用于操控电机的方法和用于车辆的驱动系统

文档序号:651770 发布日期:2021-04-23 浏览:29次 >En<

阅读说明:本技术 用于操控电机的方法和用于车辆的驱动系统 (Method for controlling an electric machine and drive system for a vehicle ) 是由 J·文德 R·内勒斯 T·胡贝特 于 2020-09-15 设计创作,主要内容包括:本发明涉及一种用于操控电机(4)、尤其永久励磁的同步电机的方法,该电机具有:由第一逆变器(1)操控的、尤其三相的第一绕组系统;以及由第二逆变器(2)操控的、尤其三相的第二绕组系统,其中该第一逆变器(1)以块换相进行操作,并且该第二逆变器(2)以脉冲宽度调制、尤其空间矢量调制进行操作。(The invention relates to a method for controlling an electric machine (4), in particular a permanently excited synchronous machine, comprising: a first winding system, in particular three-phase, which is operated by a first inverter (1); and a second, in particular three-phase, winding system which is operated by a second inverter (2), wherein the first inverter (1) is operated with block commutation and the second inverter (2) is operated with pulse width modulation, in particular space vector modulation.)

用于操控电机的方法和用于车辆的驱动系统

技术领域

本发明涉及一种用于操控电机、尤其是永久励磁的同步电机的方法。本发明还涉及一种用于车辆的驱动系统、尤其是牵引驱动系统。

背景技术

在用于电动车辆或混合动力车辆的牵引驱动系统中,通常将永久励磁的同步电机用作电机。为了操控这种电机,通常设置有逆变器,该逆变器为电机提供多相操作电压。逆变器典型地以空间矢量调制(英语:space vector modulation,SVM)进行操作。在逆变器的这种操作方法中,为电机提供经脉冲宽度调制的操作电压。功率半导体中存在一定程度的开关损耗和导通损耗。逆变器电源除了承载基本振荡电压外还承载其他高频电压。这导致定子中的极大损耗(铁损和电热损耗)和转子中的极大损耗(铁损和磁体损耗)。由此可能限制电机的持续功率。在电动车辆或混合动力车辆中,额外的损耗导致行驶里程减少。

发明内容

在此背景下提出的目的在于,增加由电机驱动的车辆的行驶里程。

为了实现该目的,提出一种用于操控电机的方法,该电机具有:由第一逆变器操控的、尤其三相的第一绕组系统;以及由第二逆变器操控的、尤其三相的第二绕组系统,其中该第一逆变器以块换相进行操作,并且该第二逆变器以脉冲宽度调制、尤其空间矢量调制进行操作。

在根据本发明的方法中,第一逆变器以块换相进行操作,由此可以降低开关损耗。例如由第一逆变器产生的、磁通量中的不期望的谐波振荡可以以基于阶数或频率的方式由以脉冲宽度调制、尤其空间矢量调制进行操作的第二逆变器补偿。因此总体上可以实现提高包括电机的驱动器的效率,从而可以增加由电机驱动的车辆的行驶里程。

优选地,电机被设计为永久励磁的同步电机。

根据本发明的一个有利的设计方案提出,所述第一绕组系统和所述第二绕组系统是并联连接的,并且所述第一逆变器和所述第二逆变器同相地操作。在此,同相的操作应理解为第一绕组系统的绕组和第二绕组系统的绕组分别被同相地操控的操作,其中尤其在这些绕组中承载的电流具有同一电流方向。

根据本发明的一个替代性的有利的设计方案提出,所述第一绕组系统和所述第二绕组系统是反并联连接的,并且所述第一逆变器和所述第二逆变器反相地操作。在此,反相的操作应理解为第一绕组系统的绕组和第二绕组系统的绕组分别被反相地操控的操作,其中尤其在这些绕组中承载的电流具有相反的电流方向。

一个有利的设计方案提出,设定所述第二逆变器的时钟频率,其方式为使所述第一逆变器和所述第二逆变器的开关损耗的总和减小,其中优选地根据限定的标准、尤其加权函数来调节不期望的副作用、尤其噪声。替代性地或额外地,设定第二逆变器的时钟频率,其方式为以最佳的方式来调节谐波振荡损耗。

本发明的另一个主题是一种用于车辆的驱动系统、尤其是牵引驱动系统,该驱动系统具有:

-电机、尤其永久励磁的同步电机,该电机包括尤其三相的第一绕组系统和尤其三相的第二绕组系统,

-第一逆变器,该第一逆变器与该第一绕组系统连接;以及第二逆变器,该第二逆变器与该第二绕组系统连接,以及

-控制装置,该控制装置被配置成用于以块换相来操作该第一逆变器并且以脉冲宽度调制、尤其空间矢量调制来操作该第二逆变器。

在该驱动系统中可以实现与已经结合用于操控电机的方法所描述的优点相同的优点。

优选地,所述第二逆变器相比于所述第一逆变器具有最大可能切换频率更高的半导体开关。由此,在第一逆变器中,使用具有较高开关损耗的半导体开关,并且降低第一逆变器的材料成本。特别优选地,第二逆变器具有SiC或GaN半导体开关,例如SiC-MOSFET或GaN-FET。第一逆变器可以具有Si半导体开关,例如Si-IGBT。

根据一个有利的设计方案提出,该驱动系统具有共用的中间电路、尤其是带有共用的中间电路电容器的中间电路,该中间电路与所述第一逆变器和所述第二逆变器连接。由此可以实现驱动系统的紧凑并且成本有效的构型。

本发明的一个有利的设计方案提出,电机具有带有多个槽的定子,其中在这些槽中的每个槽中都至少布置有第一绕组系统的一个第一相导体和第二绕组系统的一个第二相导体。

就此而言优选的是,在这些槽中提供多个用于布置相导体的径向位置,其中第一相导体在第一槽中被布置在与在第二槽中不同的径向位置中。特别优选地,第一相导体被布置在所有的径向位置中。

本发明的另一个主题是一种具有上述驱动系统的车辆、尤其是电动车辆或混合动力车辆。在该车辆中可以实现与已经结合用于操控电机的方法和驱动系统所描述的优点相同的优点。

附图说明

应借助附图中示出的实施例来阐述本发明的其他细节和优点。在此:

图1以示意性框图示出了根据本发明的第一实施例的驱动系统;

图2以示意性截面图示出了根据图1的驱动系统的电机;

图3以示意性电路图示出了根据本发明的第二实施例的驱动系统;

图4以示意性电路图示出了根据本发明的第三实施例的驱动系统;

图5以示意图示出了根据本发明的车辆的实施例。

具体实施方式

在图1中展示了被设计为用于车辆的牵引驱动系统的驱动系统10,该驱动系统具有电机4,该电机被设计为永久励磁的同步电机。电机4由两个分开的、各自三相的绕组系统馈送。就此而言,电机4包括三相的第一绕组系统和三相的第二绕组系统。

将第一逆变器1和第二逆变器2设置为驱动系统10的另外的组成部分,这些逆变器藉由驱动系统10的控制装置5操控。第一逆变器1与第一绕组系统连接,第二逆变器2与第二绕组系统连接。为了降低逆变器1的开关损耗并且因此增加由电机4驱动的车辆的行驶里程,控制装置5被配置成用于以块换相(Blockkommutierung)来操作第一逆变器1并且以脉冲宽度调制、尤其空间矢量调制来操作第二逆变器2。

第一逆变器1具有半导体开关,这些半导体开关的最大切换频率小于第二逆变器2的半导体开关。因此,可以在第一逆变器1中使用比在第二逆变器2中明显更便宜的半导体开关。例如,第一逆变器的半导体开关被设计为Si半导体开关,并且第二逆变器的半导体开关被设计为SiC或GaN半导体开关。

在操作驱动系统时,控制单元以一时钟频率操作第二逆变器,从而取决于操作点使得开关损耗的总和最小,并且同时补偿由第一逆变器产生的、磁通量中的低频谐波振荡。在此,第二逆变器2的时钟频率是可根据操作点特性曲线而变的。

图2中的图示示出了根据第一实施例的图1的驱动系统10的电机4。电机4包括具有永磁体的转子11,该永磁体包括北极N和南极S。电机4还包括具有多个、在此恰好十二个槽13的定子12。槽13各自具有两个径向位置,在这些径向位置中布置绕组系统的相导体。相导体以附图标记a-f和A-F表示,其中大写字母表示相导体的第一端部,并且小写字母表示相导体的与第一端部相反的第二端部。相导体a-c或A-C是第一绕组系统的相导体,相导体d-f或D-F是第二绕组系统的相导体。

在图2中示出的电机4中,第一相导体a或A在第一槽13'中被布置在与在第二槽13”中不同的径向位置中。因此,第一相导体a或A被布置在定子12的槽提供的所有的径向位置中。此外,其余的相导体b-f或B-F被布置在槽13中,其方式为在槽13中的每个槽中都至少布置有第一绕组系统的一个第一相导体a-c或A-C和第二绕组系统的一个第二相导体d-f或D-F。

在图3中以电路图展示了根据本发明的驱动系统10的第二实施例,其中在第二逆变器2的半导体开关的旁边展示了第一逆变器1的半导体开关。在圆圈K'中示例性地示出了第二逆变器2的半导体开关S”旁边的第一逆变器1的半导体开关S'。这两个绕组系统的相导体以附图标记a'-f'表示。在根据图3的驱动系统10中,第一绕组系统a'、b'、c'和第二绕组系统d'、e'、f'是反并联连接的。第一逆变器1和第二逆变器2反相地操作。开关S'和S”具有不同的开关状态。由此,例如反相地操控这两个绕组系统的相导体a'和d',从而使得电流以相反的电流方向在这些相导体a'和d'中流动。通过反并联的互联在相同的方向上产生磁通量。

这两个逆变器1、2与一个共用的中间电路3、尤其与一个共用的中间电路电容器连接。

在图4中以电路图展示了根据本发明的驱动系统10的第三实施例。根据第三实施例的第三驱动系统10大体上与第二实施例的驱动系统相对应,其中然而第一绕组系统a'、b'、c'和第二绕组系统d'、e'、f'是并联连接的,并且第一逆变器1和第二逆变器2同相地操作。开关S'和S”具有相同的开关状态。

图5中的图示示出了具有驱动系统10的车辆100,该驱动系统可以根据上述实施例之一设计。车辆100涉及电动车辆或混合动力车辆。驱动系统10可以以如下方式设置,使得可以用驱动系统来驱动前桥的车轮或后桥的车轮或前桥和后桥的车轮。替代性地还可以实现的是,可以用驱动系统驱动恰好一个车轮。

根据上述实施例的变型,电机4的极对数可以大于1,其中转子尤其包括多个南极S和北极N。例如可以在转子上布置多个永磁体。

上述实施例的另一个变型提出,极对数是1,转子11包括六个槽,并且孔数量是1,其中孔数量表示每个极数和分支的槽的数量。

另一个变型提出,极对数是1,并且转子11包括十二个槽。

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:电机供电系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!