铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法

文档序号:704372 发布日期:2021-04-13 浏览:11次 >En<

阅读说明:本技术 铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法 (Copper-ceramic joined body, insulated circuit board, method for producing copper-ceramic joined body, and method for producing insulated circuit board ) 是由 寺崎伸幸 于 2019-08-27 设计创作,主要内容包括:本发明的铜-陶瓷接合体通过接合由铜或铜合金构成的铜部件(22)与由氮化铝构成的陶瓷部件(11)而成,其特征在于,在铜部件(22)与陶瓷部件(11)之间,形成有Mg固溶于Cu的母相中的Mg固溶层(32)。(A copper-ceramic joined body comprising a copper member (22) made of copper or a copper alloy and a ceramic member (11) made of aluminum nitride joined together, characterized in that a solid Mg solution layer (32) in which Mg is dissolved in a matrix phase of Cu is formed between the copper member (22) and the ceramic member (11).)

铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及 绝缘电路基板的制造方法

技术领域

本发明涉及一种通过接合由铜或铜合金构成的铜部件和由氮化铝构成的陶瓷部件而成的铜-陶瓷接合体、绝缘电路基板、铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法。

本申请主张基于2018年8月28日于日本申请的专利申请2018-159457号的优先权,并将其内容援用于此。

背景技术

功率模块、LED模块及热电模块设为如下结构:在将由导电材料构成的电路层形成于绝缘层的一面上的绝缘电路基板上,接合有功率半导体元件、LED元件及热电元件。

例如,为了控制风力发电、电动汽车、混合动力汽车等而所使用的大功率控制用的功率半导体元件由于工作时的发热量多,因此作为搭载该功率半导体元件的基板,例如一直以来广泛使用如下绝缘电路基板:该绝缘电路基板具备由氮化铝构成的陶瓷基板及在该陶瓷基板的一面接合导电性优异的金属板而形成的电路层。作为绝缘电路基板,也提供一种在陶瓷基板的另一面接合金属板而形成金属层的基板。

例如,在专利文献1中提出有如下绝缘电路基板:将构成电路层及金属层的第一金属板及第二金属板设为铜板,并将该铜板通过DBC法直接接合于陶瓷基板。对于该DBC法来说,通过利用铜和铜氧化物的共晶反应,在铜板和陶瓷基板的界面产生液相,从而接合铜板和陶瓷基板。

并且,在专利文献2中提出有如下绝缘电路基板:在陶瓷基板的一面及另一面,通过接合铜板而形成有电路层及金属层。在该绝缘电路基板中,在陶瓷基板的一面及另一面,隔着Ag-Cu-Ti系钎料配置铜板,并通过进行加热处理而接合铜板(所谓的活性金属钎焊法)。该活性金属钎焊法中,由于使用含有作为活性金属的Ti的钎料,因此提高熔融的钎料与陶瓷基板的润湿性,并良好地接合陶瓷基板与铜板。

另外,在专利文献3中提出有如下的浆料:作为在高温氮气气氛下接合铜板和陶瓷基板时使用的接合用钎料,含有由Cu-Mg-Ti合金构成的粉末。在该专利文献3中,设为通过在氮气气氛下以560~800℃进行加热而接合的结构,Cu-Mg-Ti合金中的Mg升华而不残留在接合界面,且实质上不形成氮化钛(TiN)。

专利文献1:日本特开平04-162756号公报

专利文献2:日本专利第3211856号公报

专利文献3:日本专利第4375730号公报

然而,如专利文献1所公开的那样,通过DBC法接合陶瓷基板与铜板的情况下,由于需要将接合温度设为1065℃以上(铜与铜氧化物的共晶点温度以上),因此接合时陶瓷基板有可能会劣化。并且,在氮气气氛等下进行接合的情况下,存在气氛气体残留在接合界面而容易发生局部放电的问题。

如专利文献2所公开的那样,通过活性金属钎焊法接合陶瓷基板及铜板的情况下,由于钎料含有Ag,在接合界面存在Ag,因此容易产生迁移,从而无法在高耐压用途中使用。并且,由于接合温度比较高且为900℃,因此陶瓷基板有可能发生劣化。而且,在陶瓷基板的接合面附近,产生钛氮化物相或含有Ti的金属间化合物相,从而在高温工作时陶瓷基板有可能产生破裂。

如专利文献3所公开的那样,浆料含有由Cu-Mg-Ti合金构成的粉末,使用由该浆料构成的接合用钎料在氮气气氛下进行接合的情况下,存在气体残留在接合界面而容易发生局部放电的问题。并且,浆料中所含的有机物残留在接合界面,接合有可能变得不充分。而且,在陶瓷基板的接合面附近,产生含有Ti的金属间化合物相,从而在高温工作时陶瓷基板有可能产生破裂。

发明内容

本发明是鉴于上述的情况而完成的,其目的在于,提供一种可靠地接合铜部件与陶瓷部件的同时,耐迁移性优异,且能够抑制在高温工作时的陶瓷破裂的产生的铜-陶瓷接合体、绝缘电路基板、上述的铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法。

为了解决这种课题,并实现上述目的,本发明的铜-陶瓷接合体为通过接合由铜或铜合金构成的铜部件和由氮化铝构成的陶瓷部件而成的铜-陶瓷接合体,其特征在于,在所述铜部件与所述陶瓷部件之间,形成有Mg固溶于Cu的母相中的Mg固溶层。

在该结构的铜-陶瓷接合体中,由于在由铜或铜合金构成的铜部件与由氮化铝构成的陶瓷部件之间,形成有Mg固溶于Cu的母相中的Mg固溶层,因此配设于陶瓷部件与铜部件之间的Mg充分地向铜部件侧扩散,而且,Cu与Mg充分反应。因此,在铜部件与陶瓷部件的接合界面充分进行界面反应,从而能够得到可靠地接合铜部件与陶瓷部件而成的铜-陶瓷接合体。并且,由于在Cu部件与陶瓷部件的接合界面不存在Ti、Zr、Nb、Hf,因此不会产生Ti、Zr、Nb、Hf的氮化物相或包含Ti、Zr、Nb、Hf的金属间化合物相,即使在高温工作时也能够抑制陶瓷部件的破裂。

而且,由于在Cu部件与陶瓷部件的接合界面不存在Ag,因此耐迁移性也优异。

在本发明的铜-陶瓷接合体中,从所述陶瓷部件的接合面朝向所述铜部件侧50μm为止的区域中的金属间化合物相的面积率优选为15%以下。

该情况下,由于从所述陶瓷部件的接合面朝向所述铜部件侧50μm为止的区域中的金属间化合物相的面积率为15%以下,因此在陶瓷部件的接合面附近,不存在很多的硬且脆的金属间化合物相,能够可靠地抑制高温工作时的陶瓷部件的破裂。

本发明的绝缘电路基板为通过在由氮化铝构成的陶瓷基板的表面接合由铜或铜合金构成的铜板而成的绝缘电路基板,其特征在于,在所述铜板与所述陶瓷基板之间,形成有Mg固溶于Cu的母相中的Mg固溶层。

在该结构的绝缘电路基板中,铜板与陶瓷基板可靠地接合,并且耐迁移性优异,即使在高耐压条件下也能够可靠性高地进行使用。

能够抑制在高温工作时的陶瓷基板的破裂的产生,在高温条件下也能够可靠性高地进行使用。

在本发明的绝缘电路基板中,从所述陶瓷基板的接合面朝向所述铜板侧50μm为止的区域中的金属间化合物相的面积率优选为15%以下。

该情况下,由于从所述陶瓷基板的接合面朝向所述铜板侧50μm为止的区域中的金属间化合物相的面积率为15%以下,因此在陶瓷基板的接合面附近,不存在很多硬且脆的金属间化合物相,能够可靠地抑制高温工作时的陶瓷基板的破裂。

本发明的铜-陶瓷接合体的制造方法的特征在于,制造上述的铜-陶瓷接合体,所述铜-陶瓷接合体的制造方法具备:Mg配置工序,在所述铜部件与所述陶瓷部件之间配置Mg;层叠工序,经由Mg层叠所述铜部件与所述陶瓷部件;及接合工序,将经由Mg层叠的所述铜部件与所述陶瓷部件在层叠方向进行加压的状态下,在真空气氛下进行加热处理而接合,在所述Mg配置工序中,将Mg量设为0.17mg/cm2以上且3.48mg/cm2以下的范围内。

根据该结构的铜-陶瓷接合体的制造方法,由于在所述铜部件与所述陶瓷部件之间配置Mg,将它们在层叠方向进行加压的状态下,在真空气氛下进行加热处理,因此在接合界面不会残留有气体或有机物的残渣等。

在Mg配置工序中,由于将Mg量设为0.17mg/cm2以上且3.48mg/cm2以下的范围内,因此能够充分得到界面反应所需的液相。因此,能够得到可靠地接合铜部件与陶瓷部件而成的铜-陶瓷接合体。

由于在接合中未使用Ti、Zr、Nb、Hf,因此在陶瓷部件的接合面附近,不会存在Ti、Zr、Nb、Hf的氮化物相或包含Ti、Zr、Nb、Hf的金属间化合物相,能够得到可抑制在高温工作时的陶瓷部件的破裂的铜-陶瓷接合体。

由于在接合中未使用Ag,因此能够得到耐迁移性优异的铜-陶瓷接合体。

在本发明的铜-陶瓷接合体的制造方法中,优选所述接合工序中的加压荷载设在0.049MPa以上且3.4MPa以下的范围内,加热温度设在500℃以上且850℃以下的范围内。

该情况下,由于所述接合工序中的加压荷载设在0.049MPa以上且3.4MPa以下的范围内,因此能够使陶瓷部件、铜部件及Mg密接,从而能够在加热时促进它们的界面反应。

由于将所述接合工序中的加热温度设为比Cu与Mg的共晶温度高的500℃以上,因此能够在接合界面充分地产生液相。另一方面,由于将所述接合工序中的加热温度设为850℃以下,因此能够抑制液相过量产生。并且,对陶瓷部件的热负荷变小,从而能够抑制陶瓷部件的劣化。

本发明的绝缘电路基板的制造方法的特征在于,制造上述的绝缘电路基板,所述绝缘电路基板的制造方法具备:Mg配置工序,在所述铜板与所述陶瓷基板之间配置Mg;层叠工序,经由Mg层叠所述铜板与所述陶瓷基板;及接合工序,将经由Mg层叠的所述铜板与所述陶瓷基板在层叠方向进行加压的状态下,在真空气氛下进行加热处理而接合,在所述Mg配置工序中,将Mg量设为0.17mg/cm2以上且3.48mg/cm2以下的范围内。

根据该结构的绝缘电路基板的制造方法,由于在所述铜板与所述陶瓷基板之间配置Mg,将它们在层叠方向进行加压的状态下,在真空气氛下进行加热处理,因此在接合界面不会残留有气体或有机物的残渣等。

在Mg配置工序中,由于将Mg量设为0.17mg/cm2以上且3.48mg/cm2以下的范围内,因此能够充分得到界面反应所需的液相。因此,能够得到可靠地接合铜板与陶瓷基板而成的绝缘电路基板。并且,由于在接合中未使用Ti、Zr、Nb、Hf,因此在陶瓷基板的接合面附近,不会存在Ti、Zr、Nb、Hf的氮化物相或包含Ti、Zr、Nb、Hf的金属间化合物相,能够得到可抑制在高温工作时的陶瓷基板的破裂的绝缘电路基板。

并且,由于在接合中未使用Ag,因此能够得到耐迁移性优异的绝缘电路基板。

在本发明的绝缘电路基板的制造方法中,优选所述接合工序中的加压荷载设在0.049MPa以上且3.4MPa以下的范围内,加热温度设在500℃以上且850℃以下的范围内。

该情况下,由于所述接合工序中的加压荷载设在0.049MPa以上且3.4MPa以下的范围内,因此能够使陶瓷基板、铜板及Mg密接,从而能够在加热时促进它们的界面反应。

由于将所述接合工序中的加热温度设为比Cu与Mg的共晶温度高的500℃以上,因此能够在接合界面充分地产生液相。另一方面,由于将所述接合工序中的加热温度设为850℃以下,因此能够抑制液相过量产生。并且,对陶瓷基板的热负荷变小,从而能够抑制陶瓷基板的劣化。

根据本发明,能够提供一种可靠地接合铜部件与陶瓷部件的同时,耐迁移性优异,且能够抑制在高温工作时的陶瓷破裂的产生的铜-陶瓷接合体、绝缘电路基板、上述的铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法。

附图说明

图1是使用本发明的实施方式的绝缘电路基板(铜-陶瓷接合体)的功率模块的概略说明图。

图2是本发明的实施方式的绝缘电路基板(铜-陶瓷接合体)的电路层(铜部件)及金属层(铜部件)与陶瓷基板(陶瓷部件)的接合界面的示意图。

图3是表示本发明的实施方式的绝缘电路基板(铜-陶瓷接合体)的制造方法的流程图。

图4是表示本发明的实施方式的绝缘电路基板(铜-陶瓷接合体)的制造方法的说明图。

图5是本发明例1的铜-陶瓷接合体中的铜板与陶瓷基板的接合界面的观察结果。

具体实施方式

以下,参考附图,对本发明的实施方式进行说明。

本实施方式所涉及的铜-陶瓷接合体设为通过接合作为陶瓷部件的陶瓷基板11和作为铜部件的铜板22(电路层12)及铜板23(金属层13)而构成的绝缘电路基板10。

图1中示出本发明的实施方式的绝缘电路基板10及使用该绝缘电路基板10的功率模块1。

该功率模块1具备:绝缘电路基板10;半导体元件3,经由第一焊料层2接合于该绝缘电路基板10的一侧(图1中的上侧);及散热器51,经由第二焊料层8接合于绝缘电路基板10的另一侧(图1中的下侧)。

绝缘电路基板10具备:陶瓷基板11;电路层12,配设于该陶瓷基板11的一面(图1中的上面);及金属层13,配设于陶瓷基板11的另一面(图1中的下面)。

陶瓷基板11是用于防止电路层12与金属层13之间的电连接,在本实施方式中,由绝缘性高的氮化铝构成。陶瓷基板11的厚度设定在0.2mm以上且1.5mm以下的范围内,在本实施方式中,陶瓷基板11的厚度优选为0.635mm。

如图4所示,电路层12通过在陶瓷基板11的一面接合由铜或铜合金构成的铜板22而形成。在本实施方式中,作为构成电路层12的铜板22,使用无氧铜的轧制板。在该电路层12中形成有电路图案,其中一面(图1中的上面)设为搭载半导体元件3的搭载面。电路层12的厚度设定在0.1mm以上且1.0mm以下的范围内,在本实施方式中,电路层12的厚度优选为0.6mm。

如图4所示,金属层13通过在陶瓷基板11的另一面接合由铜或铜合金构成的铜板23而形成。在本实施方式中,作为构成金属层13的铜板23,使用无氧铜的轧制板。金属层13的厚度设定在0.1mm以上且1.0mm以下的范围内,在本实施方式中,金属层13的厚度优选为0.6mm。

散热器51是用于冷却上述绝缘电路基板10,在本实施方式中,设为由传热性良好的材质构成的散热板。在本实施方式中,散热器51优选由传热性优异的铜或铜合金构成。散热器51与绝缘电路基板10的金属层13经由第二焊料层8接合。

如图4所示,陶瓷基板11与电路层12(铜板22)及陶瓷基板11与金属层13(铜板23)经由Mg膜25接合。

如图2所示,在陶瓷基板11与电路层12(铜板22)的接合界面及陶瓷基板11与金属层13(铜板23)的接合界面,形成有Mg固溶于Cu的母相中的Mg固溶层32。

该Mg固溶层32中的Mg的含量设在0.01原子%以上且3原子%以下的范围内。Mg固溶层32的厚度设为0.1μm以上且150μm以下的范围内,优选设为0.1μm以上且80μm以下的范围内。

该Mg固溶层32具有随着从电路层12(金属层13)朝向陶瓷基板11侧而Mg浓度逐渐变高的浓度梯度。

在本实施方式中,从陶瓷基板11的接合面朝向铜板22(电路层12)及铜板23(金属层13)侧50μm为止的区域中的金属间化合物相的面积率优选为15%以下。

如上所述,若抑制在接合界面中的金属间化合物相的面积率,则在Mg固溶层32的内部也可以分散含有Cu与Mg的Cu-Mg金属间化合物相。作为Cu-Mg金属间化合物相,例如,可举出Cu2Mg、CuMg2等。

接着,参考图3及图4,对上述的本实施方式的绝缘电路基板10的制造方法进行说明。

(Mg配置工序S01)

如图4所示,在成为电路层12的铜板22与陶瓷基板11之间,及在成为金属层13的铜板23与陶瓷基板11之间,分别配置Mg。在本实施方式中,通过蒸镀Mg,形成Mg膜25。

在该Mg配置工序S01中,将所配置的Mg量设为0.17mg/cm2以上且3.48mg/cm2以下的范围内。

(层叠工序S02)

接着,将铜板22与陶瓷基板11经由Mg膜25进行层叠,并且将陶瓷基板11与铜板23经由Mg膜25进行层叠。

(接合工序S03)

接着,在层叠方向对所层叠的铜板22、陶瓷基板11及铜板23进行加压的同时,装入真空炉内进行加热,从而接合铜板22、陶瓷基板11及铜板23。

接合工序S03中的加压荷载优选设为0.049MPa以上且3.4MPa以下的范围内。

接合工序S03中的加热温度优选设为500℃以上且850℃以下的范围内。

接合工序S03中的真空度优选设在1×10-6Pa以上且5×10-2Pa以下的范围内。

加热温度下的保持时间优选设在5min以上且180min以下的范围内。

从加热温度(接合温度)降温至480℃时的降温速度并无特别限定,优选为25℃/min以下,进一步优选为20℃/min以下。并且,降温速度的下限值并无特别限定,可以为3℃/min以上,也可以为5℃/min以上。

如上所述,通过Mg配置工序S01、层叠工序S02及接合工序S03,制造本实施方式的绝缘电路基板10。

(散热器接合工序S04)

接着,在绝缘电路基板10的金属层13的另一面侧,接合散热器51。经由焊料材料层叠绝缘电路基板10与散热器51并装入加热炉,经由第二焊料层8而焊料接合绝缘电路基板10与散热器51。

(半导体元件接合工序S05)

接着,在绝缘电路基板10的电路层12的一面,通过焊接而接合半导体元件3。

通过以上的工序,制造出图1所示的功率模块1。

根据如上结构的本实施方式的绝缘电路基板10(铜-陶瓷接合体),由无氧铜构成的铜板22(电路层12)及铜板23(金属层13)与由氮化铝构成的陶瓷基板11经由Mg膜25接合,在陶瓷基板11与电路层12(铜板22)之间,及在陶瓷基板11与金属层13(铜板22)之间形成有Mg固溶于Cu的母相中的Mg固溶层32,因此配设于陶瓷基板11与铜板22(电路层12)及铜板23(金属层13)之间的Mg充分地向铜板22(电路层12)及铜板23(金属层13)侧扩散,而且,Cu与Mg充分反应。因此,在接合界面充分地进行界面反应,从而能够得到可靠地接合铜板22(电路层12)及铜板23(金属层13)与陶瓷基板11而成的绝缘电路基板10(铜-陶瓷接合体)。

由于在铜板22(电路层12)及铜板23(金属层13)与陶瓷基板11的接合界面,不存在Ti、Zr、Nb、Hf,因此不会产生Ti、Zr、Nb、Hf的氮化物相或包含Ti、Zr、Nb、Hf的金属间化合物相,即使在高温工作时也能够抑制陶瓷基板11的破裂。在铜板22(电路层12)及铜板23(金属层13)与陶瓷基板11的接合界面中的Ti、Zr、Nb、Hf的合计含量优选为0.3质量%以下,进一步优选为0.1质量%以下。

由于在陶瓷基板11与铜板22(电路层12)及铜板23(金属层13)的接合界面不存在Ag,因此耐迁移性优异。在铜板22(电路层12)及铜板23(金属层13)与陶瓷基板11的接合界面中的Ag的含量优选为0.2质量%以下,进一步优选为0.1质量%以下。

在本实施方式中,从陶瓷基板11的接合面朝向铜板22(电路层12)及铜板23(金属层13)侧50μm为止的区域中的金属间化合物相的面积率为15%以下的情况下,在陶瓷基板11的接合面附近,不存在很多硬且脆的金属间化合物相,能够可靠地抑制高温工作时的陶瓷基板11的破裂。

从陶瓷基板11的接合面朝向铜板22(电路层12)及铜板23(金属层13)侧50μm为止的区域中的金属间化合物相的面积率优选为10%以下,进一步优选为8%以下。

根据本实施方式的绝缘电路基板10(铜-陶瓷接合体)的制造方法,由于具备:Mg配置工序S01,在铜板22、23与陶瓷基板11之间配置Mg(Mg膜25);层叠工序S02,经由Mg膜25层叠铜板22、23与陶瓷基板11;及接合工序S03,将层叠的铜板22、陶瓷基板11、铜板23在层叠方向进行加压的状态下,在真空气氛下进行加热处理而接合,因此在接合界面不会残留有气体或有机物的残渣等。

在Mg配置工序S01中,由于将Mg量设为0.17mg/cm2以上且3.48mg/cm2以下的范围内,因此能够充分得到界面反应所需的液相。由此,能够得到可靠地接合铜板22、23与陶瓷基板11而成的绝缘电路基板10(铜-陶瓷接合体)。

由于在接合中未使用Ti、Zr、Nb、Hf,因此在陶瓷基板11的接合面附近,不存在Ti、Zr、Nb、Hf的氮化物相或包含Ti、Zr、Nb、Hf的金属间化合物相,能够得到可抑制在高温工作时的陶瓷基板11的破裂的绝缘电路基板10(铜-陶瓷接合体)。

由于在接合中未使用Ag,因此能够得到耐迁移性优异的绝缘电路基板10(铜-陶瓷接合体)。

Mg量小于0.17mg/cm2的情况下,所产生的液相的量不足,接合率有可能降低。另外,Mg量超过3.48mg/cm2的情况下,所产生的液相的量过多,液相从接合界面漏出,有可能无法制造规定形状的接合体。另外,Cu-Mg金属间化合物相会过量产生,从而陶瓷基板11有可能产生破裂。

因此,在本实施方式中,将Mg量设为0.17mg/cm2以上且3.48mg/cm2以下的范围内。

Mg量的下限优选为0.24mg/cm2以上,进一步优选为0.32mg/cm2以上。另一方面,Mg量的上限优选为2.38mg/cm2以下,进一步优选为1.58mg/cm2以下。

在本实施方式中,由于接合工序S03中的加压荷载设为0.049MPa以上,因此能够使陶瓷基板11、铜板22、23及Mg膜25密接,从而能够在加热时促进它们的界面反应。由于接合工序S03中的加压荷载设为3.4MPa以下,能够抑制接合工序S03中的陶瓷基板11的破裂等。

接合工序S03中的加压荷载的下限优选为0.098MPa以上,进一步优选为0.294MPa以上。另一方面,接合工序S03中的加压荷载的上限优选为1.96MPa以下,进一步优选为0.98MPa以下。

在本实施方式中,由于将接合工序S03中的加热温度设为比Cu与Mg的共晶温度高的500℃以上,因此能够在接合界面充分地产生液相。另一方面,由于将接合工序S03中的加热温度设为850℃以下,因此能够抑制液相过量产生。并且,对陶瓷基板11的热负荷变小,从而能够抑制陶瓷基板11的劣化。

接合工序S03中的加热温度的下限优选为600℃以上,进一步优选为680℃以上。另一方面,接合工序S03中的加热温度的上限优选为800℃以下,进一步优选为760℃以下。

在本实施方式中,将接合工序S03中的真空度设为1×10-6Pa以上且5×10-2Pa以下的范围内的情况下,能够抑制Mg膜25的氧化,从而能够可靠地接合陶瓷基板11与铜板22、23。

接合工序S03中的真空度的下限优选为1×10-4Pa以上,进一步优选为1×10-3Pa以上。另一方面,接合工序S03中的真空度的上限优选为1×10-2Pa以下,进一步优选为5×10- 3Pa以下。

在本实施方式中,将接合工序S03中的加热温度的保持时间设为5min以上且180min以下的范围内的情况下,能够充分地形成液相,从而能够可靠地接合陶瓷基板11与铜板22、23。

接合工序S03中的加热温度的保持时间的下限优选为10min以上,进一步优选为30min以上。另一方面,接合工序S03中的加热温度的保持时间的上限优选为150min以下,进一步优选为120min以下。

以上,对本发明的实施方式进行了说明,但本发明并不限定于此,在不脱离本发明的技术思想的范围内,能够进行适当的变更。

例如,对构成电路层或金属层的铜板为无氧铜的轧制板进行了说明,但并不限定于此,也可以由其他铜或铜合金构成。

在本实施方式中,对由铜板构成电路层及金属层的情况进行了说明,但并不限定于此,如果电路层及金属层中的至少一个由铜板构成,则另一个也可以由铝板等的其他金属板构成。

在本实施方式中,作为在Mg配置工序中通过蒸镀进行Mg膜的成膜的情况进行了说明,但并不限定于此,也可以通过其他的方法进行Mg膜的成膜,也可以配置Mg箔。另外,也可以配置Cu与Mg的包层材料。

在本实施方式中,也可以在Mg配置工序中,涂布Mg浆料及Cu-Mg浆料。并且,也可层叠配置Cu浆料与Mg浆料。此时,Mg浆料也可以配置于铜板侧或者陶瓷基板侧中的任一侧。另外,作为Mg,也可配置MgH2

另外,作为散热器举例说明了散热板,但并不限定于此,散热器的结构并无特别限定。例如,散热器也可以具有供制冷剂流通的流路或具备冷却散热片。并且,作为散热器,还能够使用包含铝或铝合金的复合材料(例如AlSiC等)。

并且,在散热器的顶板部或散热板与金属层之间,也可以设置由铝或铝合金或者包含铝的复合材料(例如AlSiC等)构成的缓冲层。

并且,在本实施方式中,对在绝缘电路基板的电路层上搭载功率半导体元件而构成功率模块的情况进行了说明,但并不限定于此。例如,也可以在绝缘电路基板上搭载LED元件而构成LED模块,还可以在绝缘电路基板的电路层上搭载热电元件而构成热电模块。

实施例

(本发明例1~本发明例12、比较例1~比较例2、以往例)

对用于确认本发明的有效性而进行的确认实验进行说明。

如表1所示,在40mm见方的由氮化铝构成的陶瓷基板的两面,层叠配置有Mg的铜板(无氧铜,37mm见方、厚度0.15mm),并且在表1所示的接合条件下进行接合,形成了铜-陶瓷接合体。陶瓷基板的厚度设为0.635mm。并且,接合时的真空炉的真空度设为5×10-3Pa。

在以往例中,在陶瓷基板与铜板之间,以Ag量成为5.2mg/cm2的方式配置了Ag-28质量%Cu-5质量%Ti的活性钎料。

并且,在接合工序S03中,从接合温度(表1的“温度(℃)”)降温至480℃时,降温速度控制成以5℃/min的速度降温。另外,利用气体冷却时的气体分压(有无基于冷却散热片的循环)来控制降温速度。

对于如此得到的铜-陶瓷接合体,观察接合界面,确认了Mg固溶层、Cu-Mg金属间化合物相。并且,以如下方式评价了铜-陶瓷接合体的初始接合率、冷热循环后的陶瓷基板的破裂及迁移性。

(Mg固溶层)

对铜板与陶瓷基板的接合界面,使用EPMA装置(JEOL Ltd.制JXA-8539F),以2000倍倍率、15kV加速电压的条件观察含有接合界面的区域(400μm×600μm),从陶瓷基板表面朝向铜板侧,以10μm间隔,根据铜板的厚度,在10个点以上且20个点以下的范围进行定量分析,将Mg浓度为0.01原子%以上的区域设为Mg固溶层。

(Cu-Mg金属间化合物相的面积率)

对铜板与陶瓷基板的接合界面,使用电子射线显微分析仪(JEOL Ltd.制JXA-8539F),以2000倍倍率、15kV加速电压的条件,获取包含接合界面的区域(400μm×600μm)的Mg的元素MAP,并且将以确认到存在Mg的区域内进行定量分析的5个点平均计,满足Cu浓度为5原子%以上且Mg浓度为30原子以上且70原子%以下的区域设为Cu-Mg金属间化合物相。

并且,计算从陶瓷基板的接合面朝向铜板侧50μm为止的区域中的金属间化合物相的面积率(%)。

(初始接合率)

关于铜板与陶瓷基板的接合率,使用超声波探伤装置(Hitachi Power SolutionsCo.,Ltd.制FineSAT200)且利用下式求出。初始接合面积是指接合前的应接合的面积,即铜板的接合面的面积。在超声波探伤装置中,以接合部内的白色部分表示剥离,因此将该白色部分的面积设为剥离面积。

(接合率)={(初始接合面积)-(剥离面积)}/(初始接合面积)

(陶瓷基板的破裂)

使用冷热冲击试验机(ESPEC CORP.制TSA-72ES),以气相实施了-50℃×10分钟←→150℃×10分钟的300次循环。

评价了负荷上述冷热循环之后,有无陶瓷基板的破裂。

(迁移)

在电路层中绝缘分离的电路图案间距离0.5mm、温度85℃、湿度85%RH、电压DC50V的条件下,放置2000小时之后,测定电路图案间的电阻,将电阻值成为1×106Ω以下的情况判断为短路(产生迁移),将迁移的评价设为“B”。在与上述相同的条件下,放置2000小时之后,测定电路图案间的电阻,电阻值大于1×106Ω的情况判断为未产生迁移,将迁移的评价设为“A”。

在表1中示出评价结果。并且,在图5中示出本发明例1的观察结果。

[表1]

对于Mg配置工序来说,在Mg量为0.09mg/cm2且小于本发明的范围的比较例1中,由于在接合时液相不足,因此无法形成接合体。因此,中止了之后的评价。

对于Mg配置工序来说,在Mg量为4.75mg/cm2且大于本发明的范围的比较例2中,由于在接合时液相过量产生,因此液相从接合界面漏出,无法制造规定形状的接合体。因此,中止了之后的评价。

在使用Ag-Cu-Ti钎料来接合陶瓷基板与铜板的以往例中,迁移的评价判断为“B”。推测是因为在接合界面存在Ag。

相对于此,在本发明例1~本发明例12中,初始接合率也高,且也没有确认到陶瓷基板的破裂。并且,迁移也良好。

并且,如图5所示,观察接合界面的结果,观察到Mg固溶层32。

(本发明例21~本发明例32)

铜-陶瓷接合体以与在上述本发明例1~本发明例12中制作的铜-陶瓷接合体同样的方法制作,对于所得到的铜-陶瓷接合体,以如下方式评价了Cu2Mg的面积率及超声波接合界面。

Mg固溶层、Cu-Mg金属间化合物相的面积率、及铜-陶瓷接合体的初始接合率的评价以与在上述本发明例1~本发明例12中进行的评价同样的方式进行。

(降温速度)

在接合工序S03中,从接合温度(表2的“温度(℃)”)降温至480℃时,以表2所示的速度控制降温速度。

(Cu2Mg的面积率)

由以下的算式定义上述Cu-Mg金属间化合物相中的Cu2Mg的面积率(%),并进行了计算。

Cu2Mg的面积率(%)=Cu2Mg的面积/(Cu2Mg的面积+CuMg2的面积)×100

“Cu2Mg的面积”设为Mg浓度在30原子%以上且小于60原子%的区域,“CuMg2的面积”设为Mg浓度在60原子%以上且小于70原子%的区域。

(超声波接合)

对于所得到的铜-陶瓷接合体,使用超声波金属接合机(UltrasonicEngineeringCo.,Ltd.制:60C-904),以崩塌量(コプラス量)0.5mm的条件对铜端子(10mm×5mm×1.5mm厚)进行了超声波接合。

在接合之后,使用超声波探伤装置(Hitachi Power Solutions Co.,Ltd.制FineSAT200),检查铜板与陶瓷基板的接合界面,将观察到陶瓷破裂的情况评估为“C”,将观察到剥离的情况评估为“B”,将都未发现的情况评价为“A”。在表2中示出评价结果。

[表2]

由于接合工序S03后的降温速度,Cu2Mg的面积率的值及超声波接合的接合性产生了变化。

根据表2所示的结果,明确了降温速度优选为25℃/min以下,进一步优选为20℃/min以下。

根据表2所示的结果,明确了Cu-Mg金属间化合物相中的Cu2Mg的面积率优选为55%以上,更优选为60%以上,进一步优选为67%以上。

综上所述,根据本发明例,确认到能够提供一种铜部件与陶瓷部件可靠地接合,耐迁移性优异,且能够抑制高温工作时的陶瓷破裂的产生的铜-陶瓷接合体(绝缘电路基板)。

并且,根据本发明例,确认到通过控制从接合温度至480℃的降温温度的速度,能够提供一种铜部件与陶瓷部件可靠地接合,且超声波接合性优异的铜-陶瓷接合体(绝缘电路基板)。

产业上的可利用性

根据本发明,能够提供一种可靠地接合铜部件与陶瓷部件的同时,耐迁移性优异,且能够抑制在高温工作时的陶瓷破裂的产生的铜-陶瓷接合体、绝缘电路基板、上述的铜-陶瓷接合体的制造方法及绝缘电路基板的制造方法。

符号说明

10 绝缘电路基板

11 陶瓷基板

12 电路层

13 金属层

22、23 铜板

32 Mg固溶层

18页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:使用了β-二氧化锰的氧化物的制造方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!