了,在晶体状态下,分子的振动和转动将受到抑制,进而降低了三线态激子的淬灭,使得磷光得以发射(W. Z. Yuan, X. Y.Shen, et al. J. Phys. Chem. C2010, 114, 6090–6099);之后Kim等人通过晶体设计以及直接的重原子效应,实现了蓝、绿、黄、橙等多种颜色的室温磷光发射(O. Bolton, K.Lee, et al. Nature Chemistry2011, 3, 207–212);Adachi等人通过将有机小分子重氢化后掺杂到无定型的主体分子中来实现有机小分子室温磷光发射(S. Hirata, K.Totani, et al. Adv. Funct. Mater. 2013,23, 3386-3397)。最近,一些研究人员又相继报道了一些具有室温磷光发射特性的结晶材料体系(B. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599; K. Narushima, Y. Kiyota et al., Adv. Mater. 2019, 1807268; S. Tian, H. Ma et al., Angew. Chem. Int. Ed. 2019, 58, 6645.)和无定 型材料体系(Z. Lin, R. Kabe et al., Adv. Mater. 2018, 1803713; H. Wu, W. Chiet al., Adv. Funct. Mater. 2019, 29, 1807243.)。虽然RTP材料已经取得了广阔的进展,但是仍然存在着许多问题需要解决。例如晶体的制备,晶体的制备受到多种因素的影响,选用何种溶剂,溶剂挥发速度,周围环境的温度等,且部分化合物本身就不容易结晶,这非常不利于晶体状态下具有RTP发射的材料;另外,对于掺杂在主体中的RTP体系来讲,主体的选择,混合浓度都至关重要,低浓度状况下极易发生相分离。因此,需要探索开发一个简单易得且高效稳定的室温磷光体系,这是非常有意义的课题。

发明内容

鉴于上述现有技术的不足,本发明的目的在于提供一种有机磷光组合物及其制备方法和应用,旨在解决现有有机室温磷光材料制备方法复杂的问题。

本发明的技术方案如下:

一种有机磷光组合物,其中,包括基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物以及基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物;

基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的分子结构式如通式(I)所示,基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物的分子结构式如通式(II)所示;

式(I);

式(II);

其中,其中,X为S或O原子;

Ra、Rb为H、C1至C6的烷基或C1至C6的烷氧基;

R1、R2为H、C1至C6的烷基或C6至C24的芳基;

R3、R4为H、C1至C6的烷基、C1至C6的烷氧基或C6至C24的芳基;

R4、R5、R6、R7为H、F、Cl、C1至C6的烷基或C6至C24的芳基。

所述的有机磷光组合物,其中,基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物以及基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物的重量比为1:99 -99:1。

一种如上所述的有机磷光组合物的制备方法,其中,包括以下步骤:

将基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物与基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物采用研磨法混合;

或者,将基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物与基于二苯氧磷及其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物溶解于有机溶剂中,然后减压蒸馏除去有机溶剂,得到所述有机磷光组合物。

所述的有机磷光组合物的制备方法,其中,基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物以及基于二苯氧磷及其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物的重量比为1:99 -99:1。

所述的有机磷光组合物的制备方法,其中,所述有机溶剂为二氯甲烷、乙酸乙酯、二氧六环、乙腈、四氢呋喃、氯仿、乙醚、乙醇、甲醇或二硫化碳。

所述的有机磷光组合物的制备方法,其中,基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物采用以下步骤制备得到:

将4-溴-N, N-二甲氨基苯胺或其衍生物、芴或其衍生物、叔丁醇钾、双(二亚苄基丙酮)钯、三苯基膦溶于甲苯中,在氮气的保护下加热回流12小时,之后冷却至室温,用水和二氯甲烷萃取反应体系,分离出有机相后浓缩,用二氯甲烷和石油醚洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得到纯品;

其中,4-溴-N, N-二甲氨基苯胺或其衍生物、芴或其衍生物、叔丁醇钾、双(二亚苄基丙酮)钯、三苯基膦的摩尔比为2:1:2.4:0.05:0.1 ;

其中,芴或其衍生物为

具体实施方式

中F-1至F-4中的任意一种;

4-溴-N, N-二甲氨基苯胺或其衍生物为具体实施方式中N-1至N-176中的任意一种。

所述的有机磷光组合物的制备方法,其中,基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物采用以下步骤制备得到:

将2,8-二溴二苯并噻吩或二苯并呋喃溶于无水四氢呋喃,在无水无氧、氮气保护条件下,冷却到-80 ℃,温度恒定后在-80 ℃条件下,在氮气保护下缓慢滴加2.5 M的丁基锂,保持-80 ℃ 锂化两个小时后,缓慢滴加二苯基氯化磷或其衍生物,之后缓慢回复至室温,将体系在室温,氮气保护的条件下搅拌12小时,反应结束后,向体系中加入甲醇淬灭反应,用二氯甲烷和水萃取有机相,分离出有机相后浓缩,然后将体系溶解于二氯甲烷中,室温搅拌下缓慢滴加30%过氧化氢水溶液,体系析出大量白色固体,反应2小时,反应结束后,旋转蒸发除去体系中的有机溶剂,得到白色粗产品,用二氯甲烷和甲醇做洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得到纯品;

其中,2,8-二溴二苯并噻吩或二苯并呋喃、丁基锂、二苯基氯化磷或其衍生物、过氧化氢的摩尔比为1:2.4:0.45:6.6;

二苯基氯化磷或其衍生物为具体实施方式中P-1至P-32中的任意一种。

一种如上所述有机磷光组合物的应用,其中,将所述有机磷光组合物用于制备有机光电器件、传感器件、生物成像或信息加密存储等。

有益效果:本发明所提供的有机磷光组合物,包括基于二甲氨基苯胺或其衍生物取代芴环或其衍生物以及基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物,这两种有机材料通过简单的混合即具有室温磷光发光特性。

附图说明

图1为本发明实施例3中化合物(I)-1和(II)-1制备的部分掺杂体系稳态光谱图。

图2为本发明实施例3中化合物(I)-1和(II)-1制备的1:1掺杂体系变温发光寿命测试结果。

图3为本发明实施例4中化合物(I)-1和(II)-34制备的部分掺杂体系稳态光谱图。

图4为本发明实施例4中化合物(I)-1和(II)-34制备的1:1掺杂体系变温发光寿命测试结果。

具体实施方式

本发明提供一种有机磷光组合物及其制备方法和应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其它工艺的应用和/或其它材料的使用。

本发明提供一种有机磷光组合物,包括基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物(以下简称为“化合物(I)”)以及基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物(以下简称为“化合物(II)”);

基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物的分子结构式如通式(I)所示,基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的分子结构式如通式(II)所示;

式(I);

式(II);

其中,X为S或O原子;

Ra、Rb独立地为H、C1至C6的烷基或C1至C6的烷氧基。

R1、R2独立地为H、C1至C6的烷基或C6至C24的芳基。

R3、R4独立地为H、C1至C6的烷基、C1至C6的烷氧基或C6至C24的芳基。

R4、R5、R6、R7独立地为H、F、Cl、C1至C6的烷基或C6至C24的芳基。

所述有机磷光组合物,基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物与基于二苯氧磷及其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物,这两种有机材料通过简单的混合即具有室温磷光发光特性。在本发明的具体实施方案中,如式(I)所示的基于二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物可以为如下任何一个化合物:

在本发明的具体实施方案中,所述的如式(II)所示基于二苯氧磷或其衍生物取代二苯并噻吩或二苯并呋喃的有机发光化合物为如下任何一个化合物:

所述有机磷光组合物组成的室温磷光体系,是将化合物(I)与化合物(II)混合制备成二元复合物。所述有机磷光组合物中,化合物(I)与化合物(II)之间的重量比可以为1:99 -99:1。

所述有机磷光组合物中化合物(I)与化合物(II)可以分别作为主体或者客体材料,通过简单的混合实现高效,寿命极短且稳定的室温磷光发射,解决了现有室温纯有机磷光材料难于获得,效率较低的问题。这类组合物可作为有机光电器件、传感、生物成像、信息加密存储等领域的核心材料。因此,本发明中还提供所述有机磷光组合物的应用,将所述有机磷光组合物用于制备有机光电器件、传感器件、生物成像或信息加密存储等等。

本发明中还提供所述有机磷光组合物的制备方法,包括以下步骤:

将化合物(I)与化合物(II)的固体混合物溶解于有机溶剂中制备成溶液,然后减压蒸馏除去有机溶剂,即可得到具有室温磷光发射性质的有机磷光组合物。

或者,将化合物(I)与化合物(II)的固体混合物采用研钵或者球磨机等研磨设备研磨混合。

其中,所述有机溶剂可以为常见的有机溶剂,本发明实施例方案中选用二氯甲烷作为有机溶剂。除了二氯甲烷以外,所述有机溶剂还可以为乙酸乙酯、二氧六环、乙腈、四氢呋喃、氯仿、乙醚、乙醇、甲醇、二硫化碳等。

对化合物进行了系统的性质测试,来证明它们确实具有室温磷光性质。例如将化合物(I)-1与化合物(II)-1按照10:1的重量比混合,溶于二氯甲烷溶液中,并将获得的溶液旋转蒸发器除去二氯甲烷后得到一组固体混合物,其发射峰位位于470 nm 与490 nm(光谱图见附图1),与化合物(I)-1的发射峰位380 nm,化合物(II)-1的发射峰位368 nm相比都红移了80 nm左右,其混合后的寿命较短,在470 nm 与490 nm附近具有激发态最长寿命分别约为118.6 ns与147.7 ns的发射峰,其占比约为60 %,本领域的技术人员可以很容易判定这种长寿激发态不可能是普通荧光的发射(荧光激发态寿命通常处于1-10 ns,极少数一些特殊的荧光材料激发态寿命可以达到10-50 ns)。为了排除化合物(I) 与 (II) 按照不同比例混合后得到的混合物有可能是热活化延迟荧光(即TADF发光)的可能,对这些组合物实施了变温发光寿命测试,如图2或图4所示,结果表明,这些化合物的长寿命激发态分布比例随着温度的升高(由80 K升高至320 K)而降低,说明这种化合物的发光属于典型的磷光发射。本领域技术人员所熟知的有机化合物光物理特性如下:对于热活化延迟荧光发射材料,其长寿命激发态分布比例随着温度的升高(由80 K升高至320 K)而升高;对于磷光发光材料,其长寿命激发态分布比例随着温度的升高(由80 K升高至320 K)而降低。本发明提供的有机磷光组合物的室温磷光发射峰位处于453-490 nm区间。

本发明所述式(I)和(II)化合物可按照本领域常规的化学合成方法制备得到,其步骤和条件可参考本领域类似反应的步骤和条件。

本发明中还提供一种化合物(I)和(II)的制备方法。具体地,所述化合物(I)的制备路线如以下反应式(III)下所示:

式(III)。

具体地,所述化合物(I)的制备方法包括以下步骤:

将4-溴-N, N-二甲氨基苯胺或其衍生物、芴或其衍生物、叔丁醇钾、双(二亚苄基丙酮)钯、三苯基膦溶于甲苯中,在氮气的保护下加热回流12小时。上述各物质的摩尔比为4-溴-N, N-二甲氨基苯胺或其衍生物:芴或其衍生物:叔丁醇钾:双(二亚苄基丙酮)钯:三苯基膦=2:1:2.4:0.05:0.1 。冷却至室温,用水和二氯甲烷萃取反应体系,分离出有机相后浓缩,用二氯甲烷和石油醚洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得到纯品;

其中,R1~ R2,Ra,Rb,X的定义如前文所述。

其中,原料-1为芴或其衍生物,可以为F-1至F-4中的任意一种,芴或其衍生物F-1至F-4如下所示:

其中,原料-2为4-溴-N, N-二甲氨基苯胺或其衍生物,可以为N-1至N-120中的任意一种,4-溴-N, N-二甲氨基苯胺或其衍生物N-1至N-120如下所示:

具体地,所述化合物(II)的制备路线如以下反应式(IV)下所示:

式(IV)。

具体地,所述化合物(II)的制备方法包括以下步骤:

将原料-1(即2,8-二溴二苯并噻吩或二苯并呋喃 DBDPT或DBDPF)溶于无水四氢呋喃,在无水无氧,氮气保护条件下,冷却到-80 ℃,温度恒定后在-80 ℃条件下,在氮气保护下缓慢滴加 2.5 M丁基锂,保持-80 ℃ 锂化2个小时后,缓慢滴加原料-2(即二苯基氯化磷或其衍生物:P-1至P-32),之后缓慢回复至室温,将体系在室温,氮气保护的条件下搅拌12小时,反应结束后,向体系中加入甲醇淬灭反应,然后用二氯甲烷和水萃取有机相,分离出有机相后浓缩,然后将体系溶解于二氯甲烷中,室温搅拌下缓慢滴加30 %过氧化氢水溶液,体系析出大量白色固体,反应2小时。上述反应所使用的各物质的摩尔比为原料-1:丁基锂:原料-2:过氧化氢=1:2.4:0.45:6.6。反应结束后,旋转蒸发除去体系中的有机溶剂,得到白色粗产品,用二氯甲烷和甲醇做洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得到纯品。

其中,R4~ R7,X的定义如前文所述。

其中,原料-1为DBDPT或DBDPF,其分子结构如下:

其中,原料-2可以为如下所示的二苯基氯化磷或其衍生物P-1至P-33中的任意一种:

以下通过具体实施例对本发明做进一步说明。但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。

实施例1:合成化合物(I)

将40 mmol 4-溴-N, N-二甲氨基苯胺或其衍生物(原料-2:N-1 至N-120)、 20mmol芴或其衍生物(原料-1:F-1至F-4)、48 mmol叔丁醇钾、1 mmol双(二亚苄基丙酮)钯、2mmol三苯基膦加入到100 mL甲苯中,在氮气的保护下加热回流12小时,之后冷却至室温,向反应体系中加入500 mL水,用1000 mL二氯甲烷萃取有机相,分离出有机相后浓缩至10 mL,用二氯甲烷和石油醚(体积比2:3)洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得到纯品。

以化合物(I)-1为例说明合成实施例实验具体细节:将40 mmol 4-溴-N,N-二甲氨基苯胺、20 mmol芴、48 mmol叔丁醇钾、1 mmol双(二亚苄基丙酮)钯、2 mmol三苯基膦加入到100 mL甲苯中,在氮气的保护下加热回流12小时,之后冷却至室温,向反应体系中加入500 mL水,用1000 mL二氯甲烷萃取有机相,分离出有机相后浓缩至10 mL,用二氯甲烷和石油醚(体积比2:3)洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得5.8 g 白色产物 (产率72%)。

二甲氨基苯胺或其衍生物取代芴环或其衍生物的有机化合物合成实施例产物数据汇总如表1-4所示。

表1

表2

表3

表4

实施例2:合成化合物(II)

将14.6 mmol的原料-1(即2,8-二溴二苯并噻吩或二苯并呋喃 DBDPT或DBDPF)、100 mL 无水四氢呋喃,在无水无氧,氮气保护条件下,冷却到-80 ℃,温度恒定后在-80℃条件下,在氮气保护下缓慢滴加 2.5 M的叔丁基锂35.04 mmol,保持-80 ℃ 锂化两个小时后,缓慢滴加6.6 mmol的原料-2(即二苯基氯化磷或其衍生物:P-1至P-32),之后缓慢回复至室温,将体系在室温,氮气保护的条件下搅拌12小时,反应结束后,向体系中加入500 mL甲醇,用1000 mL二氯甲烷和1000 mL水萃取有机相,分离出有机相后浓缩至5 mL,然后将体系溶解于30mL二氯甲烷中,室温搅拌下缓慢滴加30 %过氧化氢水溶液10 mL,体系析出大量白色固体,反应2小时后,旋转蒸发除去体系中的有机溶剂,得到白色粗产品,用二氯甲烷和甲醇(体积比20:1)洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得到纯品。

以化合物(II)-1为例说明合成实施例实验具体细节:将5 g的2,8-二溴二苯并噻吩、100 mL 超干四氢呋喃,在无水无氧,氮气保护条件下,冷却到-80 ℃, 温度恒定后在-80 ℃条件下,在氮气保护下缓慢滴加 2.5 M的叔丁基锂35.04 mmol,保持-80 ℃ 锂化两个小时后,缓慢滴加6.44 g的二苯基氯化磷,之后缓慢回复至室温,将体系在室温,氮气保护的条件下搅拌12小时,反应结束后,向体系中加入500 mL甲醇,用1000 mL二氯甲烷和1000 mL水萃取有机相,分离出有机相后浓缩至5 mL,然后将体系溶解于30 mL二氯甲烷中,室温搅拌下缓慢滴加30 %过氧化氢水溶液10 mL,体系析出大量白色固体,反应2小时后,旋转蒸发除去体系中的有机溶剂,得到白色粗产品,用二氯甲烷和甲醇(体积比20:1)洗脱剂进行柱层析分离得到目标产物,然后通过真空升华得到6.14 g 白色产物(II)-1(产率72%)。

二苯氧磷及其衍生物取代二苯并噻吩或二苯并呋喃的有机化合物合成实施例产物数据汇总如表5所示。

表5

实施例3:化合物(I)-1 与化合物(II)-1 组合物的室温磷光体系

a.取100 mg 化合物(I)-1,100 mg 化合物(II)-1,加入到100 mL 单口瓶中,加入50 mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为470 nm,490 nm,磷光的寿命分别为202 ns,245 ns,磷光量子产率为11 %。

b.取100 mg 化合物(I)-1,10 mg化合物(II)-1,加入到100 mL 单口瓶中,加入50mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为462 nm,磷光的寿命为89.02 ns,磷光量子产率为13 %。

c.取100 mg 化合物(I)-1,2 mg 化合物(II)-1,加入到100 mL 单口瓶中,加入50mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为453 nm,磷光的寿命为92.86 ns,磷光量子产率为12 %。

d.取10 mg 化合物(I)-1,2 mg 化合物(II)-1,加入到100 mL 单口瓶中,加入50mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为474 nm,磷光的寿命为170.5 ns,磷光量子产率为11 %。

e.取2 mg 化合物(I)-1,2 mg 化合物(II)-1,加入到100 mL 单口瓶中,加入50mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为474 nm,磷光的寿命为135 ns,磷光量子产率为12 %。

其中,实施例a和实施例b的掺杂体系稳态光谱图如图1所示,掺杂体系的发光光谱不同于任一组成化合物的发光光谱,说明参杂体系具有与单一组分不同的光物理性质。

实施例a的掺杂体系变温发光寿命测试如图2所示。此掺杂体系的长寿命激发态分布比例随着温度的升高(由80 K升高至320 K)而降低,说明这种有机磷光组合物的发光属于典型的磷光发射。

实施例3:化合物(I)-1 与化合物(II)- 34 组合物的室温磷光体系

a.取100 mg 化合物(I)-1,100 mg 化合物(II)-34,加入到100 mL 单口瓶中,加入50 mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为469 nm,磷光的寿命为260 ns,磷光量子产率为30 %。

b.取100 mg 化合物(I)-1,10 mg 化合物(II)-34,加入到100 mL 单口瓶中,加入50 mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为457 nm,磷光的寿命为208 ns,磷光量子产率为35 %。

其中,实施例a和实施例b的掺杂体系稳态光谱图如图3所示。掺杂体系的发光光谱不同于任一组成化合物的发光光谱,说明参杂体系具有与单一组分不同的光物理性质。

实施例a的掺杂体系变温发光寿命测试如图4所示。此掺杂体系的长寿命激发态分布比例随着温度的升高(由80 K升高至320 K)而降低,说明这种有机磷光组合物的发光属于典型的磷光发射。

c.取100 mg 化合物(I)-1,2 mg 化合物(II)-34,加入到100 mL 单口瓶中,加入50 mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为453 nm,磷光的寿命为190.1 ns,磷光量子产率为25 %。

d.取10 mg 化合物(I)-1,10 mg化合物(II)-34,加入到100 mL 单口瓶中,加入50mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为462 nm,磷光的寿命为238.2 ns,磷光量子产率为27 %。

e.取2 mg 化合物(I)-1,10 mg化合物(II)-34,加入到100 mL 单口瓶中,加入50mL 二氯甲烷充分混合均匀,溶解完全,然后利用旋转蒸发仪减压蒸馏除去二氯甲烷,并将得到的固体粉末置于真空烘箱中40℃烘干。得到的固体粉末置于空气中,在紫外灯照射下呈现出天蓝光发射,发射峰位为460 nm,469 nm,磷光的寿命分别为237.2 ns,239.5 ns磷光量子产率为21 %。

除非另外定义,否则本文中所用的全部技术与科学术语均具有如本发明所属领域的普通技术人员通常理解的相同含义。

如本文所用,术语“含有”或“包括(包含)”可以是开放式、半封闭式和封闭式的。换言之,所述术语也包括“基本上由…构成”、或“由…构成”。

基团定义,在本说明书中,可由本领域技术人员选择基团及其取代基以提供稳定的结构部分和化合物。当通过从左向右书写的常规化学式描述取代基时,该取代基也同样包括从右向左书写结构式时所得到的在化学上等同的取代基。

本说明书所用的章节标题仅用于组织文章的目的,而不应被解释为对所述主题的限制。本申请中引用的所有文献或文献部分包括但不限于专利、专利申请、文章、书籍、操作手册和论文,均通过引用方式整体并入本文。

除非另有规定,本文使用的所有技术术语和科学术语具有要求保护主题所属领域的标准含义。倘若对于某术语存在多个定义,则以本文定义为准。

应该理解,在本发明中使用的单数形式,如“一种”,包括复数指代,除非另有规定。此外,术语“包括”是开放性限定并非封闭式,即包括本发明所指明的内容,但并不排除其他方面的内容。

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

62页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种发射深蓝色荧光的位阻型四苯乙烯螺旋体及合成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类