Y型分子筛及其制备方法

文档序号:694618 发布日期:2021-05-04 浏览:4次 >En<

阅读说明:本技术 Y型分子筛及其制备方法 (Y-type molecular sieve and preparation method thereof ) 是由 庄立 罗一斌 欧阳颖 刘建强 于 2019-10-30 设计创作,主要内容包括:本发明提供一种Y型分子筛及其制备方法。所述分子筛的晶胞常数为2.415-2.440nm;所述分子筛的~(27)Al MAS NMR谱中化学位移为0±2ppm共振信号的峰面积占总峰面积的比例不大于4%;所述分子筛的强酸量占总酸量的比例为70%以上。本发明的Y分子筛硅铝比高,晶胞常数小,晶体结构完整,微孔比表面积大,二次孔较为丰富,非骨架铝少,具有更高的强酸中心比例,在加氢裂化等烃类裂化反应中具有更高的反应活性,二次反应少,反应选择性好,同时酸性稳定性好,失活缓慢。(The invention provides a Y-type molecular sieve and a preparation method thereof. The unit cell constant of the molecular sieve is 2.415-2.440 nm; of said molecular sieves 27 The proportion of the peak area of the resonance signal with the chemical shift of 0 &#43;/-2 ppm in the Al MAS NMR spectrum to the total peak area is not more than 4 percent; the strong acid amount of the molecular sieve accounts for more than 70 percent of the total acid amount. The Y molecular sieve has the advantages of high silicon-aluminum ratio, small unit cell constant, complete crystal structure, large specific surface area of micropores, rich secondary pores, less non-framework aluminum, higher strong acid center proportion, higher reaction activity in hydrocarbon cracking reactions such as hydrocracking and the like, less secondary reaction, good reaction selectivity, good acid stability and slow inactivation.)

Y型分子筛及其制备方法

技术领域

本发明涉及催化领域,具体涉及一种改性的Y型分子筛及其制备方法。

背景技术

原油重质化、劣质化程度加剧、提升汽油品质以及增产丙烯等催化裂化技术的应用等诸多因素导致催化裂化柴油质量日益变差,表现为密度大、氮含量高、芳烃含量高,十六烷值低。针对二次加工柴油尤其是催化柴油富含多环芳烃的组成特性,采用加氢裂化工艺使其中的多环芳烃加氢饱和、开环裂化,生产高辛烷值汽油或轻质芳烃,可以更好更充分地利用劣质柴油,为企业带来显著的经济效益。毫无疑问,加氢裂化催化剂是该技术的核心。

加氢催化剂是同时具备加氢和裂化功能的双功能催化剂,由酸性裂化组分和金属加氢组分组成,其中Y型分子筛作为主要酸性裂化组分和载体在加氢裂化催化剂中发挥着重要的作用,分子筛的硅铝比、酸性质和孔结构等物化性质均影响着加氢催化剂反应性能;分子筛上较强的酸中心有利于提高裂化活性,适度的酸中心数量和酸密度有利于在不降低裂化活性的同时减少二次反应,提高反应选择性,而适合的孔径和通畅的孔道将有利于反应物和产物分子筛的扩散,减少结焦,提高反应选择性,延长催化剂寿命。

合成的NaY分子筛硅铝比低,且不具备酸性,需要对其加以改性。提高分子筛硅铝比的改性手段主要有两类方法,水热焙烧和化学脱铝,其中水热焙烧使分子筛发生骨架脱铝和补硅,使分子筛骨架硅铝比提高,但骨架上脱下的铝以非骨架铝形式存在于分子筛孔道内,造成孔道堵塞和酸性变化。化学脱铝采用各类酸或络合剂与分子筛中铝相互作用,可将铝从分子筛中去除。因而水热焙烧和化学脱铝常联合应用,以获得更好的效果。

CN1253860A公开了一种含Y沸石的中间馏分油型加氢裂化催化剂及其制备方法,其中使用的疏水Y分子筛采用多次铵交换或一次水焙加多次铵交得到氧化钠含量低于0.2w%的Y分子筛,再经水焙和脱铝后得到,分子筛具有硅铝比高,酸量低的特点,且含有适度的二次孔,但制备过程中对氧化钠含量要求苛刻,同时分子筛产品非骨架铝含量高,这将减弱分子筛的酸强度,影响分子筛二次孔的通畅程度,阻碍反应物分子和产物分子的扩散,最终影响反应选择性。

CN1951814A公开了一种改性Y沸石及其制备方法,该沸石采用水热处理和化学脱铝制备,具有较多的二次孔,结晶度较高,但由于最后步骤为水热焙烧,将导致分子筛产品非骨架铝含量高,影响反应活性和选择性。

CN104250010A公开了一种含两种改性分子筛的硅铝载体及其制备方法,其中的Y分子筛采用两次水焙、多次交换和脱铝制备得到。得到的分子筛硅铝比高,酸中心密度低,二次孔比例高。但分子筛二焙前多次脱铝,易造成晶体缺陷,使水焙过程中晶体结构更容易坍塌,产生大量非骨架铝,在后续脱铝中不易将非骨架铝清除干净。

CN106629764A公开了一种脱铝Y分子筛及其制备方法,该分子筛非骨架铝含量相对较低,但二次孔占总孔比例略小,总硅铝比较低。

虽然目前已经公开了多种Y分子筛及其制备方法,但其均在硅铝比、酸性质和孔结构等物化性质上存在不足,难以满足催化剂性能的需求。

需注意的是,前述背景技术部分公开的信息仅用于加强对本发明的背景理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。

发明内容

本发明的目的在于针对现有技术的不足,提供一种硅铝比高、非骨架铝少且强酸比例高的Y型分子筛。

为了实现上述目的,本发明采用如下技术方案:

一种Y型分子筛,所述分子筛的晶胞常数为2.415-2.440nm;所述分子筛的27Al MASNMR谱中化学位移为0±2ppm共振信号的峰面积占总峰面积的比例不大于4%;所述分子筛的强酸量占总酸量的比例为70%以上。

在一些实施例中,所述分子筛的晶胞常数为2.422-2.438nm;所述分子筛的27AlMAS NMR谱中化学位移为0±2ppm共振信号的峰面积占总峰面积的比例不大于3%;所述分子筛的强酸量占总酸量比例为75%以上。

在一些实施例中,所述分子筛的微孔比表面积为650m2/g以上;所述分子筛的介孔体积占总孔体积的比例为30%至50%。

在一些实施例中,所述分子筛的微孔比表面积为700m2/g以上;所述分子筛的介孔体积占总孔体积的比例为33%至45%。

另一方面,本发明还提供上述Y型分子筛的制备方法,包括:

将NaY分子筛与铵盐和水混合进行第一次铵交换处理,得到第一次铵交换分子筛;

将所述第一次铵交换分子筛在水蒸气气氛中进行第一水热焙烧处理,得到第一次水焙分子筛;

将所述第一次水焙分子筛和水混合并加入第一脱铝剂进行第一次脱铝处理,得到第一次脱铝分子筛;

将所述第二次铵交换分子筛在水蒸气气氛中进行第二次水热焙烧处理,得到第二次水焙分子筛;

将所述第二次水焙分子筛和水混合并加入第二脱铝剂进行第二次脱铝处理,得到第二次脱铝分子筛;

将所述第二次脱铝分子筛在水蒸气气氛中进行第三次水热焙烧处理,得到第三次水焙分子筛;

将所述第三次水焙分子筛和水混合并加入第三脱铝剂进行第三次脱铝处理,得到第三次脱铝分子筛;以及

将所述第三次脱铝分子筛和水混合并加入第四脱铝剂进行第四次脱铝处理,之后经过滤、洗涤得到所述Y型分子筛,

其中,所述第四脱铝剂包括含硅的脱铝剂。

在一些实施例中,所述第一脱铝剂、所述第二脱铝剂和所述第三脱铝剂各自独立地选自有机酸、无机酸以及有机和无机盐中的一种或多种,所述有机酸选自乙二胺四乙酸、草酸、柠檬酸和磺基水杨酸,所述无机酸选自氟硅酸、盐酸、硫酸和硝酸,所述有机和无机盐选自草酸铵、氟化铵、氟硅酸铵和氟硼酸铵。

在一些实施例中,所述含硅脱铝剂为氟硅酸、氟硅酸铵或者氟硅酸和氟硅酸铵的混合物。

在一些实施例中,所述第四脱铝剂还包括有机酸和/或无机酸,所述含硅脱铝剂与所述有机酸和/或无机酸的质量比为0.02~0.3:0~0.07,所述有机酸选自乙二胺四乙酸、草酸、柠檬酸和磺基水杨酸中的一种或多种,所述无机酸选自盐酸、硫酸和硝酸中的一种或多种。

在一些实施例中,所述第一次水热焙烧处理、所述第二次水热焙烧处理和所述第三次水热焙烧处理的温度为350~700℃,水蒸气浓度为1~100%,焙烧时间为0.5小时~10小时。

在一些实施例中,所述第一次铵交换处理的温度为室温~95℃,处理时间为0.5小时~5小时;所述第一次脱铝处理的温度为室温~90℃,处理时间为0.5小时~6小时;所述第二次脱铝处理的温度为室温~100℃,处理时间为0.5小时~6小时;所述第三次脱铝处理的温度为室温~100℃,处理时间为0.5小时0.5小时~6小时;所述第四次脱铝处理的温度为室温~100℃,处理时间为0.5小时~6小时。

在一些实施例中,在所述第一次脱铝处理、所述第二次脱铝处理、所述第三次脱铝处理和所述第四次脱铝处理的至少其中之一加入铵盐。

在一些实施例中,所述铵盐选自氯化铵、硝酸铵、碳酸铵、碳酸氢铵、草酸铵、硫酸铵、硫酸氢铵中的一种或多种。

在一些实施例中,在所述第一次铵交换处理中,按质量比计,所述NaY分子筛:所述铵盐:水=1:0.3~1.0:5~10。

在一些实施例中,在所述第一次脱铝处理中,按质量比计,所述第一次水焙分子筛:所述铵盐:所述第一脱铝剂:水=1:0~0.50:0.02~0.3:5~10。

在一些实施例中,在所述第二次脱铝处理中,按质量比计,所述第二次水焙分子筛:所述铵盐:所述第二脱铝剂:水=1:0~0.50:0.02~0.3:5~10。

在一些实施例中,在所述第三次脱铝处理中,按质量比计,所述第三次水焙分子筛:所述铵盐:所述第三脱铝剂:水=1:0~0.70:0.02~0.3:5~10。

在一些实施例中,在所述第四次脱铝处理中,按质量比计,所述第三次脱铝分子筛:所述铵盐:所述含硅脱铝剂:水=1:0~0.70:0.02~0.3:5~10。

本发明的Y分子筛硅铝比高,晶胞常数小,晶体结构完整,微孔比表面积大,二次孔较为丰富,非骨架铝少,具有更高的强酸中心比例,在加氢裂化等烃类裂化反应中具有更高的反应活性,二次反应少,反应选择性好,同时酸性稳定性好,失活缓慢。

具体实施方式

下面根据具体实施例对本发明的技术方案做进一步说明。本发明的保护范围不限于以下实施例,列举这些实例仅出于示例性目的而不以任何方式限制本发明。

本发明中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。

本发明所公开的所有特征可以任意组合,这些组合应被理解为本发明所公开或记载的内容,除非本领域技术人员认为该组合明显不合理。在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

根据本发明的第一个方面,本发明提供了一种改性的Y型分子筛,其晶胞常数为2.415-2.440nm,优选晶胞常数为2.422-2.438nm;微孔比表面积650m2/g以上,优选为700m2/g以上;介孔体积占总孔体积的30%至50%,优选为33%至45%;分子筛的27Al MAS NMR谱中化学位移为0±2ppm共振信号的峰面积占总峰面积的比例不大于4%,优选不大于3%;分子筛的强酸量占总酸量的比例为70%以上,优选为75%以上。

本发明中Y型分子筛的强酸是指NH3程序升温脱附(NH3-TPD)曲线中脱附温度大于320℃的酸,强酸酸量占总酸量的比例是指NH3-TPD结果中脱附温度大于320℃强酸酸量与总酸酸量的比值。

由以上物化参数可知,本发明的Y型分子筛具有硅铝比高,晶胞常数小,晶体结构完整,微孔比表面积大,二次孔较为丰富,非骨架铝少,强酸中心比例高等诸多优点。

本发明的Y型分子筛是以NaY分子筛为原料,经多次交换、脱铝及三次水热焙烧制备得到,其中第二次和第三次水热焙烧之前至少进行一次脱铝处理,第三次水热焙烧后,至少需要连续两次进行脱铝,并且在最后一次脱铝过程中采用含硅的脱铝剂进行。

具体而言,本发明的Y型分子筛的制备方法可包括以下步骤:

将NaY分子筛与铵盐和水混合进行第一次铵交换处理,得到第一次铵交换分子筛;

将第一次铵交换分子筛在水蒸气气氛中进行第一水热焙烧处理,得到第一次水焙分子筛;

将第一次水焙分子筛和水混合并加入第一脱铝剂进行第一次脱铝处理,得到第一次脱铝分子筛;

将第一次脱铝分子筛在水蒸气气氛中进行第二水热焙烧处理,得到第二次水焙分子筛;

将第二次水焙分子筛和水混合并加入第二脱铝剂进行第二次脱铝处理,得到第二次脱铝分子筛;

将第二次脱铝分子筛在水蒸气气氛中进行第三水热焙烧处理,得到第三次水焙分子筛;

将第三次水焙分子筛和水混合并加入第三脱铝剂进行第三次脱铝处理,得到第三次脱铝分子筛;以及

将第三次脱铝分子筛和水混并加入第四脱铝剂进行第四次脱铝处理,之后经过滤、洗涤得到Y型分子筛,

其中,第四脱铝剂包括含硅的脱铝剂。

本发明的制备方法中,铵交换处理中所用的铵盐各自独立地选自氯化铵、硝酸铵、碳酸铵、碳酸氢铵、草酸铵、硫酸铵、硫酸氢铵中的一种或多种。

本发明的制备方法中,第一次铵交换处理是将NaY沸石(即NaY分子筛)与铵盐和水按照NaY分子筛:铵盐:水=1:0.3~1.0:5~10的比例混合得浆液,在室温~95℃下处理0.5小时~5小时后洗涤,烘干,得到第一次铵交换分子筛。其中,NaY分子筛是以干基重量计(本发明中干基重量为800℃下焙烧1h后分子筛的重量)。

本发明的制备方法中,第一次水热焙烧处理是将第一次铵交换分子筛在温度为350~700℃、1~100%的水蒸气气氛下焙烧0.5小时~10小时得到第一次水焙分子筛。

本发明的制备方法中,第一次脱铝处理是按照第一次水焙分子筛:可选的铵盐:第一脱铝剂:水=1:0~0.50:0.02~0.3:5~10的比例,先将水与第一次水焙分子筛及可选的铵盐混合后,再加入第一脱铝剂,然后在室温~90℃下处理0.5小时~6小时,过滤、洗涤后得到第一次脱铝分子筛,其中第一次水焙分子筛是以干基重量计。

本发明的制备方法中,第二次水热焙烧处理是将第一次脱铝分子筛在温度为350~700℃、1~100%的水蒸气气氛下焙烧0.5小时~10小时得到第二次水焙分子筛。

本发明的制备方法中,第二次脱铝处理是按照第二次水焙分子筛:可选的铵盐:第二脱铝剂:水=1:0~0.50:0.02~0.3:5~10的比例,先将水与第二次水焙分子筛及可选的铵盐混合后,再加入第二脱铝剂,然后在室温~100℃下处理0.5小时~6小时,过滤、洗涤后得到第二次脱铝分子筛,其中第二次水焙分子筛是以干基重量计。

本发明的制备方法中,第三次水热焙烧处理是将第二次脱铝分子筛在温度为350~700℃、1~100%的水蒸气气氛下焙烧0.5小时~10小时得到第三次水焙分子筛。

本发明的制备方法中,第三次脱铝处理是按照第三次水焙分子筛:可选的铵盐:第三脱铝剂:水=1:0~0.70:0.02~0.3:5~10的比例,先将水与第三次水焙分子筛及可选的铵盐混合后,再加入第三脱铝剂,然后在室温~100℃下处理0.5小时~6小时,过滤、洗涤后得到第三次脱铝分子筛,其中第三次水焙分子筛是以干基重量计。

本发明的制备方法中,第四次脱铝处理是按照第三次脱铝分子筛:可选的铵盐:含硅脱铝剂:有机酸和/或无机酸:水=1:0~0.70:0.02~0.3:0~0.07:5~10的比例,将第三次脱铝分子筛与可选的铵盐、水混合后,再加入第四脱铝剂(至少包括含硅脱铝剂,还可进一步包括有机酸和/或无机酸),然后在室温~100℃下处理0.5小时~6小时,过滤、洗涤后得到第四次脱铝分子筛,其中第三次脱铝分子筛是以干基重量计。

本发明的制备方法中,第一脱铝剂、第二脱铝剂和第三脱铝剂可相同或不同,各自独立地选自有机酸、无机酸以及有机和无机盐中的一种或多种,其中的有机酸选自乙二胺四乙酸、草酸、柠檬酸和磺基水杨酸,无机酸选自氟硅酸、盐酸、硫酸和硝酸,有机和无机盐选自草酸铵、氟化铵、氟硅酸铵和氟硼酸铵。

本发明的制备方法中,最后一次脱铝处理(即第四次脱铝处理)中所采用的脱铝剂包括含硅的脱铝剂,还可进一步包括有机酸和/或无机酸,其中的含硅脱铝剂为氟硅酸、氟硅酸铵或者氟硅酸和氟硅酸铵的混合物,有机酸和/或无机酸中的有机酸选自乙二胺四乙酸、草酸、柠檬酸和磺基水杨酸中的一种或多种,无机酸选自盐酸、硫酸和硝酸中的一种或多种。

本发明的Y型分子筛由多次脱铝及三次水焙制备得到,脱铝过程形成的铝空位可在水焙过程中尽可能多地由硅进行填充,而产生的非骨架铝通过多次脱铝而逐步剥离,三次水热焙烧和多次脱铝相辅相成,有利于保持晶体的完整,保留更多的强酸中心。

因此,本发明的Y型分子筛硅铝比高,非骨架铝少,强酸中心比例高,比表面积大,二次孔丰富,在加氢裂化等烃类裂化反应中具有更高的反应活性,二次反应少,开环反应选择性好,同时酸性稳定性好,失活缓慢。

以下结合实施例详细说明本发明,但并不因此限制本发明的范围。

实施例

实施例及对比例中,所用的原料规格如下:

NaY分子筛,工业品,硅铝比>4.7,结晶度>85%

硫酸,化学纯

盐酸,化学纯

硝酸,化学纯

草酸,固体,化学纯

氟硅酸,工业级

硝酸铵,化学纯

氯化铵,化学纯

草酸铵,化学纯

硫酸铵,化学纯

实施例及对比例中,所涉及的仪器和测试方法如下:

晶胞常数由X射线衍射法(XRD)采用RIPP145-90标准方法(见《石油化工分析方法(RIPP试验方法)》,杨翠定等,科学出版社,1990年版)测定。

分子筛的微孔比表面积采用氮吸附BET比表面积方法进行测量;介孔指孔径大于2纳米小于50纳米的分子筛孔道,孔体积采用GB/T 5816-1995标准方法进行测定。

27Al MAS NMR采用Bruker Avance III 500MHz核磁共振仪进行测试,共振峰谱图进行分峰拟合后采用积分法计算各峰面积。

酸量采用NH3-TPD方法进行测定,参见《固体催化剂的研究方法,石油化工,30(12),2001:952》,其中强酸酸量指NH3脱附峰峰值温度大于320℃以上的酸中心数量。

化学硅铝比采用X射线荧光法进行测定。即通过氧化硅和氧化铝的含量计算得到,氧化硅和氧化铝的含量采用GB/T 30905-2014标准方法进行测定。

实施例1

(1)以NaY沸石为原料用硫酸铵溶液进行交换,处理条件为:按照NaY分子筛(干基):硫酸铵:水=1:1.0:10的比例,在90℃下交换2h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为520℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):硫酸:氯化铵:水=1:0.06:0.40:9的比例,先将分子筛加水打浆后缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温,于70℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为620℃,在100%水蒸气气氛下焙烧2h。

(5)将步骤(4)得到的分子筛按分子筛(干基):硫酸:水=1:0.09:8的比例,先将分子筛加水打浆后,缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温于70℃下处理60min,过滤后经去离子水洗涤,在120℃下干燥4h。

(6)将步骤(5)得到的分子筛进行第三次水热焙烧处理,焙烧温度为650℃,在100%水蒸气气氛下焙烧2h。

(7)将步骤(7)得到的分子筛按分子筛(干基):硫酸:水=1:0.09:8的比例,先将分子筛加水打浆后,缓慢滴加浓度为30%的硫酸,控制滴加时间40min,升温,于70℃下处理60min,过滤后经去离子水洗涤。

(8)将步骤(7)得到的分子筛按分子筛:硫酸铵:氟硅酸:硫酸:H2O=1:0.2:0.05:0.02:8的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为30%的氟硅酸和20%浓度的硫酸,控制滴加时间40min,升温后于80℃下处理90min,过滤后经去离子水洗涤,得到分子筛Y-1,其各项参数如表1所示。

实施例2

(1)以NaY沸石为原料用硫酸铵溶液进行交换,处理条件为:按照NaY分子筛(干基):硫酸铵:水=1:0.5:7的比例,在80℃下交换1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为670℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按照分子筛(干基):草酸:硝酸铵:水=1:0.20:0.40:9的比例,先将分子筛加水打浆,于室温在搅拌下加入硝酸铵,再加入草酸,搅拌60min,过滤后经去离子水洗涤两次,在120℃下干燥3h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为645℃,在100%水蒸气气氛下焙烧2.5h。

(5)将步骤(4)得到的分子筛加入7倍水打浆,浆液升温至60℃后,按分子筛(干基):硝酸:草酸铵:水=1:0.13:0.2的比例,将草酸铵和硝酸及水配置成溶液,将水溶液加入分子筛浆液中,控制滴加时间30min,于60℃下继续搅拌40min,过滤后经去离子水洗涤,在105℃下干燥2h。

(6)将步骤(5)得到的分子筛进行第三次水热焙烧处理,焙烧温度为670℃,在100%水蒸气气氛下焙烧2h。

(7)将步骤(6)得到的分子筛按分子筛(干基):硫酸:硝酸铵:水=1:0.13:0.30:9的比例,先将分子筛加适量水打浆后,再加入硝酸铵,后匀速加入浓度为30%的硫酸水溶液,控制滴加时间40min,升温,于70℃下处理60min,过滤后经去离子水洗涤,在120℃下干燥4h。

(8)将步骤(7)得到的分子筛按分子筛:硫酸铵:H2SiF6:H2O=1:0.2:0.15:7的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为30%的氟硅酸,控制滴加时间60min,升温后于60℃下处理50min,过滤后经去离子水洗涤,在120℃下烘干,得到分子筛Y-2,其各项参数如表1所示。

实施例3

(1)以NaY沸石为原料用氯化铵溶液进行交换,处理条件为:按照NaY分子筛(干基):氯化铵:水=1:0.7:10的比例,在85℃下交换1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):柠檬酸:硫酸:水=1:0.15:0.05:8的比例,先将分子筛加水打浆后,升温,于70℃在搅拌下匀速加入浓度为20%的硫酸,控制滴加时间30min后,再加入浓度为20%的柠檬酸水溶液,控制滴加时间20min,加完后,于70℃继续搅拌处理1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(5)将步骤(4)得到的分子筛按分子筛(干基):盐酸:硫酸铵:水=1:0.06:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,搅匀后缓慢滴加浓度为15%的盐酸,控制滴加时间1h,升温于60℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(6)将步骤(5)得到的分子筛进行第三次水热焙烧处理,焙烧温度为550℃,在100%水蒸气气氛下焙烧3h。

(7)将步骤(6)得到的分子筛按分子筛(干基):盐酸:草酸:硫酸铵:水=1:0.05:0.19:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为10%的盐酸,控制滴加时间40min,再加入草酸后升温,于70℃下处理60min,过滤后经去离子水洗涤。

(8)将步骤(7)得到的分子筛按分子筛;氯化铵:氟硅酸:盐酸:H2O=1:0.5:0.03:0.008:10的比例,先将分子筛加水打浆后,加入氯化铵,同时缓慢滴加浓度为30%的氟硅酸和浓度为20%的盐酸,控制滴加时间60min,升温,于60℃下处理50min,过滤后经去离子水洗涤,得到分子筛Y-3,其各项参数如表1所示。

实施例4

(1)以NaY沸石为原料用硫酸铵溶液进行交换,处理条件为:按照NaY分子筛(干基):硫酸铵:水=1:1.0:10的比例,在90℃下交换2h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为520℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):硫酸:氯化铵:水=1:0.06:0.40:9的比例,先将分子筛加水打浆后缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温,于70℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为620℃,在100%水蒸气气氛下焙烧2h。

(5)将步骤(4)得到的分子筛按分子筛(干基):硫酸:水=1:0.09:8的比例,先将分子筛加水打浆后,缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温于70℃下处理60min,过滤后经去离子水洗涤,在120℃下干燥4h。

(6)将步骤(5)得到的分子筛进行第三次水热焙烧处理,焙烧温度为650℃,在100%水蒸气气氛下焙烧2h。

(7)将步骤(7)得到的分子筛按分子筛(干基):硫酸铵:氟硅酸:硫酸:H2O=1:0.2:0.05:0.02:8的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为30%的氟硅酸和20%浓度的硫酸,控制滴加时间40min,升温后于80℃下处理90min,过滤后经去离子水洗涤。

(8)将步骤(7)得到的分子筛按分子筛:硫酸铵:氟硅酸:硫酸:H2O=1:0.2:0.05:0.02:8的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为30%的氟硅酸和20%浓度的硫酸,控制滴加时间40min,升温后于80℃下处理90min,过滤后经去离子水洗涤,得到分子筛Y-4,其各项参数如表1所示。

对比例1

与实施例1的制备过程相比,省略了步骤6至步骤8,但将步骤3和步骤5分别重复两次,具体如下:

(1)将NaY分子筛(硅铝摩尔比5.1)进行多次铵交换,至氧化钠含量为2.3%。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为520℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):硫酸:氯化铵:水=1:0.06:0.40:9的比例,先将分子筛加水打浆后缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温,于70℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛按分子筛(干基):硫酸:氯化铵:水=1:0.06:0.40:9的比例,先将分子筛加水打浆后缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温,于70℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(5)将步骤(4)得到的分子筛进行第二次水热焙烧处理,焙烧温度为620℃,在100%水蒸气气氛下焙烧2h。

(6)将步骤(5)得到的分子筛按分子筛(干基):硫酸:水=1:0.09:8的比例,先将分子筛加水打浆后,缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温于70℃下处理60min,过滤后经去离子水洗涤,在120℃下干燥4h。

(7)将步骤(6)得到的分子筛按分子筛(干基):硫酸:水=1:0.09:8的比例,先将分子筛加水打浆后,缓慢滴加浓度为20%的硫酸,控制滴加时间30min,升温于70℃下处理60min,过滤后经去离子水洗涤,在120℃下干燥4h。得到对比例1的分子筛D-1,其各项参数如表1所示。

对比例2

与实施例2的制备过程相比,省略了步骤5至步骤7,具体如下:

(1)以NaY沸石为原料用硫酸铵溶液进行交换,处理条件为:按照NaY分子筛(干基):硫酸铵:水=1:0.5:7的比例,在80℃下交换1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为670℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按照分子筛(干基):草酸:硝酸铵:水=1:0.20:0.40:9的比例,先将分子筛加水打浆,于室温在搅拌下加入硝酸铵,再加入草酸,搅拌60min,过滤后经去离子水洗涤两次,在120℃下干燥3h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为645℃,在100%水蒸气气氛下焙烧2.5h。

(5)将步骤(4)得到的分子筛按分子筛:硫酸铵:H2SiF6:H2O=1:0.2:0.15:7的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为30%的氟硅酸,控制滴加时间60min,升温后于60℃下处理50min,过滤后经去离子水洗涤,在120℃下烘干,得到分子筛D-2,其各项参数如表1所示。

对比例3

与实施例3的制备过程相比,省略了步骤5和步骤6,具体如下:

(1)以NaY沸石为原料用氯化铵溶液进行交换,处理条件为:按照NaY分子筛(干基):氯化铵:水=1:0.7:10的比例,在85℃下交换1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):柠檬酸:硫酸:水=1:0.15:0.05:8的比例,先将分子筛加水打浆后,升温,于70℃在搅拌下匀速加入浓度为20%的硫酸,控制滴加时间30min后,再加入浓度为20%的柠檬酸水溶液,控制滴加时间20min,加完后,于70℃继续搅拌处理1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(5)将步骤(4)得到的分子筛按分子筛(干基):盐酸:草酸:硫酸铵:水=1:0.05:0.19:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为10%的盐酸,控制滴加时间40min,再加入草酸后升温,于70℃下处理60min,过滤后经去离子水洗涤。

(6)将步骤(5)得到的分子筛按分子筛;氯化铵:氟硅酸:盐酸:H2O=1:0.5:0.03:0.008:10的比例,先将分子筛加水打浆后,加入氯化铵,同时缓慢滴加浓度为30%的氟硅酸和浓度为20%的盐酸,控制滴加时间60min,升温,于60℃下处理50min,过滤后经去离子水洗涤,得到分子筛D-3,其各项参数如表1所示。

对比例4

与实施例3的制备过程相比,省略了步骤8但将步骤7重复2次,即最后一次脱铝处理过程没有采用含硅脱铝剂,具体如下:

(1)以NaY沸石为原料用氯化铵溶液进行交换,处理条件为:按照NaY分子筛(干基):氯化铵:水=1:0.7:10的比例,在85℃下交换1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):柠檬酸:硫酸:水=1:0.15:0.05:8的比例,先将分子筛加水打浆后,升温,于70℃在搅拌下匀速加入浓度为20%的硫酸,控制滴加时间30min后,再加入浓度为20%的柠檬酸水溶液,控制滴加时间20min,加完后,于70℃继续搅拌处理1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(5)将步骤(4)得到的分子筛按分子筛(干基):盐酸:硫酸铵:水=1:0.06:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,搅匀后缓慢滴加浓度为15%的盐酸,控制滴加时间1h,升温于60℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(6)将步骤(5)得到的分子筛进行第三次水热焙烧处理,焙烧温度为550℃,在100%水蒸气气氛下焙烧3h。

(7)将步骤(6)得到的分子筛按分子筛(干基):盐酸:草酸:硫酸铵:水=1:0.05:0.19:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为10%的盐酸,控制滴加时间40min,再加入草酸后升温,于70℃下处理60min,过滤后经去离子水洗涤。

(8)将步骤(7)得到的分子筛按分子筛(干基):盐酸:草酸:硫酸铵:水=1:0.05:0.19:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为10%的盐酸,控制滴加时间40min,再加入草酸后升温,于70℃下处理60min,过滤后经去离子水洗涤,得到分子筛D-4,其各项参数如表1所示。

对比例5

与实施例3的制备过程相比,省略了步骤8,具体如下:

(1)以NaY沸石为原料用氯化铵溶液进行交换,处理条件为:按照NaY分子筛(干基):氯化铵:水=1:0.7:10的比例,在85℃下交换1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):柠檬酸:硫酸:水=1:0.15:0.05:8的比例,先将分子筛加水打浆后,升温,于70℃在搅拌下匀速加入浓度为20%的硫酸,控制滴加时间30min后,再加入浓度为20%的柠檬酸水溶液,控制滴加时间20min,加完后,于70℃继续搅拌处理1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(5)将步骤(4)得到的分子筛按分子筛(干基):盐酸:硫酸铵:水=1:0.06:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,搅匀后缓慢滴加浓度为15%的盐酸,控制滴加时间1h,升温于60℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(6)将步骤(5)得到的分子筛进行第三次水热焙烧处理,焙烧温度为550℃,在100%水蒸气气氛下焙烧3h。

(7)将步骤(6)得到的分子筛按分子筛(干基):盐酸:草酸:硫酸铵:水=1:0.05:0.19:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,缓慢滴加浓度为10%的盐酸,控制滴加时间40min,再加入草酸后升温,于70℃下处理60min,过滤后经去离子水洗涤,得到分子筛D-5,其各项参数如表1所示。

对比例6

与实施例3的制备过程相比,省略了步骤7,具体如下:

(1)以NaY沸石为原料用氯化铵溶液进行交换,处理条件为:按照NaY分子筛(干基):氯化铵:水=1:0.7:10的比例,在85℃下交换1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(2)将步骤(1)得到的分子筛,进行第一次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(3)将步骤(2)得到的分子筛按分子筛(干基):柠檬酸:硫酸:水=1:0.15:0.05:8的比例,先将分子筛加水打浆后,升温,于70℃在搅拌下匀速加入浓度为20%的硫酸,控制滴加时间30min后,再加入浓度为20%的柠檬酸水溶液,控制滴加时间20min,加完后,于70℃继续搅拌处理1h,过滤后经去离子水洗涤,在120℃下干燥4h。

(4)将步骤(3)得到的分子筛进行第二次水热焙烧处理,焙烧温度为600℃,在100%水蒸气气氛下焙烧2h。

(5)将步骤(4)得到的分子筛按分子筛(干基):盐酸:硫酸铵:水=1:0.06:0.1:10的比例,先将分子筛加水打浆后,加入硫酸铵,搅匀后缓慢滴加浓度为15%的盐酸,控制滴加时间1h,升温于60℃下处理40min,过滤后经去离子水洗涤,在120℃下干燥4h。

(6)将步骤(5)得到的分子筛进行第三次水热焙烧处理,焙烧温度为550℃,在100%水蒸气气氛下焙烧3h。

(7)将步骤(6)得到的分子筛按分子筛(干基);氯化铵:氟硅酸:盐酸:H2O=1:0.5:0.03:0.008:10的比例,先将分子筛加水打浆后,加入氯化铵,同时缓慢滴加浓度为30%的氟硅酸和浓度为20%的盐酸,控制滴加时间60min,升温,于60℃下处理50min,过滤后经去离子水洗涤,得到分子筛D-6,其各项参数如表1所示。

表1实施例和对比例中分子筛的参数

注:表1中的非骨架铝占比即为化学位移为0±2ppm的共振峰信号峰面积占总峰面积的比例。

应用例

采用四硫代钼酸铵的溶液饱和浸渍实施例1-4和对比例1-6所得的分子筛以制备催化剂,具体包括以下步骤:

称取干基为70%的拟薄水铝石(催化剂长岭分公司)128.6克和干基为82%的分子筛134.1克混合均匀,在挤条机上挤成外接圆直径为1.6毫米的三叶条形,于120℃烘干3小时,600℃焙烧4小时得到催化剂载体;

取催化剂载体100克,用82毫升含MoS2 339.0克/升的四硫代钼酸铵的溶液浸渍3小时,于120℃、N2气氛下烘干6小时后再于450℃焙烧3小时,得到催化剂。

对催化剂进行加氢裂化反应性能评价。

加氢裂化反应性能评价由纯烃微反装置完成,采用ASTM D5154-2010标准方法进行;原料油为四氢萘,反应压力4.0MPa,反应温度370℃,空速6.0h-1,反应产物中开环产物选择性=单环芳烃产物产率/转化率×100%。

所制得的催化剂在反应前需进行补充预硫化,条件为330℃,硫化油为6%CS2+环己烷,硫化时间1h,然后切换为反应油并提高温度升至反应温度370℃,稳定2.5h后取样。为测定催化剂的稳定性,取样后再逐步升温至380℃、390℃,然后回温至380℃,根据转化率计算出回温到380℃时的温度损失;一般认为温度损失越小,催化剂活性稳定性越好。最终得到的催化剂反应性能见表2。

表2实施例和对比例的分子筛所制得催化剂的反应性能

表2的测试结果表明,与对比例1-6的分子筛相比,本发明实施例1-4的分子筛所制得的催化剂,在加氢裂化反应中具有更高的反应活性,二次反应少,开环反应选择性好,同时酸性稳定性好,失活缓慢。

本领域技术人员应当注意的是,本发明所描述的实施方式仅仅是示范性的,可在本发明的范围内作出各种其他替换、改变和改进。因而,本发明不限于上述实施方式,而仅由权利要求限定。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:NaY分子筛的合成装置及NaY分子筛的合成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!