一种多层组合结构立体织物及其制备方法

文档序号:629424 发布日期:2021-05-11 浏览:31次 >En<

阅读说明:本技术 一种多层组合结构立体织物及其制备方法 (Multilayer combined structure three-dimensional fabric and preparation method thereof ) 是由 乔志炜 刘延友 陈建剑 程海霞 朱梦蝶 于 2020-12-28 设计创作,主要内容包括:本发明公开了一种多层组合结构立体织物及其制备方法,立体织物包括至少一个由一个立体编织结构层和至少一个针刺结构层构成的结构单元,每一结构单元及相邻两个结构单元均通过针刺工艺Z向连接;所述立体编织结构层为2.5D结构层、三向正交结构层或细编穿刺结构层。本发明通过将2.5D、三向正交、细编穿刺结构与针刺结构有机地结合为结构与功能一体性的复合材料,针刺结构承载材料的隔热保温性能,编织结构承载材料的高比强度、高比模量、抗冲击等力学性能,所得复合材料既满足其使用要求,还可实现快速、低成本生产。(The invention discloses a multilayer combined structure three-dimensional fabric and a preparation method thereof, wherein the three-dimensional fabric comprises at least one structural unit consisting of a three-dimensional weaving structural layer and at least one needling structural layer, and each structural unit and two adjacent structural units are connected in the Z direction through a needling process; the three-dimensional woven structure layer is a 2.5D structure layer, a three-dimensional orthogonal structure layer or a fine woven puncture structure layer. According to the invention, the 2.5D, three-way orthogonal and fine-woven puncture structure and the needling structure are organically combined into the composite material with structural and functional integrity, the heat insulation performance of the bearing material of the needling structure and the mechanical properties of the bearing material of the woven structure, such as high specific strength, high specific modulus, impact resistance and the like, so that the obtained composite material not only meets the use requirements, but also can be produced quickly and at low cost.)

一种多层组合结构立体织物及其制备方法

技术领域

本发明涉及纺织技术领域,具体涉及一种多层组合结构立体织物及其制备方法。

背景技术

针刺工艺是利用三角形或其他形状且棱边带有钩刺的针,对蓬松的纤网进行反复针刺,刺针上的钩刺带动纤网上的纤维随刺针穿过纤网层,纤维在运动过程中相互缠结,在摩擦力的作用下,纤维产生上下位移,产生上下位移的纤维对纤网产生一定的挤压,使纤网受到压缩,刺针退出纤网时,纤维脱离钩刺以近乎垂直的“销钉”状态留在织物Z向,从而形成具有一定强力、密度、弹性等性能的非织造品;并通过叠层针刺,形成具有层间连接的三维预制体。针刺结构织物具有成型速度快、制造成本低的特点,但是其层间连接性能不及2.5D、三向正交、细编穿刺等编织结构。2.5D、三向正交、细编穿刺结构是X、Y、Z三向纤维通过特定规律进行交织形成的层间连接性能优良、力学性能优异的三维立体织物,但其生产周期长、制备成本高。

发明内容

本发明的目的是提供一种多层组合结构立体织物及其制备方法,将2.5D、三向正交、细编穿刺结构与针刺结构有机地结合为结构与功能一体性的复合材料,针刺结构承载材料的隔热保温性能,编织结构承载材料的高比强度、高比模量、抗冲击等力学性能,本发明相比于传统的2.5D、三向正交、细编穿刺结构的立体织物,既满足其使用要求,还可实现快速、低成本生产。

本发明采用的技术方案是:

一种多层组合结构立体织物,包括至少一个结构单元,所述结构单元由一个立体编织结构层和至少一个针刺结构层构成,每一结构单元及相邻两个结构单元均通过针刺工艺Z向连接;所述立体编织结构层为2.5D结构层、三向正交结构层或细编穿刺结构层。

进一步地,在针刺工艺基础上,织物整体Z向通过缝合工艺加强连接。

进一步地,所述针刺结构层包括若干针刺单元,所述针刺单元由纤维网胎和/或纤维布组成。

进一步地,所述立体编织结构层为等密度织物或变密度织物。

进一步地,所述变密度织物的密度沿厚度方向、宽度方向或长度方向中的一种方向变化或两种以上方向同时变化,变密度的三维织物通过层连结构连接,不同密度区域界面层间相互连接、纱线连续,整体连续织造成型。

进一步地,所述变密度织物通过织物结构变化、纱线种类变化、纱线细度变化、纱线股数配比变化、经纱密度变化或纬纱密度变化实现三维织物沿厚度方向、沿宽度方向、沿长度方向的密度变化。

进一步地,立体编织结构层的体积密度为0.7~1.3g/cm3,针刺结构层的体积密度为0.1~0.9g/cm3,针刺深度为8~25mm/刺,针刺密度为5~30针/cm3

进一步地,所述多层组合结构立体织物的的形状为圆柱型、平板型、圆锥型、圆台型或曲面型。

进一步地,所述多层组合结构立体织物的材料为石英纤维、玻璃纤维、碳纤维、碳化硅纤维、莫来石纤维或氮化硅纤维中的一种或两种以上。

上述多层组合结构立体织物的制备方法,包括以下步骤:

(1)按设定形状制备2.5D、三向正交或细编穿刺立体编织结构层织物;

(2)裁剪与步骤(1)形状适配的针刺结构层织物;

(3)按设定层数及组合结构将2.5D、三向正交或细编穿刺立体编织结构层织物与针刺结构层织物进行叠层;

(4)依照设定针刺工艺参数进行叠加针刺,形成多层组合立体织物。

进一步地,步骤(4)中包括,当针刺结构层作为织物的面层及底层时,对面层和底层分别进行针刺的步骤。

本发明的有益效果:

1、本发明的多层组合结构立体织物由2.5D、三向正交、细编穿刺立体编织结构中的一种或多种与针刺结构层叠层后通过针刺工艺,在交接区域Z向植入纤维进行层间连接而成,所得织物结合了针刺工艺快速、低成本的生产特点和2.5D、三向正交、细编穿刺立体编织结构织物力学性能优异的特点,既能满足复合材料的使用要求,又能实现复合材料生产的降本增效。

2、本发明采用2.5D变密度立体编织织物与针刺工艺的结合,2.5D变密度立体编织织物具有组织结构多样、织物尺寸控制范围大、可设计性强、结构紧密、整体性好、织造过程简单、适于连续化织造等优点,两种结构组成的多层组合结构立体织物具有低热胀系数、高耐热性、高比强度、高比模量、抗冲击、耐磨损和抗老化等优点,可广泛应用于汽车、航空、航天、机械制造、石油等领域。

附图说明

图1是本发明第1实施例的包括一个结构单元的平板形多层组合结构立体织物的局部剖面结构示意图。

图2是本发明第2实施例的包括两个结构单元的圆筒形多层组合结构立体织物的剖面结构示意图。

图3是本发明第3实施例的包括一个结构单元的双面针刺平板形多层组合结构立体织物的剖面结构示意图。

图4是本发明第4实施例的变密度2.5D结构层的剖面结构示意图。

具体实施方式

为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。

实施例1

参阅图1及图2,本实施例提供一种包括一个结构单元的双层平板形组合结构立体织物,该立体织物为石英纤维组合织物,其形状尺寸为150*150*(15+20)mm。所述结构单元由2.5D结构层11和针刺结构层组成;2.5D结构层11为织物的底层,其厚度为15mm,体积密度为0.9g/cm3;针刺结构层包括若干由一层石英纤维五枚缎纹布122和一层石英纤维网胎121组成的针刺单元12,针刺结构层的厚度为20mm,体积密度为0.4g/cm3

实施1的双层组合结构立体织物的制备方法为:

(1)2.5D结构层11的制备:

第一步,选取190tex×1股的高强石英纤维为经纱,190tex×6股的高强石英纤维为纬纱,织物经密为经密9根/cm,纬密3根/cm;

第二步,根据设定宽度确定经纱的总列数n=142列,根据设定厚度确定经纱的总层数n=20层;

第三步,主体经纱排布,经纱排列方式为上10层下10层,上下层中间间隔2个综丝眼,采用45#钢筘,将142列经纱每两列为一组依次穿入筘齿,按照提综结构进行制备2.5D结构织物;

(2)将步骤(1)制备完成的2.5D结构织物水平放置,在织物表面铺放第一个针刺单元12,按照针刺深度13为15mm,针刺密度为13针/cm2的参数进行针刺;使2.5D结构结构层11与第一针刺单元12通过Z向纤维层间连接;

(3)在步骤(2)所得织物的表面铺放第二个针刺单元;按照针刺深度为15mm,针刺密度为13针/cm2的参数进行针刺;

(4)重复步骤(3),直至最后一个针刺单元针刺结束,完成实施例1的立体织物的制备。

实施例2:

参阅图2,本实施例提供一种包括由内外两个结构单元组成的圆筒形组合结构立体织物,该立体织物为碳纤维组合织物,织物整体Z向植入T700 12K碳纤维,织物的形状尺寸为Ф150*(10+15+5+15)*150mm。内层结构单元由2.5D结构层21和第一针刺结构层22组成,2.5D结构层21为织物内层,其厚度为10mm,体积密度为0.8g/cm3;第一针刺结构层22包括若干由一层面密度为200g/m2的碳纤维布和一层面密度为60g/m2碳纤维网胎组成的针刺单元,第一针刺结构层15的厚度为15mm,体积密度为0.5g/cm3;外层结构单元由三向正交结构层23和第二针刺结构层24组成,三向正交结构层23层叠在针刺结构层22的外表面,三向正交结构层23的厚度为5mm,体积密度为0.88g/cm3;第二针刺结构层24由若干层由一层面密度为200g/m2的碳纤维布和一层面密度为60g/m2碳纤维网胎组成组成;第二针刺结构层24的厚度为15mm,体积密度为0.6g/cm3,第二针刺结构层24为织物的面层。

实施2的双层组合结构立体织物的制备方法为:

(1)2.5D结构层21的制备,选取T700 12K×2股的碳纤维为经纱,T700 12K×2股的碳纤维为纬纱,经密9根/cm,纬密3根/cm;经纱的总层数n=4层;内层424列,外层480列,按照提综结构完成2.5D结构层21的制备;

(2)正交三向结构层23的制备:选取T700 12K×1股的碳纤维为经纱,T700 12K×1股的碳纤维为纬纱,经密8根/cm,纬密3根/cm;经纱的总层数n=5层;内层为502列,外层为528列,按照组织规律完成正交三向结构层23的制备;

(3)将步骤(1)制备完成的2.5D结构层21织物水平放置,在织物外表面铺放第一针刺结构层22的第一个针刺单元,按照针刺深度为17mm,针刺密度为15针/cm2的参数进行针刺,使2.5D结构层21与第一针刺单元层通过Z向纤维层间连接;

(4)在步骤(3)所得织物的表面铺放第二个针刺单元;按照针刺深度为17mm,针刺密度为15针/cm2的参数进行针刺;

(5)重复步骤(4),直至第一针刺结构层22的最后一个针刺单元针刺结束;

(6)在步骤(5)所得织物的外表面依次铺放三向正交结构层23及第二针刺结构层24的第一针刺单元,按照针刺深度为19mm,针刺密度为12针/cm2的参数进行针刺,使三向正交结构层23与第一针刺结构层22及第二针刺结构层24的第一针刺单元层通过Z向纤维层间连接;

(7)在步骤(6)所得织物的表面铺放第二针刺结构层24的第二个针刺单元;按照针刺深度为19mm,针刺密度为12针/cm2的参数进行针刺;

(8)重复步骤(7),直至第二针刺结构层24的最后一个针刺单元针刺结束,

(9)在步骤(8)所得立体织物的Z向植入T700 12K×2股碳纤维25,增加织物的整体层间性能,完成实施例1的立体织物的制备。

实施例3:

参阅图3,本实施例提供一种包括一个结构单元的双层平板形组合结构立体织物,该立体织物为莫来石纤维、石英纤维组合织物,其形状尺寸为150*150*(20+15+20)mm。所述结构单元由细编穿刺结构层32、第一针刺结构层31及第二针刺结构层33组成;第一针刺结构层31为织物的底层,其厚度为20mm,体积密度为0.7g/cm3;细编穿刺结构层32为织物的中间层,原材料为莫来石纤维纤维布,Z向为石英纤维,纤维布的面密度为300g/m2,其厚度为15mm,体积密度为0.9g/cm3;第二针刺结构层33为织物的面层,其厚度为20mm,体积密度为0.7g/cm3;第一针刺结构层31与第二针刺结构层33的结构相同,均包括若干由两层面密度为290g/m2的石英纤维五枚缎纹布和一层面密度为60g/m2石英纤维网胎组成的针刺单元。

实施3的双层组合结构立体织物的制备方法为:

(1)细编穿刺结构层32的制备:将莫来石纤维布进行叠层加压,Z向石英纤维进行置换,完成细编穿刺结构层32的制备。

(2)将步骤(1)制备完成的细编穿刺结构层32织物水平放置,在织物上表面铺放第一针刺结构层31的第一个针刺单元,按照针刺深度为17mm,针刺密度为17针/cm2的参数进行针刺,使细编穿刺结构层32与第一针刺结构层31的第一针刺单元层通过Z向纤维层间连接;

(3)在步骤(2)所得织物的表面铺放第一针刺结构层31的第二个针刺单元;按照针刺深度为17mm,针刺密度为17针/cm2的参数进行针刺;

(4)重复步骤(3),直至第一针刺结构层31的最后一个针刺单元针刺结束;

(5)将步骤(4)制备完成的织物反向放置,第一针刺结构层31置于下方,细编穿刺结构层32置于上方;

(6)在细编穿刺结构层32织物的上表面铺放第二针刺结构层33的第一个针刺单元,按照针刺深度为17mm,针刺密度为17针/cm2的参数进行针刺,使细编穿刺结构层32与第二针刺结构层33的第一针刺单元层通过Z向纤维层间连接;

(7)在步骤(6)所得织物的表面铺放第二针刺结构层33的第二个针刺单元;按照针刺深度为17mm,针刺密度为17针/cm2的参数进行针刺;

(8)重复步骤(7),直至第二针刺结构层33的最后一个针刺单元针刺结束,完成立体织物的制备。

实施例4

本实施例的结构与实施例1基本相同,也包括一个结构单元,所述结构单元由变密度的2.5D结构层和针刺结构层组成;不同之处仅在于,2.5D结构层的结构及制备方法与实施例1不同,本实施例的2.5D结构层的结构及制备方法如下:

变密度2.5D结构层的结构及工艺参数如下表1所示:

表1

变密度2.5D结构层的制备方法包括以下步骤:

1、根据织物尺寸、各不同密度区域组织结构、密度的要求,进行各密度区域经纱层列数的排列;

2、将每层每根经纱穿过经纱张力控制装置以控制经纱的张力;

3、按照经纱层列数的排列,将每层经纱的第一根经纱逐根穿入第一列综丝中,然后穿入同一个筘齿;每层经纱的第二根经纱逐根穿入第二列综丝中,然后穿入同一个筘齿,以此规律将各层经纱逐根穿入相应的综丝中,然后穿入相应的筘齿;

4、逐根调整经纱张力,保证其满足织造要求;

5、根据设定的织物组织结构的要求,提综装置开始自下而上或自上而下循环运动,带动相应的经纱自下而上或自上而下循环运动,每次运动形成等高度开口,具体运动步骤依次如下:

5.1、厚度方向第一密度区41的正交三向结构的单独织造;

5.2、厚度方向第一密度区与厚度方向第二密度区的界面连接处42的织造以及厚度方向第二密度区43的浅交弯联结构的织造;

5.3、厚度方向第二密度区与厚度方向第三密度区界面连接处44的织造以及厚度方向第三密度区45的浅交直联结构的织造;

6、每次形成开口后,由引纬装置引入一根纬纱,完成引纬后,打纬装置向织物织口水平移动,将纬纱打进织口,完成打纬;

7、打纬完成后,根据设定的织物的纬密将织物向成型方向牵引一定距离,完成牵引后,进行下一个运动循环,直至完成整个织物的织造。

将制备完成的2.5D结构织物水平放置,在织物表面铺放针刺结构层,按照针刺深度13为15mm,针刺密度为13针/cm2的参数进行叠加针刺,完成实施例4的立体织物的制备。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种管状立体织物及其快速成型制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!