含氮化合物、电子元件和电子装置

文档序号:695009 发布日期:2021-05-04 浏览:37次 >En<

阅读说明:本技术 含氮化合物、电子元件和电子装置 (Nitrogen-containing compound, electronic component, and electronic device ) 是由 马天天 聂齐齐 曹佳梅 于 2020-09-25 设计创作,主要内容包括:本申请提供了一种如式I-A所示的含氮化合物、电子元件和电子装置,属于有机材料技术领域。该含氮化合物能够提高电子元件的性能。(The application provides a nitrogen-containing compound shown as a formula I-A, an electronic element and an electronic device, and belongs to the technical field of organic materials. The nitrogen-containing compound can improve the performance of the electronic component.)

含氮化合物、电子元件和电子装置

技术领域

本申请涉及有机材料技术领域,尤其涉及一种含氮化合物、电子元件和电子装置。

背景技术

随着电子技术的发展和材料科学的进步,用于实现电致发光或者光电转化的电子元件的应用范围越来越广泛。该类电子元件,例如有机电致发光器件或者光电转化器件,通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括能量转化层、位于能量转化层与阳极之间的空穴传输层、位于能量转化层与阴极之间的电子传输层。

举例而言,当电子元件为有机电致发光器件时,其一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的有机发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向有机发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在有机发光层结合形成激子,激子处于激发态向外释放能量,进而使得有机发光层对外发光。

现有技术中,CN201710407382.3等公开了可以在有机电致发光器件中制备空穴传输层的材料。然而,依然有必要继续研发新型的材料,以进一步提高电子元件的性能。

所述背景技术部分公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。

发明内容

本申请的目的在于提供一种含氮化合物、电子元件和电子装置,提高电子元件的性能。

为实现上述公开目的,本申请采用如下技术方案:

根据本申请的第一个方面,提供一种含氮化合物,所述含氮化合物的结构如式I-A所示:

其中,L选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;

Ar1和Ar2相同或不同,且分别独立地选自:取代或未取代的碳原子数为1-20的烷基、取代或未取代的碳原子数为3-20的环烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基,且所述Ar1和Ar2均不为9,9-二苯基芴基;

R1、R2分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~20的环烷基、碳原子数为2~10的杂环烷基、碳原子数为5~10的环烯基、碳原子数为4~10的杂环烯基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~18的芳氧基、碳原子数为6~18的芳硫基、碳原子数为18-24的三芳基硅基;

a选自0,1,2,3或4,当a大于1时,任意两个R1相同或不同;

b选自0,1,2或3,当b大于1时,任意两个R2相同或不同;

所述Ar1、Ar2以及L的取代基分别独立地选自氘,卤素基团,氰基,碳原子数为3~20的杂芳基,任选地被0、1、2、3、4或5个独立选自氘、氟、氯、氰基、甲基、叔丁基的取代基所取代的碳原子数为6~20的芳基,碳原子数为1~10的烷基,碳原子数为1~10的卤代烷基,碳原子数为2~6的烯基,碳原子数为2~6的炔基,碳原子数为3~10的环烷基,碳原子数为2~10的杂环烷基、碳原子数为5~10的环烯基,碳原子数为4~10的杂环烯基,碳原子数为1~10的烷氧基,碳原子数为1~10的烷硫基,碳原子数为6~18的芳氧基,碳原子数为6~18的芳硫基,碳原子数为6~18的膦氧基。

根据本申请地第二个方面,提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含氮化合物。

根据本申请的第三个方面,提供一种电子装置,包括上述的电子元件。

本申请提供的含氮化合物,在芴环的9位引入双环烷基结构,通过超共轭效应提升芴环以及整个共轭体系的电子密度,可以增强含氮化合物的空穴传导率以及电子耐受度,进而能够提高有机电致发光器件发光效率以及寿命,提高光电转化器件的寿命,即提高用于光电转化或者用于电光转化的电子元件的寿命。而且,本申请的含氮化合物向原本为近平面结构的三芳基胺的分支之间引入大体积空间位阻的基团,而非向三芳基胺的分支末端引入,可以更为精细地调节胺与各个芳基成键键角与共轭程度,从而能够更为有效的调整含氮化合物的HOMO(最高已占轨道)值,有效降低含氮化合物的HOMO值以提高与有机电致发光器件中相邻材料的配合程度,降低有机电致发光器件的驱动电压,提高光电转化器件的开路电压。而且,本申请的含氮化合物母核芴环上引入的降冰片基为双环烃基,其基团的旋转运动、振动运动等比较小,可以提高含氮化合物的耐热性并降低含氮化合物的分子运动带来的能量损失。不仅如此,本申请含氮化合物降低了分子对称性,提高了玻璃化转变温度以及降低了蒸镀温度,降低了结晶性。因此,该含氮化合物用于制备有机电致发光器件时可以呈现出更佳的物理稳定性和热学稳定性。

本申请化合物选择降冰片螺芴基作为母核,具有该母核的化合物相比于以金刚烷螺芴基作为母核的化合物,在其他取代基相同的情况下,分子量低,且分子间作用力小,化合物的蒸镀温度也较低,在器件制备过程中化合物不易分解、热稳定性更优异,从而器件寿命更优异。

附图说明

通过参照附图详细描述其示例实施方式,本申请的上述和其它特征及优点将变得更加明显。

图1是本申请实施方式的一种有机电致发光器件的结构示意图。

图2是本申请实施方式的一种电子装置的结构示意图。

图3是本申请实施方式的一种光电转化器件的结构示意图。

图4是本申请实施方式的一种电子装置的结构示意图。

图中主要元件附图标记说明如下:

100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机发光层;340、电子传输层;350、电子注入层;360、光电转化层;400、第一电子装置;500、第二电子装置。

具体实施方式

现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。

本申请提供一种含氮化合物,所述含氮化合物的结构如式I-A所示:

其中,L选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;

Ar1和Ar2相同或不同,且分别独立地选自:取代或未取代的碳原子数为1-20的烷基、取代或未取代的碳原子数为3-20的环烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基,且所述Ar1和Ar2均不为9,9-二苯基芴基;

R1、R2分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~20的环烷基、碳原子数为2~10的杂环烷基、碳原子数为5~10的环烯基、碳原子数为4~10的杂环烯基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~18的芳氧基、碳原子数为6~18的芳硫基、碳原子数为18-24的三芳基硅基;

a选自0,1,2,3或4,当a大于1时,任意两个R1相同或不同;

b选自0,1,2或3,当b大于1时,任意两个R2相同或不同;

所述Ar1、Ar2以及L的取代基分别独立地选自氘,卤素基团,氰基,碳原子数为3~20的杂芳基,任选地被0、1、2、3、4或5个独立选自氘、氟、氯、氰基、甲基、叔丁基取代的的取代基碳原子数为6~20的芳基,碳原子数为1~10的烷基,碳原子数为1~10的卤代烷基,碳原子数为2~6的烯基,碳原子数为2~6的炔基,碳原子数为3~10的环烷基,碳原子数为2~10的杂环烷基、碳原子数为5~10的环烯基,碳原子数为4~10的杂环烯基,碳原子数为1~10的烷氧基,碳原子数为1~10的烷硫基,碳原子数为6~18的芳氧基,碳原子数为6~18的芳硫基,碳原子数为6~18的膦氧基。

在本申请中,“任选地被0、1、2、3、4或5个独立选自氘、氟、氯、氰基、甲基、叔丁基取代的的取代基碳原子数为6~20的芳基”是指芳基可以被氘、氟、氯、氰基、甲基、叔丁基中的一个或多个取代,也可以不被氘、氟、氯、氰基、甲基、叔丁基取代,且当芳基上的取代基的个数大于等于2时,取代基可以相同或不同。

在本申请中,由于降冰片是立体结构,在化合物结构图中,因为绘图角度不同,会呈现形状,在本申请中,均为同一种结构。

本申请的含氮化合具有良好的空穴传输效率,因此可以作为传输空穴的材料而应用于有机电致发光器件和光电转化器件中。举例而言,本申请的含氮化合物可以应用于有机电致发光器件的阳极与有机电致发光层之间,以便将阳极上的空穴传输至有机电致发光层。可选地,本申请的含氮化合物可以应用于有机电致发光器件的空穴注入层、空穴传输层和电子阻挡层中的任意一层或者多层。再举例而言,本申请的含氮化合物可以应用于光电转化器件的阳极与光电转化层之间,以便将光电转化层上的空穴传输至阳极。

在本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。

在本申请一种实施方式中,所述含氮化合物选自如式I所示的结构:

其中,L选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30亚杂芳基;

Ar1和Ar2相同或不同,且分别独立地选自:取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为1-20的杂芳基;

所述Ar1、Ar2以及L的取代基相同或不同,且分别独立地选自氘、氰基、硝基、卤素基团、羟基、碳原子数为1-20的烷基、碳原子数为3-20的环烷基、碳原子数为2-20的烯基、碳原子数2-24为的炔基、碳原子数为2-20的杂环烷基、碳原子数为1-33的烷氧基、碳原子数为1-33的烷硫基、碳原子数为6-33的芳基甲硅烷基。

在本申请一种实施方式中,含氮化合物选自如下结构式所示的化合物:

在本申请中,L、Ar1、Ar2的碳原子数,指的是所有碳原子数。举例而言,若L选自取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:Ar1则其碳原子数为7;L为其碳原子数为12。

本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括1至3个选自由B、N、O、S和P组成的组中的杂原子且其余为碳和氢。

在本申请中,“烷基”或“烷基基团”,表示含有1至20个碳原子,饱和的直链或支链一价烃基基团,其中,所述烷基基团可以任选地被一个或多个本申请描述的取代基所取代。除非另外详细说明,烷基基团含有1-20个碳原子。烷基基团的实例包含,但并不限于,甲基(Me、-CH3),乙基(Et、-CH2CH3),正丙基(n-Pr、-CH2CH2CH3),异丙基(i-Pr、-CH(CH3)2),正丁基(n-Bu、-CH2CH2CH2CH3),异丁基(i-Bu、-CH2CH(CH3)2),仲丁基(s-Bu、-CH(CH3)CH2CH3),叔丁基(t-Bu、-C(CH3)3)等。烷基可具有1至10个碳原子,在本申请中,诸如“1至20”的数值范围是指给定范围中的各个整数;例如,“1至10个碳原子”是指可包含1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子的烷基。烷基还可为具有1至6个碳原子的低级烷基。此外,烷基可为取代的或未取代的。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。

可选地,烷基选自碳原子数为1-6的烷基,具体施例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基和己基。

在本申请中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有B、N、O、S或P等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、二甲基芴基等,而不限于此。本申请的“芳基”可含有6-30个碳原子,在一些实施例中,芳基中的碳原子数可以是6-25个,在另一些实施例中芳基中的碳原子数可以是6-18个,在另一些实施例中芳基中的碳原子数可以是6-13个。举例而言,其碳原子数量可以是6个、12个、13个、14个、15个、18个、20个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。

在本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、I、CN、羟基、硝基、支链烷基、直链烷基、环烷基、烷氧基芳基、杂芳基或者其他基团取代。可以理解的是,取代的碳原子数为18的芳基,指的是芳基和芳基上的取代基的碳原子总数为18个。举例而言,9,9-二苯基芴基的碳原子数为25。取代的芳基,具体实例包括但不限于:、苯基取代的菲基、菲基取代的苯基、苯基取代的萘基、萘基取代的苯基、苯基取代的联苯基、苯基取代的二甲基芴基、二甲基芴基取代的苯基、二苯并噻吩基取代的苯基、二苯并呋喃基取代的苯基、N-苯基咔唑基取代的苯基、咔唑基取代的苯基等等、菲咯啉基取代的苯基。

在本申请中,作为取代基的芳基具体实例包括但不限于:苯基、萘基、联苯基、三联苯基、蒽基、菲基、二甲基芴基。

在本申请中,芴基可以是取代的,两个取代基可以彼此结合形成螺结构,具体施例包括但不限于以下结构:

特别地,Ar1不为Ar2不为

在本申请中,杂芳基可以是包括B、O、N、P、Si和S中的至少一个作为杂原子的杂芳基。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、N-芳基咔唑基(例如:N-苯基咔唑基)、N-杂芳基咔唑基、N-烷基咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、二苯并呋喃基、苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、N-苯基咔唑基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基、苯基取代的二苯并呋喃基等为通过碳碳键共轭连接的多个芳香环体系的杂芳基。本申请的“杂芳基”可含有1-30个碳原子,在一些实施例中,杂芳基中的碳原子数可以是3-25个,在另一些实施例中芳基中的碳原子数可以是3-20个,在另一些实施例中芳基中的碳原子数可以是12-20个。举例而言,其碳原子数量可以是3个、4个、5个、7个、12个、13个、18个、20个、24个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。

在本申请中,作为取代基的杂芳基具体实例包括但不限于:吡啶基、喹啉基、喹唑啉基、二苯并呋喃基、二苯并噻吩基、咔唑基、N-苯基咔唑基、菲咯啉基。

在本申请中,对芳基的解释可应用于亚芳基,对杂芳基的解释也可应用于亚杂芳基。

在本申请中,卤素基团包括氟、氯、溴、碘。

在本申请中,所述a,b分别独立地选自0。

按照一种实施方式,L选自单键、取代或未取代的碳原子数为6-20的亚芳基、取代或未取代的碳原子数为3-20的亚杂芳基。

优选地,所述L选自单键、取代或未取代的碳原子数为6-18的芳基、取代或未取代的碳原子数为12-18的亚杂芳基。

可选地,L的取代基包括但不限于氘、卤素基团、氰基、碳原子数为1-5的烷基、碳原子数为6-20的芳基、碳原子数为3-10的环烷基、碳原子数为3-12的杂芳基。

优选地,L的取代基包括但不限于氘、卤素基团、碳原子数为1-4的烷基、碳原子数6-12的芳基。具体地,L的取代基包括但不限于氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、菲基、联苯基。

按照另一种实施方式,所述L选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚三联苯基、取代或未取代的亚二甲基芴基。

按照另一种实施方式,所述L选自单键、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚N-苯基咔唑基。

可选地,所述L选自单键,或者选自如下基团所形成的组:所述L选自单键,或者取代或未取代的基团W,所述未取代的W选自如下基团组成的组:

表示化学键;取代基团的W上具有一个或多个的取代基,取代基各自独立地选自:氘、氰基、卤素基团、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、菲基、联苯基;当W的取代基个数大于1时,各取代基相同或不同。

优选地,所述L选自单键,或者选自如下基团所组成的组:L选自单键,或者选自如下基团所形成的组:

*表示上述基团用于与式I-A中或式I中基团结合;**表示上述基团用于与式I中基团结合。

可选地,所述L选自单键,或者选自如下基团所组成的组:L选自单键,或者选自如下基团所形成的组:

*表示上述基团用于与式I-A中式I中式Ⅱ中式Ⅲ中和式Ⅳ中基团结合;

**表示上述基团用于与式I-A中、式I中、式Ⅱ中、式Ⅲ中和式Ⅳ中的基团结合。

在本申请一些实施方式中,所述Ar1、Ar2相同或不同,分别独立地选自取代或未取代的碳原子数6-24的芳基、取代或未取代的碳原子数12-20的杂芳基。

在本申请另一些实施方式中,所述Ar1和Ar2相同或不同,且分别独立地选自取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为1-20的杂芳基。

优选地,所述Ar1和Ar2相同或不同,且分别独立地选自取代或未取代的碳原子数为6-18的芳基、取代或未取代的碳原子数为12-18的杂芳基。

可选地,所述Ar1、Ar2以及L的取代基相同或不同,且分别独立地选自氘、氟、氰基、碳原子数为1-5的烷基、碳原子数为3-10的环烷基、碳原子数为6-18的芳基、碳原子数为3-18的杂芳基。

优选地,Ar1和Ar2的取代基相同或不同,分别独立地选自氘、氰基、氟、碳原子数为6-15的芳基、碳原子数为12-18的杂芳基、碳原子数为1-4的烷基。具体地,Ar1和Ar2的取代基包括但不限于:氘、氟、氰基、苯基、萘基、菲基、蒽基、联苯基、二甲基芴基、甲基、乙基、正丙基、异丙基、叔丁基、吡啶基、喹啉基、嘧啶基、菲咯啉基、二苯并呋喃基、二苯并噻吩基、N-苯基咔唑基、咔唑基等。

在本申请一种另实施方式中,所述Ar1和Ar2相同或不同,且分别独立地选自取代或未取代的基团V,所述未取代的V选自如下基团组成的组:

其中,表示化学键;取代的V上具有一个或多个的取代基,取代的V上的取代基各自独立地选自:氘、氰基、卤素基团、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基、菲基;当V的取代基个数大于1时,各取代基相同或不同。

可选地,所述Ar1和Ar2相同或不同,且分别独立地选自如下基团所组成的组:

可选地,所述Ar1和Ar2相同或不同,且分别独立地选自如下基团所组成的组:

可选地,所述含氮化合物选自如下化合物所组成的组:

本申请还提供一种电子元件,电子元件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含氮化合物。

本申请所提供的含氮化合物可以用于形成功能层中的至少一个有机膜层,以改善电子元件的电压特性、效率特性和寿命特性。可选的,包含有本申请的含氮化合物的有机膜层位于阳极和电子元件的能量转化层之间,以便改善电子在阳极与能量转化层之间的传输。进一步地,所述功能层包括空穴传输层,所述空穴传输层包括上述的含氮化合物。

本申请的所述电子元件例如可以有机电致发光器件或光电转化器件。

按照一种实施方式,所述电子元件为有机电致发光器件。所述有机有机电致发光器件例如可以为为红色有机电致发光器件、蓝色有机电致发光器件。

如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。

可选地,功能层300包括第二空穴传输层322。

可选地,功能层300包括第一空穴传输层321。

在一种具体的实施方式中,所述第二空穴传输层322包含本申请所提供的含氮化合物。其中,第二空穴传输层322既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。可选地,所述机电致发光器件为红色有机电致发光器件。

在另一种具体的实施方式中,第一空穴传输层321包含有本申请提供的含氮化合物,以提高电子元件中空穴的传输能力。可选地,所述机电致发光器件为蓝色有机电致发光器件。

在本申请的一种具体的实施方式中,如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。

可选地,本申请所提供的含氮化合物可以用于形成功能层300中的至少一个有机薄层,以改善有机电致发光器件的寿命特性、效率特性并且降低驱动电压;在某些实施例中,还可以提高有机电致发光器件的电化学稳定性和热稳定性,提高量产的有机电致发光器件的性能的均一性。

可选地,功能层300包括空穴传输层320,空穴传输层320包含本申请所提供的含氮化合物。其中,空穴传输层320既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。

可选的,空穴传输层320包括第一空穴传输层321和第二空穴传输层322,且第一空穴传输层321设于第二空穴传输层322靠近阳极100的表面;第一空穴传输层321或第二空穴传输层322包含本申请所提供的含氮化合物。其中,既可以第一空穴传输层321或第二空穴传输层322中的一层包含本申请所提供的含氮化合物,也可以第一空穴传输层321和第二空穴传输层322均含有本申请所提供的含氮化合物。可以理解的是,第一空穴传输层321或第二空穴传输层322还可以含有其他材料,也可以不含有其他材料。可以理解的是,在本申请的另一种实施方式中,第二空穴传输层322可以作为有机电致发光器件的电子阻挡层。

在本申请的一种实施方式中,如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、有机发光层330、电子传输层340和阴极200。本申请提供的含氮化合物可以应用于有机电致发光器件的第一空穴传输层321或第二空穴传输层322,可以有效改善有机电致发光器件的空穴特性。其中,空穴特性是指在阳极100中形成的空穴容易地被注入有机电致发光层330、并且根据HOMO水平的传导特性而在有机电致发光层330中传输。

可选的,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。

可选的,有机电致发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选的,有机电致发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机电致发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。

有机电致发光层330的主体材料可以为金属螯合物类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机电致发光层330的主体材料可以为CBP。在本申请的另一种实施方式中,有机电致发光层330的主体材料可以为α,β-ADN。

有机电致发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机电致发光层330的客体材料可以为Ir(piq)2(acac)。在本申请的另一种实施方式中,有机发光层330的客体材料可以为BD-1。

电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,电子传输层340可以由DBimiBphen和LiQ组成。

可选的,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca,但不限于此。优选包括包含Mg-Ag合金的金属电极作为阴极。

可选的,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由m-MTDATA组成。

可选的,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层350可以包括Yb。

可选的,在阴极200和电子传输层340之间还可以设置有电子注入层350。

再举例而言,电子元件可以为一种光电转化器件,如图3所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。

可选地,本申请所提供的含氮化合物可以用于形成功能层300中的至少一个有机薄层,以改善光电转化器件性能,尤其是提高光电转化器件的寿命、提高光电转化器件的开路电压或者提高量产的光电转化器件的性能均一稳定。

可选地,所述功能层300包括空穴传输层320,所述空穴传输层320包含本申请的含氮化合物。其中,空穴传输层320既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。

可选地,空穴传输层320包括第一空穴传输层321和第二空穴传输层322(作为光电转化器件的电子阻挡层),且第一空穴传输层321设于第二空穴传输层322靠近阳极100的表面;第一空穴传输层321或第二空穴传输层322包含本申请所提供的含氮化合物。其中,既可以第一空穴传输层321或第二空穴传输层322中的一层包含本申请所提供的含氮化合物,也可以第一空穴传输层321和第二空穴传输层322均含有本申请所提供的含氮化合物。可以理解的是,第一空穴传输层321或第二空穴传输层322还可以含有其他材料,也可以不含有其他材料。

可选地,空穴传输层320还可以包括无机掺杂材料,以提高空穴传输层320的空穴传输性能。

在本申请的一种实施方式中,如图3所示,光电转化器件可包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322(作为光电转化器件的电子阻挡层)、作为能量转化层的光电转化层360、电子传输层340和阴极200。

可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,在本申请的一种实施方式中,太阳能电池包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322(作为光电转化器件的电子阻挡层)、光电转化层360、电子传输层340和阴极200,其中,第二空穴传输层322包含有本申请的含氮化合物。

本申请还提供一种电子装置,该电子装置包括上述电子元件。

按照一种实施方式,如图2所示,本申请提供的电子装置为第一电子装置400,该第一电子装置400包括上述有机电致发光器件。该电子装置例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于该电子装置具有上述有机电致发光器件,因此具有相同的有益效果,在此不再赘述。

按照另一种实施方式,如图4所示,本申请提供的电子装置为第二电子装置500,第二电子装置500包括上述光电转化器件。该电子装置例如可以为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。由于该电子装置具有上述光电转化器件,因此具有相同的有益效果,在此不再赘述。

在下文中,除非特别说明,MC都是指二氯甲烷,rt指的是室温。

以下,通过实施例对本申请进一步详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。

合成实施例

化合物1的合成

将镁条(13.54g,564mmol)和乙醚(100mL)置于氮气保护下干燥的圆底烧瓶中,加入碘(100mg)。而后将溶有2-溴-4-氯联苯(50.00g,188.0mmol)的乙醚(200mL)溶液缓慢滴入烧瓶中,滴加完毕后升温至35℃,搅拌3小时。将反应液降至0℃,向其中缓慢滴入溶有2-降冰片酮(42.36g,384mmol)的乙醚(200mL)溶液,滴加完毕后升温至35℃,搅拌6小时。将反应液冷却至室温,向其中加入5%盐酸至pH<7,搅拌1小时,加入乙醚(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂。所得粗品使用乙酸乙酯/正庚烷(1:2)为流动相进行硅胶柱色谱提纯,得到白色固体中间体IM-I-A-1(43g,收率为77%)。

将中间体IM-I-A-1(43g,143.9mmol)、三氟乙酸(36.93g,380.6mmol)和二氯甲烷(300mL)加入圆底烧瓶中,氮气保护下搅拌2小时;而后向反应液中加入氢氧化钠水溶液至pH=8,分液,有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂。所得粗品使用二氯甲烷/正庚烷(1:2)进行硅胶柱色谱提纯,得到白色固体状中间体IM-I-A(39.2g,收率为96.3%)。

将4-溴联苯(10.0g,10.9mmol)、2-氨基-9,9-二甲基芴(9.88g,47.2mmol)、三(二亚苄基丙酮)二钯(0.39g,0.43mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.41g,0.86mmol)以及叔丁醇钠(6.18g,64.3mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌2h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/乙醇体系对粗品进行重结晶提纯,得到浅灰色固体中间体IM-II-A(13.1g,收率为84%)。

将中间体IM-I-A(3.05g,10.9mmol)、中间体IM-II-A(3.94g,10.9mmol)、三(二亚苄基丙酮)二钯(0.10g,0.11mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.09g,0.22mmol)以及叔丁醇钠(1.57g,16.36mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌1h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到白色固体化合物1(5.35g,收率为76%)。质谱:m/z=606.3[M+H]+

化合物2的合成:

将2-溴-N-苯基咔唑(10.0g,31.0mmol)、2-氨基联苯(5.78g,34.1mmol)、三(二亚苄基丙酮)二钯(0.28g,0.31mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.30g,0.62mmol)以及叔丁醇钠(4.47g,46.6mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌4h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到橙色固体中间体IM-II-B(8.65g,收率为67.81%)。

将中间体IM-I-A(3.05g,10.9mmol)、中间体IM-II-B(4.48g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.57g,16.3mmol)加入甲苯(30mL)中,氮气保护下加热至105~110℃,搅拌10h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过二氯甲烷/正庚烷(体积比为1/5)为流动相的硅胶柱进行色谱提纯,过柱液减压除去溶剂;使用二氯乙烷体系对粗品进行重结晶提纯,得到白色固体化合物2(5.42g,收率为76.23%)。质谱:m/z=655.3[M+H]+

化合物3的合成:

将3-溴二苯并呋喃(10.0g,40.5mmol)、4-氨基联苯(7.53g,44.5mmol)、三(二亚苄基丙酮)二钯(0.37g,0.40mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.39g,0.81mmol)以及叔丁醇钠(5.83g,60.7mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌4h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用乙酸乙酯/正庚烷体系对粗品进行重结晶提纯,得到浅灰色固体中间体IM-II-C(11.8g,收率为87%)。

将中间体IM-I-A(3.05g,10.9mmol)、中间体IM-II-C(3.66g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.57g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌5h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到白色固体化合物3(4.98g,收率为73.67%)。质谱:m/z=580.3[M+H]+

化合物4的合成:

将中间体IM-I-A(3.5g,10.9mmol)、二苯胺(1.85g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.57g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌2h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到白色固体化合物4(3.06g,收率为61.94%)。质谱:m/z=414.2[M+H]+

化合物5的合成:

将中间体IM-I-A(3.50g,10.9mmol)、二-(4-联苯基)胺(3.51g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.58g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌8h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物5(4.35g,收率为65.81%)。质谱:m/z=566.3[M+H]+

化合物6的合成:

将3-溴二苯并噻吩(10.0g,38.0mmol)、4-氨基联苯(7.07g,41.8mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.36g,0.76mmol)以及叔丁醇钠(5.48g,57.0mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌5h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到淡黄色固体中间体IM-II-D(11.5g,收率为86%)。

将中间体IM-I-A(3.5g,10.9mmol)、中间体IM-II-D(3.83g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.58g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌6h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过二氯甲烷/正庚烷(1/3)为流动相的硅胶柱进行色谱提纯,过柱液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物6(3.35g,收率为51.5%)。质谱:m/z=596.3[M+H]+

化合物7的合成:

将2-溴-N-苯基咔唑(10.0g,31.0mmol)、2-溴二苯并呋喃(6.25g,34.1mmol)、三(二亚苄基丙酮)二钯(0.28g,0.31mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.30g,0.62mmol)以及叔丁醇钠(4.47g,46.6mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌5h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到白色固体中间体IM-II-E(9.76g,收率为74.7%)。

将中间体IM-I-A(3.05g,10.9mmol)、中间体IM-II-E(5.07g,11.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.58g,16.4mmol)加入甲苯(40mL)中,氮气保护下加热至108℃,搅拌8h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物7(6.42g,收率为88%)。质谱:m/z=669.3[M+H]+

参照化合物1的合成方法,使用原料1代替2-氨基-9,9二甲基芴,原料2代替4-溴联苯合成表1第四列的中间体,并用该第四列的中间体代替中间体IM-Ⅱ-A与中间体IM-I-A合成制备表1中的其他化合物。具体的化合物编号、结构、原料、最后一步的合成收率、表征数据等展示在表1中。

表1:化合物结构、制备及表征数据

化合物8的合成:

将中间体IM-I-A(10g,35.6mmol)、对氯苯硼酸(3.23g,20.7mmol)、四三苯基膦钯(1.19g,1.03mmol)、碳酸钾(5.71g,41.38mmol)、四丁基氯化铵(0.28g,1.03mmol)、甲苯(80mL)、乙醇(20mL)和去离子水(20mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌8小时。将反应液冷却至室温,加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到白色固体中间体IM-I-A-2(6.78g,收率为92%)。

将中间体IM-I-A-2(2.7g,7.6mmol)、二-(4-联苯基)胺(2.43g,7.6mmol)、三(二亚苄基丙酮)二钯(0.14g,0.15mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.12g,0.30mmol)以及叔丁醇钠(1.09g,11.33mmol)加入甲苯(25mL)中,氮气保护下加热至108℃,搅拌2h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物8(2.53g,收率为52%)。质谱:m/z=642.3[M+H]+

化合物9的合成:

将3-溴二苯并呋喃(10.0g,38.0mmol)、2-氨基联苯(7.07g,41.8mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.36g,0.76mmol)以及叔丁醇钠(5.48g,57.0mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌1.5h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到白色固体中间体IM-II-F(11.5g,收率为86%)。

将中间体IM-I-A-2(3.0g,8.4mmol)、中间体IM-II-F(2.95g,8.4mmol)、三(二亚苄基丙酮)二钯(0.14g,0.15mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.12g,0.30mmol)以及叔丁醇钠(1.09g,11.33mmol)加入甲苯(25mL)中,氮气保护下加热至108℃,搅拌3h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物9(2.37g,收率为42%)。质谱:m/z=672.3[M+H]+

将中间体IM-I-A(3.0g,10.7mmol)、4-氯-1-萘硼酸(1.3g,6.41mmol)、四(三苯基膦)钯(0.15g,0.13mmol)、碳酸钾(1.74g,12.6mmol)、四丁基氯化铵(0.09g,0.31mmol)、甲苯(25mL)、乙醇(6mL)和去离子水(6mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌16小时。将反应液冷却至室温,加入甲苯(30mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂。所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到白色固体中间体IM-I-A-3(1.89g,收率为72.4%)。

参照中间体IM-I-A-3的合成方法,不同之处在于以下表1中第二列的原料1替代4-氯-1-萘硼酸,合成下表中第三列所示中间体:

表2原料及中间体

化合物10的合成:

将中间体IM-I-A-3(1.18g,2.91mmol)、中间体IM-II-A(1.05g,2.91mmol),三(二亚苄基丙酮)二钯(0.05g,0.06mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.05g,0.12mmol)以及叔丁醇钠(0.42g,4.36mmol)加入甲苯(20mL)中,氮气保护下加热至108℃,搅拌2h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到白色固体化合物10(2.05g,收率为96.7%)。质谱:m/z=732.4[M+H]+

参照化合物10的合成方法,以下表2中第三列所示中间体代替中间体IM-I-A,与中间体IM-Ⅱ-A合成,制备表3中第列所示的化合物,具体的化合物编号、结构、原料、最后一步的合成收率、表征数据等展示在表3中。

表3:化合物编号、结构、制备及表征数据

化合物11的合成

使用5.64g(15mmol)中间体IM-I-A-3和4.96g(15mmol)中间体IM-II-B,参照化合物1的合成方法合成化合物11。质谱:m/z=781.4[M+H]+

化合物13的合成

使用3.11g(15mmol)中间体I-A-3和5.06g(16.5mmol)中间体IM-II-D,参照化合物1的合成方法合成化合物13。质谱:m/z=722.3[M+H]+

化合物14的合成

使用4.12g(15mmol)中间体I-A-3,参照化合物4的合成方法合成化合物14。质谱:m/z=540.3[M+H]+

化合物15的合成

使用4-氯联苯-4-硼酸代替对氯苯硼酸,参照化合物8的方法,合成了化合物15。质谱:m/z=794.4[M+H]+

化合物17的合成

使用(6-氯-[1,1'-联苯]-3-基)硼酸代替对氯苯硼酸,苯胺和1-(4-氯苯基)萘合成的中间体代替二-(4-联苯基)胺,参照化合物8的合成方法合成化合物17。质谱:m/z=692.3[M+H]+

化合物22的合成

使用2,5-二氯-1,1'-联苯和对氯苯硼酸合成的中间体代替中间体IM-I-A-2,3-氨基联苯和3-溴-9,9-二甲基芴合成的中间体代替二-(4-联苯基)胺,参照化合物8的合成方法合成化合物22。质谱:m/z=834.4[M+H]+

化合物26的合成

使用4'-氯联苯-4-硼酸代替4-氯-1-萘硼酸,5.73g(15mmol)中间体IM-II-C代替中间体IM-II-A,参照化合物10的合成方法合成化合物12。质谱:m/z=732.3[M+H]+

化合物29的合成

使用2-氨基二苯并噻吩和3-溴-9-苯基-9H-咔唑合成的中间体代替中间体IM-Ⅱ-C,参照化合物26的合成方法合成化合物29。质谱:m/z=837.3[M+H]+

化合物30的合成

使用2-萘胺和3-溴-9-苯基-9H-咔唑合成的中间体代替中间体IM-Ⅱ-C,参照化合物8的合成方法合成化合物30。质谱:m/z=781.4[M+H]+

化合物31的合成

使用(6-氯-[1,1'-联苯]-3-基)硼酸代替对氯苯硼酸,2氨基菲和4-溴对三联苯合成的中间体代替二-(4-联苯基)胺,参照化合物8的合成方法合成化合物31。质谱:m/z=818.4[M+H]+

化合物143的合成

使用4-氯-2-甲基苯硼酸代替4-氯-1-萘硼酸,参照中间体IM-I-A-3的合成方法合成中间体IM-I-A-4。

使用中间体IM-I-A-4代替中间体IM-I-A,对甲基溴苯和2-氨基-9,9-二甲基芴合成的中间体代替中间体IM-II-A,参照化合物1的合成方法合成化合物。质谱:m/z=634.3[M+H]+

化合物145的合成

使用4-溴苯腈和4-氨基联苯合成的中间体代替中间体IM-II-A,参照化合物1的合成方法合成化合物145。质谱:m/z=515.2[M+H]+

化合物146的合成

使用5-溴-2-氟甲苯和2-氨基-9,9-二甲基芴合成的中间体代替中间体IM-II-A,参照化合物1的合成方法合成化合物146。质谱:m/z=562.2[M+H]+

化合物147的合成

使用4-叔丁基溴苯和3-氨基二苯并呋喃合成的中间体代替中间体IM-II-A,参照化合物1的合成方法合成化合物147。质谱:m/z=560.3[M+H]+

将2-溴苯硼酸(100.0g,500.0mmol)、1-氯-3碘苯(142.6g,597.6mmol)、四(三苯基膦)钯(11.5g,9.97mmol)、碳酸钾(102g,746mmol)、四丁基溴化铵(32.1g,99.6mmol)、甲苯(800mL)、乙醇(200mL)和去离子水(200mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌2小时;将反应液冷却至室温,加入甲苯(500mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯之后使用二氯甲烷/乙醇体系进行重结晶提纯,得到浅黄色固体中间体IM-1(64.0g,收率为48%)。

将镁条(13.54g,564mmol)和乙醚(100mL)置于氮气保护下干燥的圆底烧瓶中,加入碘(100mg)。而后将溶有中间体1(64.00g,239.0mmol)的乙醚(200mL)溶液缓慢滴入烧瓶中,滴加完毕后升温至35℃,搅拌3小时;将反应液降至0℃,向其中缓慢滴入溶有降冰片酮(16.3g,149mmol)的乙醚(200mL)溶液,滴加完毕后升温至35℃,搅拌6小时;将反应液冷却至室温,向其中加入5%盐酸至pH<7,搅拌1小时,加入乙醚(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,得到固体中间体IM-2(24g,收率54.16%)。

将中间体IM-2(24g,80.32mmol)、三氟乙酸(40.48g,355.0mmol)和二氯甲烷(200mL)加入圆底烧瓶中,氮气保护下搅拌2小时;而后向反应液中加入氢氧化钠水溶液至pH=8,分液,有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷(1:2)进行重结晶提纯,得到白色固体状中间体IM-3(21g,收率93.12%)。

化合物317的合成:

参照化合物1的合成方法,且使用中间体3代替中间体IM-I-A,合成制备化合物317,质谱:m/z=606.3[M+H]+。

将镁条(13.54g,564mmol)和乙醚(100mL)置于氮气保护下干燥的圆底烧瓶中,加入碘(100mg)。而后将溶有2’-溴-2-氯联苯(50.00g,187.0mmol)的乙醚(200mL)溶液缓慢滴入烧瓶中,滴加完毕后升温至35℃,搅拌3小时;将反应液降至0℃,向其中缓慢滴入溶有降冰片酮(16.4g,149mmol)的乙醚(200mL)溶液,滴加完毕后升温至35℃,搅拌6小时;将反应液冷却至室温,向其中加入5%盐酸至pH<7,搅拌1小时,加入乙醚(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用乙酸乙酯/正庚烷(1:2)为流动相进行硅胶柱色谱提纯,得到白色固体中间体IM-I-B(30.26g,68%)。

将中间体IM-I-B(30.37g,101.6mmol)、三氟乙酸(TFA)(36.93g,380.6mmol)和二氯甲烷(MC)(300mL)加入圆底烧瓶中,氮气保护下搅拌2小时;而后向反应液中加入氢氧化钠水溶液至pH=8,分液,有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷(1:2)进行硅胶柱色谱提纯,得到白色固体状中间体IM-I-B-1(27.51g,96.3%)。

将中间体IM-I-B-1(20.4g;72.6mmol)、联硼酸频哪醇酯(19.4g;76.5mmol)、三(二亚苄基丙酮)二钯(0.6g;0.6mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.6g;1.3mmol),醋酸钾(12.5g;127.4mmol)和1,4-二氧六环(150mL)加入烧瓶中,氮气保护条件下于100℃回流搅拌16小时;降至室温,向反应液中加入二氯甲烷和水,分液,有机相使用水洗后用无水硫酸镁干燥,减压条件下除去溶剂得到粗品;粗品使用二氯甲烷/正庚烷体系进行硅胶柱色谱提纯,得到白色固体中间体IM-I-B-2(13.3g;51%)。

将中间体IM-I-B-2(13.3g;35.7mmol)、2-溴7-氯-9,9-二甲基芴(12.1g;39.3mmol)、四三苯基膦钯(0.7g;0.6mmol)、碳酸钾(11.1g;80.7mmol)、四丁基溴化铵(2.1g;6.5mmol)加入烧瓶中,并加入甲苯(80mL)、乙醇(20mL)和水(20mL)的混合溶剂,氮气保护下,升温至80℃,保持温度搅拌24小时;冷却至室温,停止搅拌,反应液水洗后分离有机相,使用无水硫酸镁干燥,减压除去溶剂,得到粗品;使用二氯甲烷/正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体产物中间体IM-I-B-3(9.0g;53.3%)。

参照中间体IM-I-B-3的合成方法,不同之处在于以下表4中第二列的原料2替代2-溴7-氯-9,9-二甲基芴,合成下表中第三列所示中间体:

表4原料及中间体

参照化合物5的合成方法,以下表5中第三列所示中间体代替中间体IM-I-A,与二-(4-联苯基)胺合成,制备表5中第列所示的化合物,具体的化合物编号、结构、原料、最后一步的合成收率、表征数据等展示在表5中。

表5:化合物编号、结构、制备及表征数据

将1,2-二溴-3-氯苯(80.8g;298.7mmol)、苯硼酸(36.5g;298.7mmol)、四(三苯基膦)钯(6.9g;6.0mmol)、碳酸钾(103.2g;746.7mmol)、四丁基溴化铵(19.2g;59.7mmol)加入烧瓶中,并加入甲苯(600mL)、乙醇(150mL)和水(150mL)的混合溶剂,氮气保护下,升温至80℃,保持温度搅拌18小时;冷却至室温,停止搅拌,反应液水洗后分离有机相,使用无水硫酸镁干燥,减压除去溶剂,得到粗品;使用二氯甲烷/正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体产物中间体IM-I-C(42.0g;收率53%)

将中间体IM-I-C(42.0g;157.9mmol)和四氢呋喃(300ml)加入烧瓶中,氮气保护下,降温至-78℃,于搅拌条件下,滴加正丁基锂的四氢呋喃(2.5M)溶液(95mL;236.9mmol),滴加完毕后保温搅拌1小时,保持-78℃滴加溶有降冰片酮(19.0g;172.5mmol)的四氢呋喃(100mL)溶液,滴加完毕后保温1小时后升至室温,搅拌24小时;向反应液中加入盐酸(12M)(26.3mL;315.8mmol)的水(100mL)溶液,搅拌1小时;分液,有机相使用水洗至中性,加入无水硫酸镁干燥,减压除去溶剂得到粗品;使用乙酸乙酯/正庚烷体系对粗品进行硅胶柱色谱提纯,得到白色固体产物中间体IM-I-C-1(25.8g;收率54%)

参照中间体IM-I-A的合成方法,使用中间体IM-I-C-1代替中间体IM-I-A-1,合成中间体I-C-2。

化合物194的合成

将中间体IM-I-C-2(3.06g,10.9mmol)、N-苯基-4-联苯胺(2.67g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.58g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌8h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物194(4.35g,收率为78.5%)。质谱:m/z=490.2[M+H]+

将中间体IM-I-C-2(3.05g,10.9mmol)、中间体IM-II-C(3.64g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.57g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌5h。而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到白色固体化合物3(4.73g,收率为75.1%)。质谱:m/z=580.3[M+H]+

部分化合物的核磁数据如下表6所示

表6:部分化合物的核磁数据

有机电致发光器件的制作及评估实施例

蓝色有机电致发光器件的制作

实施例1:

通过以下过程制备阳极:将ITO厚度为的ITO基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极搭接区域、阳极以及绝缘层图案的顶发射实验基板,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极(实验基板)的功函数和清洗实验基板。

在实验基板(阳极)上真空蒸镀m-MTDATA(4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺)以形成厚度为的空穴注入层(HIL),并且在空穴注入层上真空蒸镀化合物1,以形成厚度为的第一空穴传输层(HTL1)。

接着在第一空穴传输层上蒸镀TCTA(4,4',4”-三(咔唑-9-基)三苯胺),形成厚度为的第二空穴传输层(HTL2)。

将α,β-ADN作为主体材料,同时掺杂BD-1作为客体材料,主体材料和客体材料按以30:3的膜后比形成了厚度为的有机电致发光层(EML)。

将DBimiBphen和LiQ(8-羟基喹啉-锂)以1:1的重量比进行混合并蒸镀形成了厚的电子传输层(ETL),将Yb(镱)蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。

此外,在上述阴极上作为蒸镀了厚度为的CP-1,形成覆盖层(CPL),从而完成有机电致发光器件的制造。

其中,m-MTDATA、TCTA、α,β-ADN、BD-1、DBimiBphen、LiQ和CP-1的结构式如下:

实施例2~15

除了在形成第一空穴传输层(HTL1)时各自使用表7中所示的化合物以外,利用与实施例1相同的方法制作有机电致发光器件,器件性能见表7。

比较例1~比较例3

在所述比较例1~比较例3中,除了使用了NPB(N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺)、化合物A、化合物B作为第一空穴传输层替代化合物1之外,用与实施例1相同的方法制造有机电致发光器件。

其中,NPB、化合物A和化合物B的结构为:

即比较例1采用NPB制造有机电致发光器件,比较例2采用化合物A制造有机电致发光器件,比较例3采用化合物B制造有机电致发光器件,器件性能见表1。其中IVL(电流、电压、亮度)数据对比的是在10mA/cm2下的测试结果,T95寿命是20mA/cm2电流密度下的测试结果。

表7实施例1~15与比较例1~3的器件性能

根据表7的结果可知,实施例1~15的第一空穴传输层(HTL1)分别使用本申请的化合物1~5、化合物17、化合物22、化合物26、化合物30、化合物31、化合物339、化合物340、化合物341、化合物342以及化合物194与使用已公知的NPB、化合物A及化合物B的比较例1、比较例2及比较例3相比,实施例1~15的工作电压至少降低了0.53V,同时发光效率(Cd/A)最少提高了12.7%。所以由此制备的有机电致发光器件可实现低驱动电压及高发光效率。不仅如此,相较于对比例1~3,实施例1~15的蓝色有机电致发光器件的外量子效率提高了至少11.9%,T95寿命至少提高了17.6%,能够显著提升有机电致发光器件的性能。

红色有机电致发光器件的制作

实施例16:

通过以下过程制备阳极:将ITO厚度为的ITO基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极搭接区域、阳极以及绝缘层图案的顶发射(TOP glass)实验基板,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极(实验基板)的功函数和清洗实验基板。

在实验基板(阳极)上真空蒸镀m-MTDATA以形成厚度为的厚度为的空穴注入层(HIL),并且在空穴注入层上蒸镀NPB,形成厚度为的第一空穴传输层(HTL1)。

在第一空穴传输层上真空蒸镀化合物6,形成厚度为的第二空穴传输层(HTL2)。

在第二空穴传输层上蒸镀4,4'-N,N'-dicarbazole-biphenyl(简称为”CBP”)作为主体,同时掺杂Ir(piq)2(acac),主体和掺杂剂按以35:5的膜后比形成了厚度为的有机电致发光层(EML)。

将DBimiBphen和LiQ以1:1的重量比进行混合并蒸镀形成了厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。

此外,在上述阴极上作为蒸镀了厚度为的CP-1,形成覆盖层(CPL),从而完成有机电致发光器件的制造。

实施例17~45

除了在形成第二空穴传输层(HTL2)时各自使用表8中所示的化合物以外,利用与实施例16相同的方法制作红色有机电致发光器件,器件性能见表8。

比较例4~比较例5

在所述比较例4~5中,除了使用了化合物A以及化合物B作为第二空穴传输层替代化合物6之外,用与实施例11相同的方法制造有机电致发光器件。

即比较例4采用化合物A制造有机电致发光器件,比较例5采用化合物B制造有机电致发光器件,器件性能见表2。

对如上制得的有机电致发光器件,在10mA/cm2的条件下分析了器件的IVL性能,其结果示于表2,T95寿命测试在30mA/cm2的电流密度下进行。

表8实施例16~45与比较例4~5的器件性能

根据表8的结果可知,实施例16至实施例44中作为第二空穴传输层(HTL2)的化合物与使用已公知的化合物A及化合物B的比较例4及比较例5相比,实施例16~44的工作电压至少降低了0.45V,同时发光效率(Cd/A)最少提高了13.7%。

不仅如此,相较于比较例4和比较例5,实施例16~45的红色有机电致发光器件的外量子效率提高了至少21.5%,T95寿命至少提高了13.4%,能够显著提升有机电致发光器件的性能。

根据表1与表2中所记载的实验结果可以确认,本申请化合物与比较例中的化合物A和化合物B相比,器件性能明显提升。究其原因,在于化合物A和化合物B中引入了大位阻的二苯基芴基团,使得分子间距增加,波函数重叠减小,导致材料空穴迁移率较低。

根据表7与表8中所记载的实验结果可以确认,利用本申请实施例中的化合物制备得到的有机电致发光器件与比较例化合物相比,具有工作电压低、发光效率高、寿命长的优异性能。究其原因是由于本申请中的化合物能够有效的降低空穴的注入势垒,且第一空穴传输层(HTL1)与第二空穴传输层(HTL2)内使用的化合物在400(V/cm)1/2电场强度下,空穴迁移率可以达到4*10-5cm2V-1s-1以上,所以制备得到的有机电致发光器件具有较高的电流效率和较低的工作电压。

不仅如此,本申请实施例中使用的有机物分子量在600~900之间,具有很好的耐久性与耐热性,故而器件寿命大幅度提升。

应可理解的是,本申请不将其应用限制到本说明书提出的部件的详细结构和布置方式。本申请能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本申请的范围内。应可理解的是,本说明书公开和限定的本申请延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本申请的多个可替代方面。本说明书所述的实施方式说明了已知用于实现本申请的最佳方式,并且将使本领域技术人员能够利用本申请。

81页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:新型化合物以及包含上述新型化合物的有机发光元件

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类