一种防除风机叶片覆冰的基于ptfe膜制备方法及应用

文档序号:709378 发布日期:2021-04-16 浏览:32次 >En<

阅读说明:本技术 一种防除风机叶片覆冰的基于ptfe膜制备方法及应用 (Preparation method and application of PTFE (polytetrafluoroethylene) -based film for preventing and removing icing of fan blade ) 是由 向欣 刘建平 吴建华 孙志禹 朱亚伟 李文伟 赵方亮 吴弘 赵景鑫 庞博 吴建平 于 2020-11-05 设计创作,主要内容包括:本发明公开了一种防除风机叶片覆冰的基于PTFE膜制备方法及应用,涉及高分子复材技术领域,包括采用共混、预压、推压的单体聚合方法,将膜制备成具有聚合单体的PTFE棒材;热压延融合聚合方法,使PTFE棒材在热压延过程中,在膜裂产生层状剥离的纤维织物状结构下,将膜制成具有微孔隙和纳米级和微米级尺寸的凹凸几何状超微结构形貌的基于PTFE同均质膜;基于PTFE同均质膜在投运中的大型风机叶片上应用。适用于各种类型风电机组防除叶片冬季表面结冰,解决了仅依靠PTFE单一的低表面张力的高润滑性能,难以达到大型风机叶片防除冬季表面结冰的效果问题。(The invention discloses a preparation method and application of a PTFE-based membrane for preventing and removing fan blade icing, which relate to the technical field of polymer composite materials and comprise the steps of preparing a membrane into a PTFE bar with polymerized monomers by adopting a monomer polymerization method of blending, prepressing and pushing; the hot rolling fusion polymerization method makes PTFE bar material in the hot rolling process, under the condition that the membrane cracks to generate a layered stripped fiber fabric-like structure, the membrane is made into a PTFE homogeneous membrane based on the morphology of a micro-pore, nano-scale and micron-scale concave-convex geometrical ultramicro structure; the PTFE-based homogeneous film is applied to large fan blades in operation. The method is suitable for preventing and removing the surface icing of the blades of various wind turbines in winter, and solves the problem that the effect of preventing and removing the surface icing of the blades of a large fan in winter is difficult to achieve only by the single low surface tension high lubricating property of PTFE.)

一种防除风机叶片覆冰的基于PTFE膜制备方法及应用

技术领域

本发明涉及高分子复材技术领域,特别是涉及一种防除风机叶片覆冰的基于PTFE膜制备方法及应用。

背景技术

我国是全球风力发电发展速度最快、装机容量最大的国家,然而也是风机叶片结冰地域最广、由结冰导致风电机组停机事件频发最多的国家之一。通过对风机叶片冬季结冰风电场的调研和部分风电场提供的叶片冬季结冰损失发电量统计数据及相关资料的分析,安装在我国高海拔、山区和低温、冰冻等地区的风电机组受气候影响,每到冬季叶片都发生不同程度结冰,而处在海拔高程1000~1800m的高海拔山区、林区的风机叶片冬季结冰情况更是严重。特别是地处湘、鄂、两广、赣、浙、皖地区、云贵高原、内蒙古、冀北山区、晋西北等地区的叶片,较之地处北疆、东北地区风电场的叶片,无论是结冰时间还是结冰程度都更为严重,叶片结冰的机组容量占我国累计总装机容量的27%左右。冬季恰恰是风资源较为丰富的时机,这些结冰程度相对严重的地区,又基本上不存在风电本地消纳的压力问题。因此,因叶片结冰导致风电机组工作异常和风机输出功率无法达到保证功率被迫停机而损失的电费收益十分惊人,甚至发生了因结冰而导致叶片断裂事件。

叶片表面结冰和防除冰技术方法与效能的不足,除了对风电电费收益产生直接影响外,还会构成分担机组运行的安全风险,所以,风机叶片冬季防除结冰是风电行业世界范围内的重要课题。

风机叶片是风电机组的重要部件,叶片结冰会造成冬季风机停机事件频发,损失大量发电量及其电费收益;引起叶片气动性能发生变化,导致风机功率损失;冰载会影响机组载荷,冰载荷分布不均造成机组功率下降;破坏叶片翼型流线,不平衡冰载会导致叶片的耐疲劳性降低;结冰截面厚度差异会改变叶片原有翼型,影响机组使用寿命;增加叶片表面粗糙度,严重影响叶片翼型气动性能;严重结冰造成叶片断裂,构成机组安全运行风险;结冰状态下机组继续运行会导致机组脱网,影响电网安全;结冰在自然温度下或融化时从叶片上脱离时,转动中的叶片随时都会把冰块抛出百米以上距离,给风电机组周边人民生命财产带来安全隐患。

国内外防除冰技术方法有很多种,整体上有被动防除冰技术方法措施(如机械除冰、液体防除冰、涂层防除冰等)和主动除冰技术方法措施(热气除冰、微波除冰、电热除冰、超声波除冰等)两大类。如金风科技开发了一种电热除冰技术,在叶片涂层内埋设碳纤维电热膜或电阻丝等加热元件组成金属加热网,在叶片轮毂内增设除冰加热柜和测控柜、电源、过热保护转换器等组成电热防除冰系统,通过电加热温度达到融化叶片表面结冰和叶片表面防结冰的作用。运达风电开发了一种安装在风机叶片轮毂内的电加热热风装置,在叶片空腔内布置热气通气管道,使热气在通气管道内形成循环,通过往叶片空腔内输入热气,热气通过叶片壳体将热量传递到叶片外表面,使叶片具有一定温度,在热气作用下使叶片间接加热,阻止过冷水滴的冻结,达到防除冰目的。武汉疏能将SiO2制备成微-纳结构的具有低表面能物质和修饰表面粗糙结构的,能够形成主动抵御因冻雨冰雪灾害天气的仿荷叶表面能的多级、多孔、多层仿生防结冰涂层,用于风机叶片和高压电网在高湿环境下的疏水、不结冰或减少结冰量。

上述几种技术方法是目前国内外众多风机叶片防除冰技术方法措施中的典型代表,但经实践表明都存在达不到理想防除结冰效果的问题,有些甚至还会对风电机组及其叶片构成安全隐患。

如采用电热膜或电阻丝的电加热除冰系统,除了防除冰效果不明显,还给每支叶片增加重量达200kg,整台风电机组叶片增重达600kg,极大地增加了风机叶片的重量荷载,在使用中需要使用大量电能,增加了厂用电消率8-10%以上,同时还存在容易遭到雷击的安全隐患,即便是加装了监控系统或特殊防雷设计,也难逃被雷击的厄运,国内已经发生过多起因加装了电加热除冰系统而导致叶片都被雷击报废的事件。在自然环境中,热空气密度小, 冷空气密度大,密度小的上升,密度大的下降,热空气若无外力的作用只会向上升腾,而不会横向扩散,更不会跑到冷空气下面。电加热热量传导到叶片表面后,只会向上升,而不会横向扩散,热量也就不会在叶片上表面进行横向传导,导致没有电阻丝或电热膜部位的叶片依然结冰。热气除冰系统利用的是通过叶片壳体材料将热量传递到叶片外表面,使叶片表面具有一定温度,在热力作用下使叶片间接加热,阻止过冷水滴的冻结,达到防除冰目的。但作为风机叶片的主要材料,热固性聚酯树脂导热性能很低,在叶片空腔内的热量难以在短时间内传导到叶片表面,即便是不间断地往叶片空腔内输送热气,除冰效率也很低。而对于大型风机叶片来说,叶片壳体的热阻会随着叶片质量厚度的增加而明显增加,这就意味着大功率叶片需要更高的内部温度来实现叶片表面除冰,除冰效率也会因叶片尺寸的增大而逐渐降低。

无论是采用电热膜或电阻丝电加热的除冰系统还是采用热气除冰系统,它们还具有以下共性缺点,即:①如果一支叶片除冰失败,整个除冰系统就必须停止运行,否则就会因叶片结冰质量不同而导致配重失衡、重心严重偏移进而引起故障或事故;②每台风机机组叶片加热功率150-200kw以上,设备运行过程中需要消耗大量电能源消耗,导致风机发电额外增加8%-10%以上的用电量;③叶片改造或设备系统维修难度较大;④设备故障率高,每年需要进行电器运维,设备的使用年限一般不超过10年;⑤最主要的是,风机叶片是由聚酯树脂等热固性基体材料组成的玻璃纤维增强复合材料,存在-40~50℃的使用温度范围限制,无论是电加热除冰还是热气除冰,加热温度都不能超过叶片材料规定的使用温度范围,一旦温度超过或在规定的叶片使用温度范围内进行长时间加热,必然会导致加速叶片材料疲劳,影响整体强度或者造成叶片被损毁,而在规定的使用温度范围内加热,这点热量远达不到需要防止或消除叶片结冰的热量。

而采用液体防除冰、涂层防除冰技术方法也具有以下技术特点:如①防除冰液体虽然具有低表面能疏水性或涂层具有防水、防污染、抗氧化、防腐蚀等性能,但防除冰液体的有效作用时间短,属短期防冰方法,而且每年都要涂刷一遍甚至多遍,并且需要经常维护,每次涂刷前还要清洗叶片,不满足长期应用要求,在严重结冰状态下的除冰效果更差,甚至不能起到有效的防抗覆冰效果。②氟系防除冰材料或仿生涂层材料中添加的蜡、含氟树脂等材料会缩短风机叶片基材的使用寿命,影响并降低涂层粘接力和耐磨性能。氟系防除冰材料中的PTFE水溶性较差,难以实现水溶性PTFE聚合物,需添加引发剂、增稠剂等助剂才能成膜,助剂疏水效果差,达不到疏水膜表面效果,在叶片SS面(后缘、背风面)有一定效果,但在叶片PS面(前缘、迎风面)的防除冰效很差,结冰质量最多只能减少20%左右,而且防除冰时效短,性能退化或老化明显,有效期一般不超过2年。

发明内容

为了解决以上技术问题,本发明提供一种防除风机叶片覆冰的基于PTFE膜制备方法,包括以下步骤:

(1)共混、预压、推压制备膜棒料

用乙烯基硅油浸润PTFE树脂,乙烯基硅油与PTFE树脂的质量比为(2~3):100,在常温下进行共混,制得基于PTFE树脂+乙烯基硅油单体融合聚合的共混树脂粉料;共混树脂粉料在温度为60~90℃,压力为5~8MPa的预压料筒中进行预压,制得单体聚合的基于PTFE单体融合聚合毛坯棒料;将基于PTFE单体融合聚合毛坯棒料在60~90℃,压力为5~8MPa的热推压料缸中进行热推压,制得基于PTFE单体融合聚合膜棒料;

(2) 热压延制膜

将制得的基于PTFE单体融合聚合膜棒料通过热压延机进行微量聚合热压延,热压延机的上下两个油压压延辊之间的间隙距离设置为需要制备的基于PTFE单体聚合膜的厚度,压延辊温度为60~90℃,基于PTFE单体融合聚合膜棒料在压延辊的顺时针转动下,以20~30m/min的速度从压延辊之间的间隙中挤出,在温度和热压延拉伸作用下,基于PTFE单体融合聚合膜棒料在压延辊间隙中被挤压同时往两边均匀延展开,在热挤压和延展过程中,膜裂发生层状剥离后产生纤维织物状结构,制得设定厚度的同均质基于PTFE膜;

水珠与膜表面的接触角在115.89°~125.46°,在扫描电镜立体成像下,膜的表面形貌表现为经纬方向均匀分布的平均大小10~20um、高度8~10um、间距20~30um的微形凹凸。

技术效果:风机叶片防除冬季结冰,仅仅利用PTFE具有低表面张力和高润滑性还不足以满足在风电场环境下的防除冰效果和达到防除冰效率要求,本发明在充分利用基于PTFE材料本身具有低表面张力的高润滑性能基础上,将基于PTFE制备成具有多重纳米级和微米级尺寸的凹凸几何状超微结构形貌,使膜表面更具超低表面张力和不粘附性性能,结冰难以在膜表面粘附,或者即便形成粘附,也只有极低的粘附力而能自动脱离膜表面,进而达到真正能够防除风机叶片表面结冰的效果和目的。

本发明的另一目的在于提供一种防除风机叶片覆冰的基于PTFE膜的应用,在投运风机叶片上应用,进行高空膜粘贴时,首先将叶片叶尖垂直于地面并与风电机组塔体平行,将叶片贯穿于高空吊篮中间,膜粘贴采用裁剪拼接粘贴和缠绕粘贴两种方法,由四人同时进行,其中一人负责展开膜并对准粘贴基准线,一人负责整理膜粘贴时的平顺度,一人负责排除膜与叶片基层之间的空气并用粘贴刮板进行粘接,一人负责后勤服务与施工配合。膜粘贴流程与方法同样适用于在未投运的风机叶片,具体:

(1)叶片表面抛光处理

用手持式抛光机对叶片表面进行平整度和光洁度处理,同时去掉粘贴在基层面上的部分老化涂层,满足基于PTFE纳米功能复合膜的粘接要求条件;

(2)膜粘贴

1)叶尖部位采用裁剪拼接粘贴

按膜的宽度,从叶片叶尖前缘部位开始,将膜横向顺着翼型的攻角、挠度和曲度进行裁剪,每一幅膜进行单独量裁,裁剪成符合翼型、攻角、挠度、尺寸的膜后进行粘贴;

膜粘贴时,膜从后缘SS面向前缘PS面进行粘贴,前缘PS面部位的膜应搭接在后缘SS面部位的膜上,两幅膜的横向搭接必须错开,不设在同一位置;

2)缠绕粘贴

当叶片的翼型、弦长、挠度、曲度、攻角尺寸适合缠绕粘贴时,采用膜在叶片上横向缠绕的方式进行粘贴粘接,

膜缠绕粘贴时,先将膜展开,撕开表面的离型纸,将膜贯穿在贴膜工装的夹辊之间,双手拉紧后给膜一定的张力,边撕开离型纸边进行膜缠绕粘贴;

以叶尖部位粘贴粘接的最后一幅膜的纵横向边缘为缠绕粘贴基准线,并对准基准线慢慢展开膜进行缠绕粘贴粘接,从起始处开始用贴膜刮板按整幅膜宽度,朝粘贴面的后方即膜未展开方向均匀地一边驱除膜与基层之间的空气,一边用力将膜粘接粘牢在叶片表面,必须彻底驱除膜与叶片间的空气;上一层膜的搭接压住下一层膜搭接部位表面,即缠绕粘贴的膜必须搭接在叶尖部位粘接后的膜上面,膜所有横向搭接即膜与膜的接头全部设置在叶片后缘SS面;

3)膜在叶片防雷接闪器处的处理

先将膜从防雷接闪器表面直接覆盖粘贴过去,待整个膜粘贴结束前,逐个裁挖掉覆盖在防雷接闪器上的膜,露出防雷接闪器,并将接缝处的膜压实压平;

4)膜的搭接与收头处理

仔细检查搭接处的粘接是否严实,发现有搭接不严实情形的,应及时进行压平压实处理,以免出现起皱、起鼓、起泡、凹凸不平整现象;

5)膜破损的修补处理

在施工中发生膜被划破情形的,裁剪一块整幅宽度的膜,横向缠绕粘贴粘接在划破处的整个部位表面进行加贴修补。

前所述的一种防除风机叶片覆冰的基于PTFE膜的应用,叶尖部位裁剪拼接粘贴时,膜横向搭接宽度150~200mm,以粘贴的第一幅膜边缘为基准线,第二幅膜搭接压在第一幅膜10~40mm边缘上,膜的纵向搭接10~40mm。

前所述的一种防除风机叶片覆冰的基于PTFE膜的应用,膜缠绕粘贴时,膜横向搭接宽度10~40mm。

前所述的一种防除风机叶片覆冰的基于PTFE膜的应用,叶尖部位裁剪拼接粘贴和缠绕粘贴时,严禁用力横向拉伸膜,以免发生膜被拉伸后的起皱现象,必须保持膜在自然平顺状态下进行粘贴。

前所述的一种防除风机叶片覆冰的基于PTFE膜的应用,叶尖部位裁剪拼接粘贴和缠绕粘贴时,当发现有皱折、空鼓或没有对准基准线出现膜不平顺或变形情况时,应将未展开的膜整体慢慢掀起至有皱折、空鼓处后重新进行粘贴,以免影响膜粘贴质量。

本发明的有益效果是:

(1)本发明不仅利用了PTFE本身具有的低表面张力的高润滑性一项性能来达到不粘附性目的,而且通过将膜制备成具有纳米级和微米级尺寸的凹凸几何状超微结构表面形貌,使膜更加具有超低表面固体张力,疏水性能更好,不粘附性和高抗污性更高,膜表面同时具有自清洁功能,这是其他措施方法不能比拟的;

(2)本发明针对风电场应用环境和风电机组叶片的特点,设计了基于PTFE纳米功能复合膜的制备方法与工程应用的施工工艺流程,使工程应用更具可行性和可操作性以及方便性。

附图说明

图1为在扫描电镜SEM下的膜表面纳米级和微米级尺寸的凹凸几何状超微结构表面形貌。

具体实施方式

实施例1

本实施例提供的一种防除风机叶片覆冰的基于PTFE膜制备方法,包括以下步骤:

(1)共混、预压、推压制备膜棒料

用乙烯基硅油浸润PTFE树脂,乙烯基硅油与PTFE树脂的质量比为2.5:100,乙烯基硅油能与PTFE分散树脂产生亲和基团,且能在温度作用下促进PTFE分散树脂与聚酯类粘接胶产生粘接亲和作用力,在常温下进行共混,制得基于PTFE树脂+乙烯基硅油单体融合聚合的共混树脂粉料;共混树脂粉料在温度为60℃,压力为5MPa的预压料筒中进行预压,制得单体聚合的基于PTFE单体融合聚合毛坯棒料;将基于PTFE单体融合聚合毛坯棒料在60℃,压力为8MPa的热推压料缸中进行热推压,制得Ф17mm的基于PTFE单体融合聚合膜棒料;

(2) 热压延制膜

将制得的基于PTFE单体融合聚合膜棒料通过热压延机进行微量聚合热压延,热压延机的上下两个油压压延辊之间的间隙距离设置为需要制备的基于PTFE单体聚合膜的厚度(如80um、100um或120um等),压延辊温度为60℃,基于PTFE单体融合聚合膜棒料在压延辊的顺时针转动下,以25m/min的速度从压延辊之间的间隙中挤出,在温度和热压延拉伸作用下,Ф17mm的基于PTFE单体融合聚合膜棒料在压延辊间隙中被挤压同时往两边均匀延展开,在热挤压和延展过程中,膜裂发生层状剥离后产生纤维织物状结构,制得所需厚度的同均质基于PTFE膜;

基于PTFE膜密度为2.1kg/m³,水珠与膜表面的接触角在115.89°~125.46°,图1所示,在扫描电镜立体成像下,膜的表面形貌表现为经纬方向均匀分布平均大小15um、高度9um、间距15um的微形凹凸。

对上述方法制备获得的PTFE膜的5个试样进行各项性能测试,结果如下:①膜平均厚度100um;②膜平均重量210g/m2;③胶粘接剥离力50N,180°粘接剥离强度1000N/m;④通过14400h的氙灯老化测验、冻融循环性能测验(温度:-60℃~150℃,湿度:5~98%)、臭氧老化测验、紫外线老化测验、人造气氛腐蚀与海盐溶液浸泡测验,老化前后的抗拉强度平均值25MPa,伸长率平均值>90%,均未发生老化现象;⑤采用GB/T 9266-2009“建筑外墙涂料涂层耐洗刷性的测定”方法,经37次/min循环往复磨擦40000次后,膜表面未见毛糙现象,未观察到破损至露出底材现象,具有较强耐磨损性;⑥采用动风压测验平台模拟36.9m/s风速(12级台风)进行动风压测验耐雨水冲刷性能,经1000h强风速吹水测验,膜表面未见毛糙现象,具有优良的耐雨蚀性能;⑦如图1所示,采用扫描电镜SEM对膜表面形貌进行测验,膜表面形貌表现为经纬方向均匀分布着平均大小20~40um、高度10~20um、间距30~50um微米级微形凹凸表面结构;⑧采用水接触角测试仪测得的膜表面水珠接触角为115.89°~125.46°之间;⑨采用表面粗糙度仪测得的膜表面粗糙度平均为值0.18um。

实施例2

本实施例提供的是实施例1在投运风机叶片上的应用,按照风机叶片翼型的弦长、挠度、曲度的特点和工程施工的方便性,首先将叶片叶尖垂直于地面并与风电机组塔体平行,将叶片贯穿于高空吊篮中间,膜粘贴采用裁剪拼接粘贴和缠绕粘贴两种方法,由四人同时进行,其中一人负责展开膜并对准粘贴基准线,一人负责整理膜粘贴时的平顺度,一人负责排除膜与叶片基层之间的空气并用粘贴刮板进行粘接,一人负责后勤服务与施工配合。膜粘贴流程与方法同样适用于在未投运的风机叶片。具体:

(1)叶片表面抛光处理

用手持式抛光机对叶片表面进行平整度和光洁度处理,同时去掉粘贴在基层面上的部分老化涂层,满足基于PTFE纳米功能复合膜的粘接要求条件;

(2)膜粘贴

1)叶尖部位采用裁剪拼接粘贴

按膜的宽度,从叶片叶尖前缘部位开始,将膜横向顺着翼型的攻角、挠度和曲度进行裁剪,每一幅膜进行单独量裁,裁剪成符合翼型、攻角、挠度、尺寸的膜后进行粘贴;

膜粘贴时,膜从后缘SS面(背风面)向前缘PS面(迎风面)进行粘贴,前缘PS面部位的膜应搭接在后缘SS面部位的膜上,两幅膜的横向搭接错开15cm,不设在同一位置;膜横向搭接宽度150~200mm,以粘贴的第一幅膜边缘为基准线,第二幅膜搭接压在第一幅膜10mm~40mm边缘上,膜与膜的纵向搭接10mm~40mm,以此类推,不形成膜在叶片上的倒泛水;

2)缠绕粘贴

在叶尖往叶片中间5m处,叶片的翼型、弦长、挠度、曲度、攻角尺寸适合缠绕粘贴,采用膜在叶片上横向缠绕的方式进行粘贴粘接,

膜缠绕粘贴时,先将膜展开200mm长度,撕开表面的离型纸,将膜贯穿在贴膜工装的夹辊之间,双手拉紧后给膜一定的张力,边撕开离型纸边进行膜缠绕粘贴;

以叶尖部位粘贴粘接的最后一幅膜的纵横向边缘为缠绕粘贴基准线,并对准基准线慢慢展开膜进行缠绕粘贴粘接,从起始处开始用贴膜刮板按整幅膜宽度,朝粘贴面的后方即膜未展开方向均匀地一边驱除膜与基层之间的空气,一边用力将膜粘接粘牢在叶片表面,必须彻底驱除膜与叶片间的空气;上一层膜的搭接压住下一层膜搭接部位表面,上下两层膜搭接宽度10mm,即缠绕粘贴的膜必须搭接在叶尖部位粘接后的膜上面,膜所有横向搭接即膜与膜的接头全部设置在叶片后缘SS面;

3)膜在叶片防雷接闪器处的处理

先将膜从防雷接闪器表面直接覆盖粘贴过去,待整个膜粘贴结束前,逐个裁挖掉覆盖在防雷接闪器上的膜,露出防雷接闪器,并将接缝处的膜压实压平;

4)膜的搭接与收头处理

仔细检查搭接处的粘接是否严实,发现有搭接不严实情形的,应及时进行压平压实处理,以免出现起皱、起鼓、起泡、凹凸不平整现象;

5)膜破损的修补处理

在施工中发生膜被划破情形的,裁剪一块整幅宽度的膜,横向缠绕粘贴粘接在划破处的整个部位表面进行加贴修补。

上述粘贴过程,严禁用力横向拉伸膜,以免发生膜被拉伸后的起皱现象,必须保持膜在自然平顺状态下进行粘贴。当发现有皱折、空鼓或没有对准基准线出现膜不平顺或变形情况时,应将未展开的膜整体慢慢掀起至有皱折、空鼓处后重新进行粘贴,以免影响膜粘贴质量。

本发明在充分利用基于PTFE材料低表面张力的高润滑性能基础上,采用单体融合聚合与微量聚合技术方法,将膜制备成具有多重纳米级和微米级尺寸的凹凸几何状超微结构形貌,使PTFE在具有高润滑性表面基础上更具有超低表面张力、疏水性、不粘附性、高抗污性、抗吸湿性和自清洁性等功能特性。

除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

11页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种可流水线生产保温一体板装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!