碳纤维用复合型耐高温上浆剂、其制备方法及应用

文档序号:745310 发布日期:2021-04-23 浏览:78次 >En<

阅读说明:本技术 碳纤维用复合型耐高温上浆剂、其制备方法及应用 (Composite high-temperature-resistant sizing agent for carbon fibers, and preparation method and application thereof ) 是由 郭强 吴兆辉 曹志强 刘海彬 杨健伟 何翔 汪恒 毕宸洋 于 2020-12-10 设计创作,主要内容包括:本发明涉及一种用于制备聚醚醚酮、聚苯硫醚、聚苯硫醚砜、聚醚砜、聚酰亚胺、聚醚酰亚胺或聚四氟乙烯为基体复合材料及3D打印料的增强碳纤维表面上浆用复合型耐高温上浆剂及应用方法:包括耐高温上浆剂的制备方法、商品碳纤维的褪浆工艺、对褪浆商品碳纤维再上浆耐高温上浆剂的工艺,以及复合材料及3D打印料的制备工艺参数设定。该耐高温上浆剂的组成及质量百分比为:0.2~10wt%的聚苯硫醚砜,0.1~5wt%的聚醚砜,0.1~5wt%聚醚酰亚胺,80~99.6wt%的有机溶剂。本发明为用以填充增强加工温度在330~380℃范围的耐高温基体树脂的碳纤维提供一种耐高温上浆剂,可以明显改善碳纤维与树脂基体之间的界面作用,提高复合材料及3D打印料的力学性能。(The invention relates to a composite high-temperature-resistant sizing agent for sizing the surface of reinforced carbon fibers for preparing a composite material taking polyether-ether-ketone, polyphenylene sulfide sulfone, polyether sulfone, polyimide, polyetherimide or polytetrafluoroethylene as a matrix and a 3D printing material and an application method thereof, wherein the composite high-temperature-resistant sizing agent comprises the following components in parts by weight: the preparation method comprises a preparation method of the high-temperature-resistant sizing agent, a desizing process of the commercial carbon fiber, a process of repulping the high-temperature-resistant sizing agent to the desized commercial carbon fiber, and preparation process parameter setting of the composite material and the 3D printing material. The high-temperature resistant sizing agent comprises the following components in percentage by mass: 0.2-10 wt% of polyphenylene sulfide sulfone, 0.1-5 wt% of polyether sulfone, 0.1-5 wt% of polyetherimide and 80-99.6 wt% of organic solvent. The high-temperature-resistant sizing agent is provided for the carbon fibers filled with the high-temperature-resistant matrix resin with the reinforced processing temperature of 330-380 ℃, so that the interface effect between the carbon fibers and the resin matrix can be obviously improved, and the mechanical properties of the composite material and the 3D printing material are improved.)

碳纤维用复合型耐高温上浆剂、其制备方法及应用

技术领域

本发明涉及一种增强碳纤维表面上浆用复合型耐高温上浆剂制备方法,及其对商品碳纤维再上浆用于制备聚醚醚酮、聚苯硫醚、聚苯硫醚砜、聚醚砜、聚酰亚胺、聚醚酰亚胺或聚四氟乙烯基体复合材料及3D打印料的工艺参数设定。

背景技术

碳纤维是一种高强度轻质无机碳材料,常用于增强有机高分子树脂制备复合材料,能够显著提高高分子树脂的强度,被广泛应用于航空、航天、国防装备、机械装备等领域。商品碳纤维出厂前通常采用通用型上浆剂进行上浆处理,其作用:

一是对碳纤维进行集束,减少碳纤维之间摩擦,保护碳纤维表面;

二是通过上浆处理在碳纤维表面形成聚合物层以起到偶联剂作用,改善碳纤维和树脂之间的化学结合,提高复合材料的界面性能。当前,商品碳纤维大多采用通用型的环氧树脂上浆剂,还有小部分采用酚醛树脂、聚氨酯等上浆剂。

商品碳纤维被用于增强聚丙烯、聚乙烯等通用塑料,或者聚酰胺、聚碳酸酯等工程塑料时,增强效果通常较为显著。然而,当商品碳纤维被用于增强聚醚醚酮、聚苯硫醚、聚苯硫醚砜、聚醚砜、聚酰亚胺、聚醚酰亚胺或聚四氟乙烯等耐高温基体树脂时,由于它们的加工温度普遍高达330℃以上,商品碳纤维表面的通用环氧树脂上浆剂在此高温下会逐渐发生降解而失去作用,反而可能会严重危害碳纤维与基体树脂之间的结合,因此商品碳纤维对上述耐高温基体树脂的增强效果不佳。采用复合型耐高温上浆剂可以有效解决上述问题,但由于需求和成本的关系,商品碳纤维极少会在出厂时直接采用复合型耐高温上浆剂。采购商品碳纤维,然后褪去原有的环氧树脂等上浆剂,重新上浆复合型耐高温上浆剂用以改性上述耐高温基体树脂是一个经济可行的解决方案,但尚未见相关报道。

发明内容

为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种碳纤维用复合型耐高温上浆剂、包括其制备方法及应用,可适用于聚醚醚酮、聚苯硫醚、聚苯硫醚砜、聚醚砜、聚酰亚胺、聚醚酰亚胺或聚四氟乙烯等耐高温基体树脂加工工艺,将商品碳纤维褪浆后重新进行上浆改性处理,是提高碳纤维与聚醚醚酮等树脂间的界面结合力,改善复合材料各项性能的有效途径,可有效推动碳纤维在上述耐高温基体树脂中的应用。

为达到上述发明创造目的,本发明采用如下技术方案:

本发明的目的之一在于提供一种碳纤维用复合型耐高温上浆剂,为一种溶液型材料,其组成及质量配比为:0.2~10wt%的聚苯硫醚砜、0.1~5wt%的聚醚砜、0.1~5wt%的聚醚酰亚胺、80~99.6wt%的有机溶剂,所述有机溶剂采用N-乙基吡咯烷酮、N,N-二甲基乙酰胺或环丁砜;所述碳纤维用复合型耐高温上浆剂为用于制备聚醚醚酮、聚苯硫醚、聚苯硫醚砜、聚醚砜、聚酰亚胺、聚醚酰亚胺或聚四氟乙烯为基体的复合材料或3D打印料的增强碳纤维表面上浆用复合型耐高温上浆剂。

一种碳纤维用复合型耐高温上浆剂的制备方法,包括以下步骤:

在40~60℃下,将聚苯硫醚砜溶解于有机溶剂中,机械搅拌5~10min;随后分别加入聚醚砜和聚醚酰亚胺,机械搅拌10~20min,形成均匀溶液,得到复合型耐高温上浆剂。

本发明所述复合型耐高温上浆剂由耐高温树脂和有机溶剂组成。其中,耐高温树脂包含聚苯硫醚砜、聚醚砜和聚醚酰亚胺。聚苯硫醚砜作为上浆剂主料具有突出的耐高温性能和力学性能,而聚醚砜和聚醚酰亚胺与聚醚醚酮等耐高温基体树脂相容性更佳,三者共同作为上浆剂使用有利于进一步提高改善碳纤维与耐高温基体树脂的界面强度。

一种商品碳纤维的先褪浆再上浆工艺方法,利用本发明所述碳纤维用复合型耐高温上浆剂,对预先褪浆干净的商品碳纤维进行再上浆改性处理,包括如下步骤:

a.采用褪浆液,对待处理的碳纤维表面原有上浆剂进行褪浆处理,所述待处理的碳纤维为上浆了通用型上浆剂的商品碳纤维;将碳纤维置于110~180℃环境中保持1~5min,随后取出并迅速放入液氮中浸泡5~60s,然后取出放入褪浆液中,超声波震荡15~120min,取出烘干得到褪浆干净的碳纤维;

b.利用碳纤维用复合型耐高温上浆剂,对褪浆干净的碳纤维表面进行重新上浆处理,完成碳纤维的再上浆工艺。

优选地,在所述步骤a中,所述褪浆液组成及质量配比为:20~40wt%的二氯甲烷、20~40wt%的苯甲醇、10~30wt%的甲醇、5~10wt%的N-乙基吡咯烷酮、0.5~3wt%的苯酚、2~7wt%的过氧化氢、2.5~10wt%的表面活性剂十六烷基三甲基溴化铵。

本发明提供的一种商品碳纤维褪去原厂上浆剂的褪浆处理工艺,所述表面活性剂十六烷基三甲基溴化铵,其不仅在褪浆过程发挥作用,提高褪浆效果,而且待碳纤维褪浆结束,溶剂挥发后,该表面活性剂仍留存在碳纤维表面,从而确保表面活性剂与碳纤维表面的充分接触和润湿,既简化了工艺又提升了后续上浆效果。

本发明的目的之二在于提供了商品碳纤维褪浆后再上浆上述复合型耐高温上浆剂的工艺方法。其关键之处有三:

①褪浆液能否有效褪除商品碳纤维出厂时所带的通用上浆剂,以消除它们对后续再上浆工艺及复合材料性能的不利影响;

②新的上浆剂与碳纤维及聚醚醚酮树脂是否具有较强的界面结合作用,且满足330-380℃范围高温加工需求;

③通过将褪浆成分直接转化为上浆成分,实现工艺简化和性能提高。

由于碳纤维与环氧树脂通用型上浆剂的收缩率存在明显差异,经过先升温再低温液氮浸泡,然后再放入常温褪浆液的步骤,商品碳纤维与原厂上浆剂之间的结合力将显著降低。褪浆液更容易进入两者之间的缝隙,从而增强褪浆效果,褪浆过程所需时间大大缩短。

优选地,在所述步骤b中,将碳纤维用复合型耐高温上浆剂预热至40~60℃,将褪浆干净的碳纤维放入碳纤维用复合型耐高温上浆剂中浸泡5~30s,取出刮去多余浆料,以60~100℃烘干10~60min,即得到复合型耐高温上浆剂重新上浆的碳纤维。

一种耐高温基体树脂复合材料或3D打印料,以聚醚醚酮、聚苯硫醚、聚苯硫醚砜、聚醚砜、聚酰亚胺、聚醚酰亚胺或聚四氟乙烯耐高温树脂为基体;将利用本发明所述碳纤维的再上浆工艺方法制备的复合型耐高温上浆剂重新上浆碳纤维与耐高温基体树脂挤出造粒,或者切断成短纤填充耐高温基体树脂,碳纤维填充量为15~50wt%,并以330~380℃温度条件下热加工成型,得到碳纤维增强耐高温基体树脂复合材料或3D打印料产品,成型过程中碳纤维表面上浆剂不会分解。

本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:

1.本发明复合型耐高温上浆剂上浆后的碳纤维剪碎后,通过密炼机与聚醚醚酮颗粒熔融共混,随后通过模压成型,制成碳纤维/聚醚醚酮复合材料的拉伸试样,测试其力学性能。相较于商品碳纤维复合材料,复合型耐高温上浆剂上浆后的碳纤维复合材料拉伸强度有明显提高;

2.本发明为用以填充增强加工温度在330~380℃范围的耐高温基体树脂的碳纤维提供一种耐高温上浆剂,能明显改善碳纤维与树脂基体之间的界面作用,提高复合材料及3D打印料的力学性能;

3.本发明方法简单易行,成本低,适合推广使用。

附图说明

图1分别为商品碳纤维、褪浆后的碳纤维、本发明的复合型耐高温上浆剂重新上浆的碳纤维表面微观形貌比较。

图2为本发明实施例一的复合型耐高温上浆剂上浆的碳纤维与商品碳纤维的DTG谱图比较。

图3为本发明实施例一的复合型耐高温上浆剂上浆的碳纤维和商品碳纤维分别与聚醚醚酮制备成复合材料的拉伸强度比较。

具体实施方式

以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:

实施例一:

在本实施例中,包括耐高温上浆剂的制备方法、商品碳纤维的褪浆工艺、对褪浆商品碳纤维再上浆耐高温上浆剂的工艺、制备耐高温复合材料工艺,具体如下:

(1)褪浆液制备:

取一个容器,按照质量比分别倒入40%的二氯甲烷、20%的苯甲醇、10%的甲醇、10%的N-乙基吡咯烷酮、3%苯酚、7%过氧化氢、10%十六烷基三甲基溴化铵,搅拌均匀,配制成褪浆液,倒入超声波清洗机中,得到褪浆液,备用;

(2)复合型耐高温上浆剂制备:

另取一个容器,按照质量比分别加入10%的聚苯硫醚砜,再加入80%的N,N-二甲基乙酰胺,升温至60℃并保持,搅拌10min,随后分别加入5%的聚醚砜、5%的聚醚酰亚胺,继续搅拌20min,待聚合物完全溶解后形成均匀的溶液即为复合型耐高温上浆剂,备用;

(3)碳纤维褪浆后再上浆复合型耐高温上浆剂:

将商品碳纤维置于110℃环境中保持5min,随后取出迅速放入液氮中浸泡60s,取出;然后将碳纤维放入装有褪浆液的超声波清洗机中,没入褪浆液面下超声波震荡15min,取出烘干;再放入60℃预热的复合型耐高温上浆剂中浸泡30s,取出刮去多余浆料,以100℃烘干10min即得到复合型耐高温上浆剂重新上浆的碳纤维;

(4)耐高温树脂基复合材料或3D打印料制备:

将50%的上述复合型耐高温上浆剂重新上浆的碳纤维切断成短纤,填充改性聚醚醚酮基体树脂,以380℃加工成型,得到耐高温基体树脂复合材料。

实验测试分析:

将本实施例制备的复合型耐高温上浆剂重新上浆的碳纤维作为试验样品,进行实验测试分析,参加图1,图1分别为商品碳纤维、褪浆后的碳纤维、本发明的复合型耐高温上浆剂重新上浆的碳纤维表面微观形貌比较。由图1可知,重新上浆的耐高温上浆剂可以有效填补褪浆干净的碳纤维表面存在的颗粒和沟槽,使碳纤维表面变得光滑,有利于后续复合材料的制备。图2为本实施例复合型耐高温上浆剂上浆的碳纤维与商品碳纤维的DTG谱图比较。由图2可知,商品碳纤维从200℃即出现失重,说明此时通用型上浆剂开始热分解,最大失重出现在360℃左右,此时通用型上浆剂基本破坏;而耐高温上浆剂上浆碳纤维在400℃才开始失重,最大失重出现在450℃,说明本发明的耐高温上浆剂完全可以适应330~380℃的加工温度。图3为本实施例中复合型耐高温上浆剂上浆的碳纤维和商品碳纤维分别与聚醚醚酮制备成复合材料的拉伸强度比较。由图3可知,采用本发明耐高温上浆剂上浆碳纤维填充的聚醚醚酮复合材料,其拉伸性能相较商品碳纤维填充的复合材料有明显上升。本实施例说明本实施例提供的复合型耐高温上浆可以适应耐高温基体树脂的加工温度,加工期间不会热解破坏,同时可以明显改善碳纤维与树脂基体之间的界面作用,提高复合材料及3D打印料的力学性能。

实施例二:

在本实施例中,包括耐高温上浆剂的制备方法、商品碳纤维的褪浆工艺、对褪浆商品碳纤维再上浆耐高温上浆剂的工艺、制备耐高温复合材料工艺,具体如下:

(1)褪浆液制备:

取一个容器,按照质量比分别倒入20%的二氯甲烷、40%的苯甲醇、30%的甲醇、5%N-乙基吡咯烷酮、0.5%苯酚、2%过氧化氢、2.5%十六烷基三甲基溴化铵,搅拌均匀,配制成褪浆液,倒入超声波清洗机中,备用;

(2)复合型耐高温上浆剂制备:

又取一个容器,按照质量比分别加入0.2%的聚苯硫醚砜,再加入99.6%的N-乙基吡咯烷酮,升温至40℃并保持,搅拌5min,分别加入0.1%的聚醚砜、0.1%的聚醚酰亚胺,继续搅拌10min,待合物完全溶解后形成均匀的溶液即为复合型耐高温上浆剂,备用;

(3)碳纤维褪浆后再上浆复合型耐高温上浆剂:

将商品碳纤维置于180℃环境中保持1min,随后取出迅速放入液氮中浸泡5s,取出;然后将碳纤维放入装有褪浆液的超声波清洗机中,没入褪浆液超声震荡120min,取出烘干;再放入40℃预热的复合型耐高温上浆剂中浸泡5s,取出刮去多余浆料,以60℃烘干60min即得到复合型耐高温上浆剂重新上浆的碳纤维;

(4)耐高温树脂基复合材料或3D打印料制备

将15%的上述复合型耐高温上浆剂重新上浆的碳纤维切断成短纤,填充改性聚苯硫醚基体树脂,以330℃加工成型。

实施例三:

在本实施例中,包括耐高温上浆剂的制备方法、商品碳纤维的褪浆工艺、对褪浆商品碳纤维再上浆耐高温上浆剂的工艺,具体如下:

(1)褪浆液制备:

取一个容器,按照质量比分别倒入30%的二氯甲烷、30%的苯甲醇、20%的甲醇、8%N-乙基吡咯烷酮、2%苯酚、5%过氧化氢、5%十六烷基三甲基溴化铵,搅拌均匀,配制成褪浆液,倒入超声波清洗机中,备用;

(2)复合型耐高温上浆剂制备:

又取一个容器,按照质量比分别加入5%的聚苯硫醚砜,再加入90%的环丁砜,升温至50℃并保持,搅拌8min。随后分别加入2%的聚醚砜和3%的聚醚酰亚胺,继续搅拌15min,待聚合物完全溶解后形成均匀的溶液即为复合型耐高温上浆剂,备用;

(3)碳纤维褪浆后再上浆复合型耐高温上浆剂:

将商品碳纤维置于145℃环境中保持3min,随后取出迅速放入液氮中浸泡30s,取出;然后将碳纤维放入装有褪浆液的超声波清洗机中,没入褪浆液面下超声震荡60min,取出烘干;再放入50℃预热的复合型耐高温上浆剂中浸泡20s,取出刮去多余浆料,以80℃烘干35min即得到复合型耐高温上浆剂重新上浆的碳纤维;

(4)耐高温树脂基复合材料或3D打印料制备

以32%的质量比例,将上述复合型耐高温上浆剂重新上浆的碳纤维与聚苯硫醚砜基体树脂共同挤出造粒,加工温度360℃制备3D打印料。

综上所述,本发明涉及一种用于制备聚醚醚酮、聚苯硫醚、聚苯硫醚砜、聚醚砜、聚酰亚胺、聚醚酰亚胺或聚四氟乙烯为基体复合材料及3D打印料的增强碳纤维表面上浆用复合型耐高温上浆剂及应用方法:包括耐高温上浆剂的制备方法、商品碳纤维的褪浆工艺、对褪浆商品碳纤维再上浆耐高温上浆剂的工艺,以及复合材料及3D打印料的制备工艺参数设定。该耐高温上浆剂的组成及质量百分比为:0.2~10wt%的聚苯硫醚砜,0.1~5wt%的聚醚砜,0.1~5wt%聚醚酰亚胺,80~99.6wt%的有机溶剂。本发明为用以填充增强加工温度在330~380℃范围的耐高温基体树脂的碳纤维提供一种耐高温上浆剂,可以明显改善碳纤维与树脂基体之间的界面作用,提高复合材料及3D打印料的力学性能。

上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明的技术原理和发明构思,都属于本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种吸湿排汗棉布的拒水整理工艺

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!