用于治疗设备的反馈检测

文档序号:834675 发布日期:2021-03-30 浏览:14次 >En<

阅读说明:本技术 用于治疗设备的反馈检测 (Feedback detection for therapeutic devices ) 是由 J·巴瓦尔卡 C·H·德雷瑟 R·凯特卡姆 于 2019-06-20 设计创作,主要内容包括:一种系统包括被配置为将电磁辐射(EMR)束会聚至沿着光轴而定位的焦点区域的聚焦光学器件。该系统还包括被配置为检测从沿着光轴的预定位置发出的信号辐射的检测器。该系统附加地包括被配置为部分地基于由检测器检测到的信号辐射来调整EMR束的参数的控制器。该系统还包括沿着光轴在焦点区域与聚焦光学器件之间定位于远离焦点区域的预定深度的窗口,其中窗口被配置为与组织的表面进行接触。(A system includes focusing optics configured to converge a beam of electromagnetic radiation (EMR) to a focal region located along an optical axis. The system also includes a detector configured to detect signal radiation emanating from a predetermined location along the optical axis. The system additionally includes a controller configured to adjust a parameter of the EMR beam based in part on the signal radiation detected by the detector. The system also includes a window positioned at a predetermined depth from the focal region between the focal region and the focusing optics along the optical axis, wherein the window is configured to make contact with a surface of the tissue.)

用于治疗设备的反馈检测

相关申请的交叉引用

本申请要求于2018年6月22日提交的、名称为“用于治疗设备的色素检测”的美国临时专利申请第62/688,940号、于2018年6月22日提交的名称为“用于基于EMR的组织治疗的衍射光学器件”的美国临时专利申请第62/688,913号、以及于2018年6月22日提交的名称为“用于组织治疗的选择性等离子体生成”的美国临时专利申请第62/688,855号的权益。这些申请中的每个申请以其整体内容通过引用并入本文。

背景技术

黑斑或黄褐斑(妊娠面斑)是一种常见的皮肤状况,其特征在于脸上的棕褐色至暗灰褐色的、不规则的、界限分明的斑和斑块。斑被认为是由于黑色素的过多产生而导致的,黑色素由角质细胞吸收(表皮黑变病)或沉积于真皮中(真皮黑变病,噬黑素细胞)。黑斑的色素化外观可以因某些状况(诸如怀孕、日晒、某些药物(例如口服避孕药)、激素水平和遗传)而被加剧。可以根据过量黑色素的位置将状况分类为表皮的、真皮的或混合的。黑斑的典型症状主要包括暗的、形状不规则的斑块或斑,其常见于上脸颊、鼻子、上唇和前额上。这些斑块通常随着时间而逐渐发展。

黑斑可以引起相当大的困窘和苦恼。这对于深色肤色和女性而言尤其是问题,其影响了至多30%的东南亚女性以及许多拉丁美洲女性。根据人群研究,仅四分之一到二十分之一的受影响个体是男性。根据美国皮肤病学会的数据,美国大约有600万女性应对黑斑的困扰。在全球范围内,患有黑斑的人数在亚太地区估计为1.57亿人,在拉丁美洲估计为5800万,且在欧洲估计为300万。黑斑通常出现在20岁至40岁之间。由于尚无针对黑斑的疗法,因此接受黑斑治疗的美国患者目前尝试了许多不同类型的治疗。79%的美国患者尝试局部用药;而37%使用口服治疗;且25%使用激光。

与通常存在于皮肤的表皮区域中(即,存在于组织表面处或附近)的其他色素化结构不同,真皮(或深部)黑斑的特征通常在于在底层真皮部分中广泛存在黑色素和噬黑素细胞。因此,由于更加难以接近和影响位于皮肤深处的这样的色素化细胞和结构,因此对真皮黑斑的治疗(例如使变暗的色素化区域的外观变淡)可能特别具有挑战性。因此,主要影响上层表皮(并且通常是针对黑斑的第一疗程)的常规嫩肤治疗(诸如面部剥落(激光或化学)、磨皮、局部制剂等)在治疗真皮黑斑方面可能是无效的。

另外,多达50%的黑斑患者还经历着其他色素沉着过度问题。在所有色素性疾病当中,黑斑是最大比例的患者有可能会去皮肤科医生处就诊的一种色素性疾病。鉴于不完全理解发病机理、其慢性病以及复发率,对该疾病的管理仍然具有挑战性。在治疗后,黑斑可能会复发,通常会比治疗前更糟。而且,可以在治疗表皮黑斑方面起作用的局部治疗未能有效地治疗真皮黑斑或混合黑斑。

发明内容

已经观察到,对某些波长的光或光能的应用可以被色素化细胞强烈吸收,从而损伤这些色素化细胞。然而,使用光能对真皮黑斑的有效治疗引入了若干障碍。例如,必须利用(多个)适当波长的充足光能靶向真皮中的色素化细胞,以破坏或损伤这些色素化细胞,这可以排出或消灭色素沉着中的一些色素沉着并且减少色素化外观。然而,这样的能量可以被上层皮肤组织(诸如表皮和上层真皮)中的色素(例如黑色素)吸收。该近表面吸收可以导致皮肤的外面部分的过度损伤以及能量向更深真皮的传递不足,从而影响其中的色素化细胞。而且,对位于表皮的基底层中的含黑色素黑色素细胞的中度热损伤可以触发黑色素产生的增加(例如色素沉着过度),且对黑色素细胞的严重热损伤可以触发黑色素产生的减少(例如色素沉着不足)。

色素性疾病学会(PDA)评估了不同类型黑斑治疗的临床疗效,以试图就治疗达成共识。他们的成果发表于M.Rendon等人的名称为“Treatment of Melasma(黑斑的治疗)”的论文中,该论文是Rendon等人于2006年5月在美国皮肤病学会杂志中发表的,其审查了之前20年的与黑斑治疗相关的文献并且基于他们的审查做出确定。Rendon等人确定了“小组共识为,针对黑斑的一线疗法应该由有效的局部疗法(主要是固定的三联组合)组成”。并且,Rendon等人确定了“在治疗黑斑时应该很少使用激光,且如果加以应用,那么应该考虑到皮肤类型”。

对Rendon等人的关于黑斑治疗的综合报告的批评可能是其已经过时,因其于2006年发表。M.Sadeghpour等人于2018年在美容外科进展中发表的名称为“Advances in theTreatment of Melasma(治疗黑斑的进展)”的最新文章试图审查目前的黑斑治疗方式。Sadeghpour等人同样得出结论“使用广谱防晒霜和4%对苯二酚乳膏、维甲酸或三联组合乳膏,局部疗法仍然是针对黑斑的一线疗法的黄金标准”。Sadeghpour等人注意到真皮黑斑更加难以治疗,“这是因为对这些黑素体的破坏通常伴随着明显的炎症,该炎症反而刺激了其他黑素原生成”。

因此,对于针对黑斑以及其他难以治疗的色素性疾病的更有效且安全的治疗存在大的未被满足的需要。

已经开发了涉及将光能应用于皮肤中的小的、离散的治疗位置的方法,这些治疗位置被健康组织分隔开以促进愈合。在避免损伤治疗位置周围(例如表皮层中)的健康组织的同时以期望的特异性准确地靶向治疗位置(例如位于真皮层中)可能是具有挑战性的。例如,这需要具有高数值孔径(NA)的光学系统用于将激光束聚焦至治疗位置。高NA光学系统向真皮传递足够高的对焦通量(即,能量密度),同时在表皮中维持足够低的离焦通量。名称为“用于治疗真皮黑斑的方法和装置”的美国专利申请公开第2016/0199132号已经示出该技术在研究设置中对于治疗包括黑斑的真皮色素沉着是有利的。

然而,该技术要求由高NA光学系统形成的焦点区域精确地(例如在约+/-25μm的公差内)定位于靶标组织内的深度处。例如,黑色素细胞通常位于表皮的在约100μm的深度处的基底层内。负责深处黑斑的真皮噬黑素细胞可以存在于表皮的基底层正下方(例如低于50μm)的上层真皮中。因此,几十微米的焦点区域深度的差异可以成为有效地治疗真皮色素沉着与无意地损伤黑色素细胞并且可能导致衰弱的美容效果(例如色素沉着不足)之间的差异。部分地出于该原因,有效地治疗真皮色素沉着的基于EMR的系统尚未在商业上可供使用。

因此,需要开发一种基于EMR的治疗系统,该基于EMR的治疗系统将焦点区域可靠地定位于数十微米(例如约±100μm、约±10μm、约±1μm等)的公差内的规定深度。进一步地,以下是可以期望的,即,基于EMR的治疗系统部分地通过校准(例如通过将焦点区域周期性地放置于具有已知深度的参考处)来实现该性能。此外,在治疗期间使用在校准期间所使用的参考是可以期望的。例如,参考可以包括如下界面,即,建立与治疗区域的稳健接触并且稳定治疗区域的界面。

一些被开发的用于真皮色素治疗的方法(比如由Anderson等人概述的方法)可以采用选择性热离子等离子体生成作为治疗手段。在这些情况下,真皮内的焦点区域处的激光通量高于热离子等离子体阈值(例如109W/cm2),但低于光学击穿阈值(例如1012W/cm2)。这在焦点区域位于真皮内的色素化组织(例如黑色素)处时选择性地导致等离子体形成,但不在真皮中的无色素组织或焦点区域上方的色素化表皮组织中生成等离子体。选择性地形成的热离子等离子体破坏或损伤色素和周围组织。该破坏最终导致真皮色素的清除。因此,在一些实施例中,在治疗期间在被治疗的组织内存在等离子体可以指示有效治疗。由于针对基于激光的皮肤治疗的参数选择通常取决于皮肤类型且因此取决于每个个体患者,因此等离子体的存在可以被用作已经达到正确治疗参数的指示。因此,该反馈对于成功治疗如下状况是期望的,即通常受基于激光的治疗服务不足的人群(例如深色皮肤类型的人群)中的状况(诸如黑斑)。

备选地,在一些情况下,检测到的等离子体的特性可以指示治疗具有不良效果。例如,在一些实施例中,将透射窗口放置于被治疗的皮肤上,以参考皮肤并且在治疗期间阻止其移动。当激光束蚀刻窗口时,治疗有可能会失败。窗口的蚀刻阻止激光向组织的进一步有效透射,并且通常与窗口本身中的非常鲜明的等离子体形成重合。如果利用蚀刻窗口继续进行治疗,那么窗口内的热量积聚将有可能会损伤皮肤的表皮(例如灼伤和起泡)。因此,采用反馈来检测窗口内的等离子体形成并且在其出现时停止治疗是有利的。

根据前述内容,可以理解,在治疗期间的等离子体形成对治疗既可以是有利的又可以是有害的。因此,提供等离子体检测的系统和方法可以实时地连续检测等离子体的特性并且区分对组织治疗有益的等离子体与对组织治疗有害的等离子体。

在一些实施例中,可以期望从治疗设备的角度对被治疗的组织成像并且将该视图投影至屏幕上以供执业医生查看。在一个方面中,治疗设备的放置通常会遮挡执业医生对被治疗的组织的查看。因此,组织成像可以有助于准确放置治疗设备用于靶向受影响的组织。附加地,由于许多色素性状况的治疗目标是美观(例如改善皮肤外观),因此可以在成像期间在可重复成像条件(例如照明和距离)下一致地获取皮肤的图像,使得可以查明治疗效果。

长期以来,患有色素性状况(诸如黑斑)的人们一直希望能够广泛地使用针对其状况的基于EMR的治疗。因此,如下文更详细地讨论的,提供了一种基于EMR的治疗系统,其提供了在靶标组织内的焦点区域的可重复的深度定位。所公开的系统和方法还可以检测和记录等离子体事件,以便记载和追踪治疗安全性和有效性,并且对被治疗组织成像以将EMR准确地传递给治疗区域。这些能力解决了许多技术问题,这些技术问题目前阻止了利用基于EMR系统广泛成功治疗真皮色素沉着以及其他难以治疗的皮肤状况。

在一个实施例中,提供了一种系统。该系统可以包括:聚焦光学器件、检测器、控制器、以及窗口。聚焦光学器件可以被配置为将电磁辐射(EMR)束会聚至沿着光轴而定位的焦点区域。检测器可以被配置为检测从沿着光轴的预定位置发出的信号辐射。控制器可以被配置为部分地基于由检测器检测到的信号辐射来调整EMR束的参数的控制器。窗口可以沿着光轴在焦点区域与聚焦光学器件之间被定位于远离焦点区域的预定深度。窗口可以被配置为与组织的表面进行接触。

在另一实施例中,EMR束可以被配置为在沿着光轴的预定位置处生成等离子体。信号辐射可以从等离子体发出。

在另一实施例中,信号辐射可以从EMR束与窗口之间的相互作用发出。

在另一实施例中,聚焦光学器件还可以被配置为对由检测器检测到的信号辐射成像。

在另一实施例中,该系统还可以包括:扫描器,该扫描器被配置为从组织内的第一区域到组织内的第二区域扫描焦点区域。

在另一实施例中,EMR束还可以被配置为在焦点区域处生成热离子等离子体。

在另一实施例中,窗口还可以被配置为透射EMR束。

在另一实施例中,聚焦光学器件还可以被配置为以至少0.3的数值孔径(NA)来会聚EMR束。

在另一实施例中,EMR束的参数可以包括以下至少一项:脉冲能量、重复率、脉冲持续时间、焦点区域位置、焦点区域大小、波长、或功率。

在另一实施例中,信号辐射可以包括以下至少一项:可见光、红外光、声学信号、超声信号、无线电信号、或温度。

在一个实施例中,提供了一种方法。该方法可以包括:使用窗口接触组织的表面。该方法还可以包括:使用聚焦光学器件将电磁辐射(EMR)束会聚至沿着光轴而定位的焦点区域。该方法还可以包括:使用检测器检测从沿着光轴的位置发出的信号辐射。该方法附加地可以包括:使用控制器部分地基于检测到的信号辐射来调整EMR束的参数。该方法还可以包括:在距离组织的表面预定距离处将焦点区域定位于组织内。

在另一实施例中,该方法还可以包括:使用EMR束在沿着光轴的位置处生成等离子体。信号辐射可以从等离子体发出。

在另一实施例中,该方法还可以包括:引导入射于窗口上的会聚EMR束。信号辐射可以从EMR束与窗口之间的相互作用发出。

在另一实施例中,该方法还包括:使用聚焦光学器件对入射检测器的信号辐射成像。

在另一实施例中,该方法还包括:使用扫描器从组织内的第一区域到组织内的第二区域扫描焦点区域。

在另一实施例中,该方法还包括:使用EMR束在焦点区域处生成热离子等离子体。

在另一实施例中,该方法还包括:使EMR束透射通过窗口。

在另一实施例中,聚焦光学器件还被配置为以至少0.3的数值孔径(NA)来会聚EMR束。

在另一实施例中,EMR束的参数可以包括以下至少一项:脉冲能量、重复率、脉冲持续时间、焦点区域位置、焦点区域大小、波长、或功率。

在另一实施例中,信号辐射包括以下至少一项:可见光、红外光、声学信号、超声信号、无线电信号、或温度。

在一个实施例中,提供了一种系统。该系统可以包括:聚焦光学器件、窗口、光学检测器、控制器、以及载物台。聚焦光学器件可以被配置为将电磁辐射(EMR)束聚焦至沿着光轴而定位的焦点区域。窗口可以与光轴相交,并且该窗口可以被配置为接触组织的表面。光学检测器可以被配置为检测信号辐射,该信号辐射从EMR束与窗口的相互作用发出。控制器可以被配置为确定参考位置,在该参考位置,焦点区域的一部分与窗口的表面基本重合。载物台可以被配置为将焦点区域平移至位于距离参考位置预定距离处的治疗位置。

在另一实施例中,聚焦光学器件和载物台可以被配置为定位组织内的治疗位置。

在另一实施例中,治疗位置可以位于真皮组织内。

在另一实施例中,EMR束可以被配置为在焦点区域处生成热离子等离子体。

在另一实施例中,EMR束可以包括具有至少1皮秒的脉冲持续时间的脉冲。

在另一实施例中,聚焦光学器件还可以被配置为对入射检测器的信号辐射成像。

在另一实施例中,控制器还可以被配置为通过基于信号辐射来确定入射窗口的表面的EMR束的横向宽度并且平移焦点区域直至横向宽度具有最小值为止,从而确定参考位置。

在另一实施例中,检测器还可以被配置为检测信号辐射的强度,并且控制器还可以被配置为通过平移焦点区域直至信号辐射的强度具有最大值为止来确定参考位置。

在另一实施例中,聚焦光学器件还可以被配置为将第二EMR束会聚至第二焦点区域。第二EMR束可以具有以下至少一项:与EMR束的波长相同的波长或与EMR束的波长不同的波长。第二EMR束可以被配置为产生组织中的期望的变化。

在另一实施例中,载物台可以被配置为通过平移以下至少一项来平移焦点区域:聚焦光学器件、一个或多个光学元件、以及窗口。

在一个实施例中,提供了一种方法,其包括:使用聚焦光学器件将电磁辐射(EMR)束会聚至沿着光轴而定位的焦点区域。该方法还可以包括:使用检测器检测信号辐射,该信号辐射从EMR束与同光轴相交的窗口的相互作用发出。该方法还可以包括:使用控制器基于检测到的信号辐射来确定沿着光轴的参考位置。在参考位置处,焦点区域的一部分可以与窗口的表面基本重合。该方法还可以包括:将焦点区域平移至位于距离参考位置预定距离处的治疗位置。

在另一实施例中,该方法还可以包括:使用窗口接触组织的表面,使得治疗位置可以位于组织内。

在另一实施例中,预定距离可以被配置为使治疗位置位于真皮组织内。

在另一实施例中,EMR束可以被配置为在焦点区域中生成热离子等离子体。

在另一实施例中,EMR束可以包括具有至少1皮秒的脉冲持续时间的脉冲。

在另一实施例中,检测信号辐射还可以包括:使用聚焦光学器件对入射检测器的信号辐射成像。

在另一实施例中,确定参考位置还可以包括:使用控制器基于信号辐射来确定入射窗口的表面的EMR束的横向宽度;以及沿着光轴平移焦点区域,直至横向宽度具有最小值为止。

在另一实施例中,确定参考位置还可以包括:使用检测器检测信号辐射的强度;以及平移焦点区域,直至信号辐射的强度具有最大值为止。

在另一实施例中,该方法还可以包括:使用聚焦光学器件将第二EMR束会聚至第二焦点区域。第二EMR束可以具有以下至少一项:与EMR束的波长相同的波长或与EMR束的波长不同的波长。第二EMR束可以被配置为产生组织中的期望的变化。

在另一实施例中,平移焦点区域还可以包括:平移以下至少一项:聚焦光学器件、一个或多个光学元件、以及窗口。

在一个实施例中,提供了一种系统,并且该系统可以包括:辐射源、窗口、聚焦光学器件、扫描器、检测器、以及控制器。辐射源可以被配置为生成被配置为产生组织中的期望的变化的治疗辐射。窗口可以被配置为接触组织的表面。聚焦光学器件可以被配置为将被配置为在焦点区域处生成等离子体的治疗辐射聚焦至焦点区域。扫描器可以被配置为扫描焦点区域。检测器可以被配置为检测从等离子体发出的信号辐射。控制器可以被配置为:基于检测到的信号辐射来确定等离子体是否至少部分地位于窗口内,并且基于该确定来控制治疗辐射的一个或多个参数。

在另一实施例中,控制器还可以被配置为确定等离子体的一个或多个特性。

在另一实施例中,等离子体的一个或多个特性可以包括以下至少一项:等离子体的存在、等离子体的强度、等离子体的频谱含量、以及等离子体的位置。

在另一实施例中,控制器还可以被配置为基于确定来终止治疗辐射。

在另一实施例中,治疗辐射的一个或多个参数可以包括以下至少一项:每脉冲能量、重复率、焦点区域的位置、以及焦点区域的大小。

在另一实施例中,组织中的期望的变化可以包括在发色团存在的情况下生成选择性热离子等离子体。

在另一实施例中,控制器还可以被配置为记录信号辐射的特性。

在另一实施例中,控制器还可以被配置为:记录在第一位置处从第一等离子体发出的第一信号辐射的第一特性;将第一特性映射至针对第一位置的坐标;记录在第二位置处从第二等离子体发出的第二信号辐射的第二特性;以及将第二特性映射至针对第二位置的坐标。

在另一实施例中,控制器还可以被配置为基于信号辐射的强度来确定等离子体是否至少部分地位于窗口内。

在另一实施例中,控制器还可以被配置为基于信号辐射的频谱分量来确定等离子体是否至少部分地位于窗口内。

在一个实施例中,提供了一种方法。该方法可以包括:利用辐射源生成被配置为产生组织中的期望的变化的治疗辐射。该方法还可以包括:使用窗口接触组织的表面。该方法还可以包括:利用聚焦光学器件将治疗辐射聚焦至焦点区域。该方法附加地可以包括:利用扫描器扫描焦点区域。该方法附加地可以包括:利用治疗辐射在焦点区域处生成等离子体。该方法还可以包括:利用检测器检测从等离子体发出的信号辐射。该方法附加地可以包括:使用控制器基于检测到的信号辐射来确定等离子体是否至少部分地位于窗口内。该方法还可以包括:使用控制器基于该确定来控制治疗辐射的一个或多个参数。

在另一实施例中,该方法还可以包括:利用控制器确定等离子体的一个或多个特性。

在另一实施例中,等离子体的一个或多个特性可以包括以下至少一项:等离子体的存在、等离子体的强度、等离子体的频谱含量、以及等离子体的位置。

在另一实施例中,该方法还可以包括:使用控制器基于确定来终止治疗辐射。

在另一实施例中,治疗辐射的一个或多个参数可以包括以下至少一项:每脉冲能量、重复率、焦点区域的位置、以及焦点区域的大小。

在另一实施例中,组织中的期望的变化可以是在发色团存在的情况下生成选择性热离子等离子体。

在另一实施例中,该方法可以包括:使用控制器记录信号辐射的特性。

在另一实施例中,该方法还可以包括:使用控制器记录在第一位置处从第一等离子体发出的第一信号辐射的第一特性;将第一特性映射至针对第一位置的坐标;使用数据获取设备记录在第二位置处从第二等离子体发出的第二信号辐射的第二特性;以及将第二特性映射至针对第二位置的坐标。

在另一实施例中,确定等离子体是否至少部分地位于窗口内可以基于信号辐射的强度。

在另一实施例中,确定等离子体是否至少部分地位于窗口内可以基于信号辐射的频谱分量。

在一个实施例中,提供了一种系统,并且该系统可以包括:辐射源、聚焦光学器件、检测器、以及治疗辐射。辐射源可以被配置为利用成像辐射来对组织进行照明。聚焦光学器件可以被配置为对组织的视图成像。检测器可以被配置为检测组织的视图的图像。治疗辐射可以被配置为使用聚焦光学器件被聚焦至部分地基于图像所指定的靶标治疗区域内的焦点区域。

该系统还可以包括被配置为将视图扫描到组织的第二区域的扫描器。聚焦光学器件还可以被配置为从组织的第二区域对视图的第二图像成像。检测器还可以被配置为检测第二图像。

在另一实施例中,扫描器还可以被配置为扫描靶标治疗区域内的焦点区域。

在另一实施例中,该系统还可以包括被配置为将图像和第二图像拼接成映图的控制器。映图可以被配置为用于确定以下至少一项:用于治疗辐射的诊断、治疗计划、以及治疗参数。

在另一实施例中,该系统还可以包括窗口,该窗口被配置为接触组织的表面,使得焦点区域位于距离组织的表面的预定深度。

在另一实施例中,该系统还可以包括被配置为记录图像的控制器。

在另一实施例中,该系统还可以包括被配置为部分地基于图像来控制治疗辐射的参数的控制器。

在另一实施例中,治疗辐射可以被配置为在焦点区域附近的发色团处选择性地生成等离子体。

在另一实施例中,聚焦光学器件还可以被配置为使用以下至少一项对第一图像成像:显微成像、宽视场成像、以及反射共焦成像。

在另一实施例中,该系统还可以包括被配置为显示图像的显示器。

在一个实施例中,提供了一种方法。该方法可以包括:使用辐射源利用成像辐射对组织进行照明。该方法还可以包括:使用聚焦光学器件对组织的视图的图像成像。该方法附加地可以包括:使用检测器检测图像。该方法还可以包括:部分地基于图像来指定组织的靶标治疗区域。该方法还可以包括:使用聚焦光学器件将治疗辐射会聚至靶标治疗区域内的焦点区域。

在另一实施例中,该方法还可以包括:使用扫描器将视图扫描至组织的第二区域;使用聚焦光学器件从组织的第二区域对视图的第二图像成像;以及使用检测器检测第二图像。

在另一实施例中,该方法还可以包括:使用扫描器扫描靶标治疗区域内的焦点区域。

在另一实施例中,该方法还可以包括:将图像和第二图像一起拼接成映图。

在另一实施例中,该方法还可以包括:从映图确定以下至少一项:用于治疗辐射的诊断、治疗计划以及治疗参数。

在另一实施例中,该方法还可以包括:使用窗口接触组织的表面,使得焦点区域位于距离组织的表面的预定深度。

在另一实施例中,该方法还可以包括:使用控制器记录图像。

在另一实施例中,该方法还可以包括:使用控制器部分地基于图像来控制治疗辐射的参数。

在另一实施例中,治疗辐射可以被配置为在焦点区域附近的发色团处选择性地生成等离子体。

在另一实施例中,对第一图像成像可以包括以下至少一项:显微成像、宽视场成像、或反射共焦成像。

在另一实施例中,该方法还可以包括:使用显示器显示图像。

附图说明

将根据以下结合附图所进行的详细描述更充分地理解本公开的实施例,在附图中:

图1图示了根据一些实施例的治疗系统的例示性实施例;

图2是对被聚焦至皮肤中的真皮层的色素化区域中的电磁辐射(EMR)束的示意性图示。

图3A是针对黑色素的例示性吸收光谱图;

图3B是针对血红蛋白的例示性吸收光谱图;

图4图示了黑色素和静脉血的吸收系数和皮肤中的光的散射系数与波长的关系的曲线图;

图5是根据一些实施例的对治疗系统的示意性图示;

图6是根据一些实施例的对光学系统的示意性图示;

图7是根据一些实施例的对具有显微镜附件的光学系统的示意性图示;

图8是根据一些实施例的对具有光纤耦合器附件的光学系统的示意性图示;

图9图示了根据一些实施例的等离子体检测方法的流程图;

图10图示了根据一些实施例的等离子体检测系统的示意图;

图11A是根据一些实施例的对治疗光学系统的示意性图示;

图11B图示了具有黑色素纹身的皮肤样本的截面的组织学;

图12图示了根据一些实施例的与来自在黑色素纹身中生成的等离子体的辐射和来自在光洁皮肤中生成的无等离子体的辐射相关联的光谱;

图13图示了根据一些实施例的与来自在碳纹身中生成的等离子体的辐射和来自在光洁皮肤中生成的无等离子体的辐射相关联的光谱;

图14图示了根据一些实施例的由皮肤样本中的等离子体生成的辐射的光谱;

图15图示了根据一些实施例的来自使用蓝宝石窗口形成的等离子体的辐射光谱;

图16A图示了根据一些实施例的等离子体检测系统的例示性版本的正视图;

图16B图示了根据一些实施例的等离子体检测系统的例示性版本的横截面视图;

图16C图示了根据一些实施例的等离子体检测系统的例示性版本的细节视图;

图17图示了根据一些实施例的用于窗口参考的流程图;

图18A图示了根据一些实施例的窗口参考系统的示意图;

图18B图示了根据一些实施例的窗口参考系统的性能;

图19图示了根据一些实施例的用于共焦成像的例示性工作台样机;

图20图示了根据一些实施例的最大辐射强度量度;

图21A图示了根据一些实施例的未附接有可移除窗口参考系统的治疗系统的例示性版本的正视图;

图21B图示了根据一些实施例的附接有可移除窗口参考系统的治疗系统的例示性版本的正视图;

图21C图示了根据一些实施例的附接有可移除窗口参考系统的治疗系统的例示性版本的横截面视图;

图22A图示了根据一些实施例的未附接有窗口参考系统的治疗系统的例示性版本的正视图;

图22B图示了根据一些实施例的附接有窗口参考系统的治疗系统的例示性版本的正视图;

图22C图示了根据一些实施例的附接有窗口参考系统的治疗系统的例示性版本的横截面视图;

图23图示了根据一些实施例的基于成像和辐射的治疗的方法的流程图;

图24图示了根据一些实施例的基于成像和辐射的治疗系统的示意图;

图25示意性地图示了根据一些实施例的拼接图像;

图26A图示了根据一些实施例的基于成像和辐射的治疗系统的例示性版本的正视图;

图26B图示了根据一些实施例的基于成像和辐射的治疗系统的例示性版本;

图27A示出了根据一些实施例的使用基于成像和辐射的治疗系统的例示性版本拍摄的黑白图像;以及

图27B示出了根据一些实施例的包括使用基于成像和辐射的治疗系统的例示性版本拍摄的多个图像的拼接黑白图像。

应注意,图式并不一定按比例绘制。图式仅旨在描绘本文中所公开的主题的典型方面,且因此不应被视为限制本公开的范围。在本文中具体描述并在附图中图示的系统、设备以及方法是非限制性例示性实施例。

具体实施方式

现在将描述某些例示性实施例以提供对本文中所公开的设备和方法的结构、功能、制造和使用的原理的整体理解。在附图中图示了这些实施例的一个或多个示例。本领域的技术人员应理解,在本文中具体描述并在附图中图示的设备和方法是非限制性例示性实施例,并且本发明的范围仅由权利要求书限定。结合一个例示性实施例图示或描述的特征可以与其他实施例的特征组合。这样的修改和变型旨在被包括在本发明的范围内。

下文相对于皮肤的色素性状况(诸如黑斑)的治疗详细地讨论本公开的实施例,以改善此色素性状况的外观。然而,所公开的实施例可以在不受限制的情况下用于治疗其他色素性状况和非色素性状况以及其他组织靶标和非组织靶标。色素性状况的示例可以包括但不限于,炎症后色素沉着过度、眼镜周围的深色皮肤、深色眼睛、咖啡色斑块、Becker痣、太田痣、先天性黑素细胞痣、雀斑(斑点)以及着色斑。可以被治疗的色素化组织和结构的附加示例包括但不限于,富含血铁黄素的结构、色素化胆结石、含有纹身的组织以及富含黄体素、玉米黄素、视紫红质、类胡萝卜色素、胆绿素、胆红素和血红蛋白的结构。用于治疗非色素化结构、组织以及状况的靶标的示例可以包括但不限于,毛囊、毛干、血管病变、感染性状况、皮脂腺、痤疮等。

治疗各种皮肤状况的方法(诸如出于美容目的)可以使用本文中所描述的系统进行。应理解,尽管这样的方法可以由医师进行,但非医师(诸如美容师和其他受过合适训练的人员)可以在没有医师监督的情况下使用本文中所描述的系统来治疗各种皮肤状况。

进一步地,在本公开中,实施例的相同名称的部件通常具有类似特征,且因此,在特定实施例内,不必充分地阐述每个相同名称的部件的每个特征。另外,就在所公开的系统、设备以及方法的描述中使用线性或圆形尺寸的程度而言,这样的尺寸并不旨在限制可以结合这样的系统、设备以及方法使用的形状的类型。本领域的技术人员应认识到,可以针对任何几何形状容易地确定这样的线性和圆形尺寸的等效物。系统和设备及其部件的大小和形状可以至少取决于将使用系统和设备的主体的解剖、系统和设备将与之一起使用的部件的大小和形状以及将使用系统和设备的方法和过程。

一般而言,描述了可以将电磁辐射(EMR)(例如激光束)聚焦至组织中的治疗区域的高数值孔径(NA)光学治疗系统。除非另外提及,否则术语“EMR”、“EMR束”以及“激光束”在本文中可以互换地采用。所聚焦的激光束可以在不损害周围组织的情况下将光能传递给治疗区域。所传递的光能可以例如在不影响周围区域(例如上层表皮层、真皮层的其他部分等)的情况下破坏皮肤的真皮层的治疗区域中的色素化发色团和/或靶标。在其他实施方式中,所传递的光能可以引起纹身移除或更改或血红蛋白相关的治疗。

在名称为“用于治疗真皮黑斑的方法和装置”的美国专利申请公开第2016/0199132号和名称为“真皮黑斑的选择性治疗的方法和装置”的美国临时申请第62/438,818号中公开了用于利用光或光能治疗皮肤状况的例示性方法和设备,这些申请中的每个申请特此以其整体内容通过引用并入本文。

一般而言,提供了用于治疗组织中的色素性状况的系统和对应方法。如下文更详细地讨论的,所公开的系统和方法采用电磁辐射(EMR)(诸如激光束)来将预定量的能量传递给靶标组织。可以将EMR聚焦至焦点区域,并且可以相对于靶标组织在任何方向上平移或旋转焦点区域。预定量的辐射可以被配置为热破坏或以其他方式损伤展现出色素性状况的组织的部分。以这样的方式,可以将预定量的能量传递给靶标组织内的任何位置以治疗色素性状况,诸如以改善其外观。

图1图示了治疗系统10的一个例示性实施例。如所示出的,治疗系统10包括安装平台12、发射器14以及控制器16。安装平台12可以包括一个或多个操纵器或臂20。臂20可以耦合至发射器14以对主体24的靶标组织22执行各种治疗。安装平台12和发射器14的操作可以由用户手动地指导或使用控制器16(例如经由用户界面)指导。在某些实施例(未示出)中,发射器可以具有手持式形状,并且可以省略安装平台12。

发射器14和控制器16(可选地,和安装平台12)可以根据任何合适的通信协议经由通信链路26彼此通信,该通信链路26可以是携载任何合适类型的信号(例如电信号、光信号、红外信号等)的任何合适类型的有线和/或无线通信链路。

控制器16的实施例可以被配置为控制发射器14的操作。在一个方面中,控制器16可以控制EMR 30的移动。如下文详细地讨论的,发射器14可以包括用于发射EMR 30的源32和用于操纵EMR 30的扫描系统34。作为示例,扫描系统34可以被配置为将EMR 30聚焦至焦点区域并且在空间上平移和/或旋转该焦点区域。控制器16可以经由通信链路26向源32发送信号,以命令源32发射具有一个或多个所选择的特性(诸如波长、功率、重复率、脉冲持续时间、脉冲能量、聚焦特性(例如焦点体积、Raleigh长度等))的EMR 30。在另一方面中,控制器16可以经由通信链路26向扫描系统34发送信号,以命令扫描系统34利用一个或多个平移和/或旋转操作使EMR 30的焦点区域相对于靶标组织22移动。

本文中在皮肤组织内的靶标(诸如真皮层)的背景下讨论了治疗系统10和方法的实施例。然而,所公开的实施例可以在没有限制的情况下用于治疗主体的任何位置中的任何组织。非皮肤组织的示例可以包括但不限于粘膜组织、生殖器组织、内脏器官组织以及胃肠道组织的表面和次表面区域。

图2是对聚焦至皮肤组织中的真皮层的色素化区域中的激光束的图示的示意图。皮肤组织包括皮肤表面100和上表皮层110或表皮,其在面部区域中的厚度可以是例如约30μm至120μm。表皮110在身体的其他部分中可以略厚。例如,一般而言,表皮的厚度范围可以从约30μm(例如就眼睑而言)到约1500μm(例如就手掌或脚掌而言)。在某些皮肤状况(例如牛皮癣)中,这样的表皮可以比以上示例更薄或更厚。底层真皮层120或真皮从表皮110下方延伸至更深的皮下脂肪层(未示出)。展现深层或真皮黑斑的皮肤可以包括含有过量的黑色素的一群色素化细胞或区域130。可以将电磁辐射(EMR)150(例如激光束)聚焦至可以位于真皮120或表皮110内的一个或多个焦点区域160中。EMR 150可以按由黑色素可吸收的一个和多个适合的波长提供。可以基于下文所描述的一个或多个准则来选择(多个)EMR波长。

治疗辐射的特性

用于治疗某些皮肤状况(诸如色素性状况和非色素性状况)的期望波长的确定可以取决于例如皮肤中存在的各种竞争发色团(例如发色团、血红蛋白、纹身墨水等)的波长依赖性吸收系数。图3A是黑色素的例示性吸收光谱图。观察到黑色素对EMR的吸收在约350nm的波长下达到峰值,然后随着波长增加而降低。尽管黑色素对EMR的吸收促进了含有黑色素的区域130的受热和/或破坏,但非常高的黑色素吸收可以造成表皮110中的色素的高吸收并且EMR向真皮120或表皮110中的减少的渗透。如图3A中所图示,黑色素吸收在小于约500nm的EMR波长下为相对较高的。因此,小于约500nm的波长可能不适合充分地渗透到真皮120中,以使其中的色素化区域130受热并且损伤或破坏该色素化区域130。在较小波长下的此增强吸收可以导致对表皮110和真皮120的上部(表面)部分的多余损伤,其中相对较少的未吸收EMR穿过组织进入真皮120的更深部分中。

图3B是氧化的或脱氧的血红蛋白的例示性吸收光谱图。血红蛋白存在于皮肤组织的血管中,并且可以被氧化(HbO2)或脱氧(Hb)。每种形式的血红蛋白可以展现略微不同的EMR吸收特性。如图3B中所图示,Hb和HbO2两者的例示性吸收光谱指示在小于约600nm的EMR波长下的Hb和HbO2两者的高吸收系数,其中吸收在更高波长下显著降低。血红蛋白(Hb和/或HbO2)对被引导至皮肤组织中的EMR的强烈吸收可以导致含有血红蛋白的血管受热,从而在期望治疗是富含黑色素的组织或结构时导致对这些血管结构的多余损伤和可以供黑色素吸收的更少EMR。

针对EMR选择适合的波长还可以取决于与EMR相互作用的组织的波长依赖性散射分布。图4图示了黑色素和静脉(脱氧的)血液的吸收系数与波长的关系的曲线图。图4还图示了皮肤中的光的散射系数与波长的关系的曲线图。黑色素的吸收随着波长而单调减少。如果黑色素是色素性状况治疗的靶标,那么在黑色素中具有高吸收的波长是期望的。这将表明光的波长越短,治疗越高效。然而,血液的吸收在短于800nm的波长下增加,从而增加了无意地靶向血管的风险。此外,由于预期靶标可以位于皮肤表面下方,因此皮肤(例如真皮层)的散射作用可以是显著的。散射减少了到达预期靶标的光量。散射系数随着波长增加而单调减小。因此,虽然较短波长可以有利于黑色素的吸收,但较长波长可以由于减少的散射而有利于更深渗透。类似地,由于在较长波长下的血液吸收较低,因此较长波长更有利于避过血管。

考虑到以上考虑,波长范围可以从约400nm至约4000nm,且更特定地,从约500nm至约2500nm,可以用于选择性地靶向真皮中的某些结构(例如黑色素)。特定地,约800nm和约1064nm的波长可以对这样的治疗有用。800nm的波长可以是有吸引力的,这是因为在该波长下的激光二极管的成本低且容易获得。然而,1064nm由于在该波长下的较低散射而对于靶向更深的病变可以特别有用。1064nm的波长也可以更适合于存在大量表皮黑色素的深色皮肤类型。在这样的个体中,表皮中的黑色素对较低波长EMR(例如约800nm)的较高吸收增加了对皮肤的热损伤的机率。因此,1064nm可以是用于一些个体的某些治疗的治疗辐射的更合适的波长。

各种激光源可以用于生成EMR。例如,可以容易地获得含钕(Nd)激光源,其提供1064nm的EMR。这些激光源可以在脉冲模式下运行,其中重复率在约1Hz至100KHz的范围内。Q开关Nd激光源可以提供脉冲持续时间小于一纳秒的激光脉冲。其他Nd激光源可以提供脉冲持续时间多于一毫秒的脉冲。提供1060nm波长EMR的例示性激光源是来自美国康涅狄格州东格兰比的Nufern公司的20W NuQ光纤激光器。20W NuQ光纤激光器以在约20KHz与约100KHz之间的范围内的重复率提供脉冲持续时间约为100ns的脉冲。另一激光源是来自法国莱叙利斯的Quantel公司的Nd:YAG Q-smart 850。Q-smart 850以至多约10Hz的重复率提供具有至多约850mJ的脉冲能量和约6ns的脉冲持续时间的脉冲。

本文中所描述的系统可以被配置为将EMR聚集于在高度会聚的束中。例如,系统可以包括聚焦或会聚透镜布置,其具有从大约0.3至1(例如在约0.5与约0.9之间)中选择的数值孔径(NA)。EMR的对应地大的会聚角度可以在透镜的焦点区域(其可以位于真皮内)中提供高通量和强度,在焦点区域上方的上层组织中有较低的积分通量。此焦点几何形状可以帮助减少色素化真皮区域上方的上层组织中的多余受热或热损伤。例示性光学布置还可以包括准直透镜布置,该准直透镜布置被配置为将EMR从发射布置引导至聚焦透镜布置上。

例示性光学治疗系统可以被配置为将EMR聚焦至焦点区域,该焦点区域具有小于约500μm,例如小于约100μm或甚至小于约50μm(例如小至约1μm)的宽度或光点大小。例如,光点大小可以具有从约1μm至约50μm、从约50μm至约100μm以及从约100μm至约500μm的范围。可以例如在空气中确定焦点区域的光点大小。可以选择此光点大小,作为小到足以在焦点区域中提供高通量或强度的EMR(以有效地辐照真皮中的色素化结构)与大到足以有助于在合理的治疗时间内辐照大区域/体积的皮肤组织之间的平衡。

高NA光学系统沿着光轴将不同能量密度传递给不同深度。例如,具有约0.5的NA的光学系统将辐射聚焦至直径约为2μm的聚焦焦点区域宽度(即,腰部)。焦点区域具有约1J/cm2的聚焦通量(即,能量密度)。由于高NA(即,快速)光学系统,因此在仅离焦10μm的位置处,辐射具有0.03J/cm2的能量密度或3%的聚焦能量密度。仅离焦30μm的辐射的能量密度仅为聚焦能量密度的0.4%(0.004J/cm2)。沿着光轴的能量密度的该急剧变化使得深度选择性组织治疗成为可能;但还需要在靶标组织内对焦点区域的精确深度定位(例如在数十微米内)。

例示性光学布置还可以被配置为将EMR的焦点区域引导至真皮组织内的位于皮肤表面下方的深度处的位置,诸如在约30μm至约2000μm的范围内(例如在约150μm至约500μm之间)。这样的例示性深度范围可以对应于皮肤中的展现真皮黑斑或其他感兴趣靶标的色素化区域的典型观察深度。该焦深可以对应于被配置为接触皮肤表面的装置的下表面与焦点区域的位置之间的沿着光轴的距离。另外,一些实施例可以被配置成治疗表皮内的靶标。例如,光学布置可以被配置成将EMR的焦点区域引导至表皮组织内的位置(例如在皮肤表面下方的约5μm至约2000μm)。又一些实施例可以被配置成治疗真皮深处的靶标。例如,纹身师通常校准其纹身枪以在从皮肤表面下方的约1mm至约2mm的深度刺穿皮肤。因此,在一些实施例中,光学布置可以被配置为在从皮肤表面下方的约0.4mm至2mm的范围内将EMR的焦点区域引导至真皮组织内的位置。

可以期望用于组织治疗的治疗系统能够标识靶标组织中的治疗区域。(例如通过成像:色素、靶标组织中的真皮层与表皮层之间的界面、细胞膜等)。也可以期望监测/检测EMR与靶标组织之间的相互作用(例如组织中的等离子体生成)。另外,基于检测,治疗系统可以(例如通过改变强度、靶标组织中的焦点区域的大小/位置等)修改治疗进程。下文描述了治疗系统的各种实施例。

为了进一步概述,下文呈现了包括一些例示性实施例的参数范围的表。

其中焦点区域的深度是组织内的深度(例如焦点区域的深度=0可以处于约组织的表面处),且M2是表征EMR束的质量的参数。

反馈检测和基于EMR的治疗

图5是对治疗系统500的示意性图示。治疗系统500可以包括光学系统502、EMR检测系统504以及控制器506。光学系统502可以包括用于将由源(例如激光)生成的EMR 510引导至靶标组织550的焦点区域552的光学元件(例如镜、分束器、物镜等中的一者或多者)。EMR510可以包括用于对靶标组织550(例如皮肤)的真皮层和/或表皮层成像的成像辐射。EMR510还可以包括用于治疗靶标组织中的区域(例如靶标组织550的区域522)的治疗辐射。在一些实施方式中,EMR 510可以在给定时间段中仅包括成像辐射和治疗辐射中的一者。例如,EMR 510可以包括针对第一持续时间的治疗辐射和针对第二持续时间的成像辐射。在其他实施方式中,EMR 510可以在给定时间段中同时包括成像辐射和治疗辐射两者。根据一些实施例,成像辐射具有通常等于治疗辐射的波长的波长;并且,成像辐射具有小于治疗辐射的功率。根据另一实施例,成像辐射由除了提供治疗辐射的源以外的成像辐射源提供,并且成像辐射具有与治疗辐射不同的波长。

EMR检测系统504(例如光电二极管、电荷耦合设备(CCD)、光谱仪、光电倍增管等)可以检测由靶标组织550因其与EMR 510和/或靶标组织所反射的EMR 510的一部分的相互作用而生成的信号辐射512。例如,具有高于阈值的强度的EMR 510(例如治疗辐射)可以在靶标组织中生成等离子体。等离子体可以例如由于等离子体与EMR 510的相互作用而产生信号辐射512。信号辐射512可以表示等离子体的特性(例如,等离子体的存在、等离子体的温度、等离子体的大小、等离子体的分量等)。

在一些实施方式中,具有低于阈值的强度的EMR 510(例如成像辐射)可以在不显著地扰动靶标组织550的情况下(例如在不损伤靶标组织550的情况下、在不在靶标组织550中生成等离子体的情况下等)与靶标组织相互作用。从此相互作用中生成的信号辐射512可以用于对靶标组织550(例如靶标组织550的在EMR 510的焦点区域中的部分)成像。该信号辐射512可以用于检测靶标组织550中的色素(例如位于靶标组织的焦点区域中的色素)。根据一些实施例,对非色素化组织成像。例如,在成像辐射(例如EMR 510)穿过具有不同折射率的细胞结构时,将光反射为信号辐射512。

光学系统502和EMR检测系统504可以通信地耦合至控制器506。控制器506可以(例如通过控制光学系统502的操作)改变治疗系统500的操作参数。例如,控制器506可以在靶标组织550中移动EMR 510的焦点区域552。如下文更详细地讨论的,这可以例如通过相对于靶标组织550移动光学系统502和/或通过移动光学系统502内的光学元件(例如通过控制耦合至光学元件的致动器)以改变焦点区域552的位置来完成。控制器506可以从EMR检测系统504接收表征信号辐射512的光学检测的数据。

控制器506可以控制EMR 510的特性。例如,控制器506可以指示EMR 510的源(例如激光源)改变EMR 510的特性(例如强度、重复率、每脉冲能量、平均功率等)。在一些实施方式中,控制器506可以通过在EMR的路径中放置/控制光学元件(例如物镜、衍射光学元件等)来改变EMR 510的光学特性(例如焦点区域的位置、束大小等)。例如,控制器506可以将物镜放置于EMR 510的路径中和/或沿着EMR 510的路径移动物镜以改变EMR 510的焦点区域的大小。

控制器506可以基于对来自EMR检测系统504的信号辐射512的检测来确定靶标组织550的各种特点和/或EMR 510与靶标组织550之间的相互作用(例如靶标组织550中的等离子体生成)。在治疗系统500的一个实施方式中,控制器506可以确定靶标组织550中的色素分布、真皮-表皮层接合部的形貌等中的一者或多者。此外,控制器506可以被配置为生成指示靶标组织550的前述特性中的一个或多个特性的检测到的分布的映图。这样的分布的确定和/或分布映图的生成在本文中可以被称为成像。

在某些实施例中,靶标组织550。例如,在卡氏坐标系中,可以沿着一个或多个轴(例如沿着x轴、y轴、z轴或其组合)扫描靶标。在备选实施例中,可以根据其他坐标系(例如圆柱坐标、球坐标等)执行扫描。可以使用成像束(例如具有低于阈值的强度的EMR 510)执行扫描,并且可以通过EMR检测系统504检测对应于成像束的路径中的靶标组织550中的各种区域的信号辐射512。信号辐射512的特点(例如强度)可以基于靶标组织550中的与成像束相互作用的部分中的色素(例如成像束的焦点区域552中的色素)而改变。控制器506可以从EMR检测系统504接收信号,该信号可以包括表征信号辐射512的检测到的特点(例如强度)的数据。控制器506可以分析接收到的数据(例如将接收到的数据与数据库中的检测到的信号辐射512的预定特点值进行比较),以确定靶标组织550中的色素的存在/特性。

在一些实施方式中,控制器506可以基于信号辐射512来确定要治疗的靶标组织550的一部分的位置(“靶标治疗区域”)。例如,可能需要治疗靶标组织550中的位于与靶标组织550的表面相距预定深度处的层(例如皮肤组织中的真皮层)。可以(例如通过将光学系统502定位于与靶标组织550的表面相距期望距离之外)调整光学系统502,以使得焦点区域552入射于靶标组织550的表面上。这可以例如通过以下方式来完成:沿着z方向扫描光学系统502,直至信号辐射512展现指示EMR 510与靶标组织550的表面之间的相互作用的预定特点为止。例如,可以将界面材料(例如光学平板、凝胶等)放置于靶标组织550的表面上,并且随着焦点区域552从靶标组织550过渡到界面材料,信号辐射512的特点可以改变。这可以指示EMR 510的焦点区域552在组织的表面处或附近的位置。一旦光学系统502被定位在使得EMR 510的焦点区域552位于靶标组织550的表面处或附近,光学系统502就可以(例如沿着z方向)被平移,使得焦点区域552位于靶标组织550的表面下方的预定深度处。

控制器506可以基于从EMR检测系统504接收到的信号来改变治疗系统500的操作参数,该信号包括表征信号辐射512的检测到的特点的数据。例如,EMR检测系统504的一些实施例可以检测靶标组织550中的真皮-表皮(DE)接合部的深度,并且控制器506可以响应于DE接合部的深度而调整焦点区域552的深度。以这样的方式,可以采用DE接合部作为用于确定真皮内的焦点区域552的深度的参考。另外,EMR检测系统540的一些实施例可以(例如经由使用分光光度计)量化存在于皮肤的表皮层中的黑色素的比例。基于黑色素的比例,控制器506可以向指定人员(例如临床医生)建议激光参数的一个或多个变化。根据一些实施例,激光参数的变化可以包括以下至少一项:与检测到的黑色素的比例成反比地改变每脉冲能量;随着黑色素的比例的增加而增加聚焦角度;以及基于黑色素的比例来修改焦点区域552的深度。

在一些实施方式中,可以将声学传感器530(例如声学传感器)耦合至靶标组织550,并且声学传感器530可以检测EMR 510与靶标组织550之间的相互作用的特点。例如,声学传感器可以检测通过靶标组织550中的等离子体(例如在焦点区域552中生成的等离子体)的形成而生成的压力波552。声学传感器530的示例可以包括:压电换能器、电容换能器、超声换能器、Fabry-Perot干涉仪以及压电膜。

在一个方面中,压力波532可以是冲击波,压力的急剧变化以比介质(例如空气)中的声速更快的速度传播通过该介质。在另一方面中,压力波532可以是声波,其以约等于介质中的声速的速度传播通过该介质。

光声成像(Photoacoustic imaging/optoacoustic imaging)是基于光声效果的生物医学成像模态。在光声成像中,将非电离激光脉冲传递到生物组织中(当使用射频脉冲时,该技术被称为热声成像)。一些传递的能量将被吸收并且被转换为热量,从而产生瞬态热弹性膨胀,且因此产生宽带(即,MHz)超声发射。

可以向控制器506传输来自声学传感器530的传感器测量数据。控制器506可以使用该数据以经由信号辐射512验证色素检测。根据一些实施例,通过检测冲击波532来确认治疗。压力波532的存在和/或强度与所生成的等离子体和所执行的等离子体介导的治疗相关。另外,通过映射在哪个焦点区域处检测到压力波532,可以创建和记载被治疗的组织的综合映图。

图6是图示了光学系统600的一个例示性实施例的示图。光学系统600可以将EMR束602从EMR源605引导至靶标组织650。EMR源605可以是激光器(例如来自Quantel的Q-smart450激光器,其具有450mJ的脉冲能量、6纳秒[nS]的脉冲持续时间以及1064nm的波长或1064nm的谐波)。根据一些实施例,可以经由适配器610将EMR束602引入光学系统600中。适配器可以被配置为将生成EMR束602的EMR源固定至关节臂,例如图1的安装平台12的臂20。

根据一些实施例,可以将衍射光学元件(DOE)620(例如分束器、多聚焦光学器件等)放置于EMR束602的路径中。DOE 620可以更改EMR束602的特性并且透射第二EMR束604。例如,DOE 620可以生成聚焦至不同焦点区域的多个子束。在名称为“基于EMR的组织治疗的衍射光学器件”的美国临时申请第62/656,639号中更详细地讨论了用于治疗靶标组织的DOE的实施方式和用途,其全部内容以引用的方式并入本文中。可以通过分束器640(例如二向色分束器)朝向靶标组织650引导由DOE 620透射的第二EMR束604(例如由DOE 620生成的多子束)。二向色分束器的示例可以包括具有约950nm的截止波长、约420nm至约900nm之间的透射带以及约990nm至约1600nm之间的反射带的短通二向色镜/分束器(Thorlabs PNDMSP950R)。第二EMR束604可以由分束器640反射并且被引导至物镜660。物镜660可以经由窗口645将EMR束604聚焦至靶标组织650中的焦点区域652。物镜662的示例是EdmundsOptics PN 67-259非球面透镜,其具有约25毫米(mm)的直径、约0.83的数值孔径(NA)、近红外(NIR)涂层以及约15mm的有效焦距。窗口645可以用于将靶标组织650固持于适当位置。

在一些实施方式中,EMR束602、604可以通过放置于EMR束602、604的路径中的扩束器(未示出)进行扩展。束扩展可以实现光学系统600的期望NA值。例如,由Q-smart 450激光器生成的激光束可以具有约6.5mm的束直径并且可能需要扩束器,该扩束器可以将激光束扩展至直径的两倍。可以使用大约15mm的EFL透镜聚焦所扩展的EMR束602、604,以聚焦具有足够高的NA(例如大于0.3)的EMR束602、604。

光学系统600可以被布置成使得EMR束604的焦点区域652位于靶标组织650的表皮下方。这可以例如通过相对于靶标组织650移动光学系统600和/或沿着EMR 604的束路径移动物镜660来完成。在一个实施方式中,光学系统600/光学系统600中的光学元件的位置可以由控制器(例如控制器506)移动。将焦点区域652放置于表皮下方(例如放置于真皮-表皮(DE)接合部下方)可以减少或基本上抑制表皮中不期望的热量生成,这可以导致表皮的色素沉着过度或色素沉着不足。这还可以允许靶向真皮中的区域以实现热量和/或等离子体生成。

第二EMR束604与靶标组织650之间的相互作用可以导致信号辐射606的生成。如上文所描述,信号辐射606可以包括由等离子体在靶标组织650中生成的辐射(“组织辐射”)。组织辐射可以具有位于分束器640的透射带中的波长。因此,组织辐射可以主要由分束器640透射。信号辐射606还可以包括具有与第二EMR束604的波长类似的波长的辐射(“系统辐射”)。系统辐射的波长可以位于分束器640的反射带中。因此,小部分(例如10%)的系统辐射由分束器640透射。

由分束器640透射的信号辐射608可以包括组织辐射和系统辐射(或其一部分)。信号辐射608的部分可以由EMR检测器690捕获。EMR检测器690可以向控制器(例如控制器506)传送表征对信号辐射608(或其一部分)的检测的数据。控制器可以例如基于检测(例如所透射的信号辐射608的强度)来更改源605的操作(例如切断源605)。

在一个实施方式中,光学系统600可以用作共焦显微镜。这可以例如通过将第二物镜(未示出)放置于光圈680的上游来完成。光圈可以通过聚焦于包括光圈680的焦平面处来对信号辐射606进行重新成像。光圈680可以过滤(例如遮挡)信号辐射608的不期望的空间频率。该配置可以允许过滤与靶标组织650中的不同区域(例如相对于组织表面654在不同深度处的靶标组织的区域)相关联的信号辐射。通过改变成像光圈680与靶标组织650之间的距离(例如通过沿着信号辐射608的路径移动成像光圈680),可以对靶标组织的不同深度成像。在一些实施方式中,控制器(例如控制器506)可以通过向致动器传输命令来移动成像光圈680。控制器506可以分析检测数据并且确定靶标组织650中的等离子体的存在、靶标组织中的色素的分布等。光学系统600可以用于检测窗口645中的损伤。对窗口645的损伤可以由第二EMR束604与窗口645之间的相互作用(例如,当EMR束的强度为高时,与EMR束604等的延长的相互作用,等)引起。可以通过确定由于窗口645中的损伤而产生的信号辐射的强度变化来实施对窗口645中的损伤的检测。这可以例如通过将焦点区域652定位于入射在窗口645上(例如入射在窗口645的表面附近、入射在窗口645的表面处、入射在窗口645内)并且(例如通过将光电检测器用作EMR检测器690)检测信号辐射606的强度来完成。可以将该强度与先前在焦点区域652位于未损伤的窗口645的可比较的位置上时测量的强度进行比较。基于该比较,可以确定窗口645中的损伤。

图7是对光学系统700的实施例的图示。光学系统700可以包括具有目镜790的显微镜附件770。显微镜附件770可以捕获由分束器640透射的信号辐射608(或其一部分)。可以通过镜筒透镜750(例如Edmunds Optics PN 49-665 25mm直径×50mm EFL非球面消色差透镜)对信号辐射608进行重新成像。镜筒透镜750可以将信号辐射608重新成像至目镜790(例如Edmunds Optics PN 35-689 10X DIN目镜)的光瞳平面720。

如上文所描述,信号辐射608可以包括组织辐射和系统辐射两者。由于这些辐射的波长的差异,因此在不同位置处(例如在不同平面处)生成组织辐射和系统辐射的图像。因此,如果目镜790定位在捕获由系统辐射生成的图像,那么其可能无法准确地捕获与组织辐射相关联的图像。然而,可以校准目镜790以在系统辐射的焦点区域处捕获具有与系统辐射不同的波长的信号辐射。一种校准方式是通过将具有与靶标组织650的折射率类似的折射率的材料用作体模(例如丙烯酸)。校准目镜790可以包括将第二EMR束604聚焦至体模中(例如通过物镜660)和在第二EMR束604的焦点区域处引起击穿(例如激光诱发的光学击穿)。接着可以通过将具有预定波长的第二EMR辐射照射至体模上(例如以倾斜角度)并且在目镜790处测量具有预定波长的EMR辐射的强度。可以调整目镜790的轴向位置(例如沿着z轴),以使来自第二EMR源的检测到的辐射的强度最大化。在某些实施例中,可以使用传感器,而非目镜790。传感器的示例可以包括CMOS和CCD图像。传感器响应于传感器平面处的辐射而生成数字图像。数字图像表示焦点区域652的图像。

图8是对具有光纤耦合器附件802的光学系统800的实施例的图示。光纤耦合器附件802包括可以对来自如上文所描述的物镜660和分束器640的光成像的透镜筒810。透镜筒810可以将信号辐射608聚焦于光瞳平面815(例如与x-y轴平行并且包括准直透镜820的平面)处。可以使用准直透镜820将所聚焦的信号辐射608准直至所期望的大小并且可以将其引导至耦合透镜830。耦合透镜830可以利用NA聚焦信号辐射608,该NA对于耦合至被附接到光纤连接器840的光纤是期望的。光纤可以光学连接至一个或多个EMR检测器(例如检测器504)。根据一些实施例,耦合器附件802还可以包括位于光瞳平面815处的成像光圈850。光圈可以过滤信号辐射608的并非从焦点区域652发出的部分。根据一些实施例,检测仪器(例如光电二极管、光谱仪等)可以直接放置于不具有光纤或相关光学器件的成像光圈850之后。成像光圈850相对于透镜筒810的校准可以在与上文参考目镜790的校准所描述的进程类似的进程中实现。

反馈检测可以以许多方式结合基于EMR的治疗被使用。下文描述了例示性应用以展示可以实践反馈通知的EMR治疗的一些方式。广义上讲,下文所描述的示例可以被分类为三种反馈通知的EMR治疗。这三个种类囊括了如下示例:1)检测等离子体;2)参考焦点区域位置;以及3)对组织成像。这三种类别的用途不旨在作为基于反馈通知的EMR的治疗的详尽(或互斥)应用列表。

等离子体反馈示例

一些治疗包括在治疗期间形成等离子体(例如热离子等离子体或光学击穿)。在一些实施例中,检测到的等离子体的特性指示治疗的潜在有效性。例如,在治疗真皮色素状况时,焦点区域位于皮肤深处,使得该焦点区域在治疗期间被扫描时将与真皮色素重合。当在皮肤上方扫描焦点区域时,激光源传递脉冲激光,使得在焦点区域与真皮色素重合的位置处形成了热离子等离子体。热离子等离子体的形成指示了1.)在皮肤内存在色素;2.)等离子体形成时的色素与焦点区域(例如XY坐标以及深度)并置;以及3.)该位置处的色素已经进行了治疗(例如色素已经被破坏)。

在其他情况下,等离子体形成可以指示对系统维护的需要。例如,一些系统包括放置成与正在进行治疗的组织接触的窗口。窗口可以提供许多功能,包括:接触冷却;稳定组织;为组织提供深度参考;以及通过压力从组织中抽出血液或其他流体。辐射(例如激光束)也穿过窗口以用于治疗其下的治疗区域。在一些情况下,辐射可以导致窗口内或窗口的表面处的击穿,从而导致等离子体生成和窗口蚀刻。如果系统在窗口处的等离子体生成之后继续传递辐射,那么通常会导致直接与窗口接触的组织的灼伤或热损伤。

图9图示了根据一些实施例的在基于辐射的组织治疗期间的等离子体检测方法900的流程图。首先,使用窗口接触组织的表面(906)。窗口接触组织的外表面。窗口被配置为透射透射治疗辐射。通常,窗口提供了基准表面,使得将组织的表面放置成与窗口接触时有效地参考组织的外表面。根据一些实施例,窗口提供附加功能,包括但不限于,防止组织在治疗期间的移动;治疗组织的接触冷却;以及通过压缩抽出组织内的血液(或其他竞争发色团)。

然后生成治疗辐射(908)。治疗辐射通常由辐射源生成。治疗辐射被配置为在组织中产生效果,这可以导致外观的改善或期望的变化。在某些实施例中,组织效果可以是美容的。在其他一些实施例中,组织效果可以是治疗的。根据一些实施例,组织效果包括在发色团的存在下生成选择性热离子等离子体。对治疗辐射的参数选择取决于所执行的治疗以及组织类型和个体患者。上文详细地描述了与治疗辐射生成900和在组织中产生效果(例如美容效果)的相关参数选择相关的细节。

将治疗辐射聚焦至焦点区域(910)。通常,通过聚焦光学器件来聚焦治疗辐射(910)。根据一些实施例,焦点区域具有小于约1mm、约0.1mm、约0.01mm或约0.001mm的宽度。焦点区域可以定位于第一区域处。在一些实施例中,第一区域位于具体地在待治疗的位置处的组织内。在一些情况下,第一区域可以有意地或无意地位于组织外部,例如位于与组织接触的窗口内。

通常通过扫描系统(例如扫描器)扫描焦点区域(912)。扫描示例包括:倾倒/倾斜焦点区域;使焦点区域旋转;以及平移焦点区域。对相关扫描手段的进一步描述在Dresser等人的美国专利申请第16/219,809号“电磁辐射束扫描系统和方法”中进行了描述,该申请的整体内容以引用的方式并入本文中。根据一些实施例,将治疗辐射脉冲化,使得在焦点区域被扫描(例如针对第一区域移动至第二区域)时,几乎没有治疗辐射被传递。可以连续地扫描焦点区域。在这样的情况下,治疗辐射脉冲的定时和扫描参数控制第一区域和第二区域的位置。

等离子体由治疗辐射生成(914)。因为通量在焦点区域内处于最大值,所以通常在焦点区域内或附近生成等离子体。根据一些实施例,通过热离子等离子体生成来色素化区域选择性地生成等离子体(914)。备选地,可以通过非选择性激光诱发的光学击穿来生成等离子体(914)。

然后检测等离子体(916)。检测器通常检测(916)从等离子体发出的信号辐射。信号辐射检测的示例包括:光学检测、声学检测、激光诱发的击穿的光谱检测(例如激光诱发的击穿光谱学)、等离子体生成的冲击波(PGSW)检测、等离子体发光检测、等离子体(羽流)屏蔽检测以及等离子体摄影。在一些实施例中,基于对等离子体的检测(916)来确定等离子体的特性。等离子体的特性的示例包括:等离子体的存在、等离子体的强度、等离子体的频谱含量以及等离子体的位置。根据一些实施例,例如通过控制器记录和存储信号辐射的特性。

在一些实施例中,基于检测到的等离子体来确定等离子体是否至少部分地位于窗口内(918)。例如,在一些实施例中,可以检测包括已知表示窗口中而非组织中的材料的频谱分量的光信号辐射,从而指示等离子体部分地位于窗口内。在另一版本中,光信号辐射的强度可以超过已知阈值,这意味着等离子体至少部分地位于窗口内。

部分地基于检测到的等离子体(例如等离子体是否部分地位于窗口中的确定(918))来控制与治疗辐射相关的参数(920)。与治疗辐射相关的参数的示例可以包括但不限于,每脉冲能量、重复率、焦点区域的位置、或焦点区域的大小。这些治疗辐射参数可以在没有限制的情况下单独采用或彼此结合采用或与其他治疗辐射参数组合采用。例如,等离子体部分地位于窗口中的确定可以用作触发事件以结束治疗辐射。

在一些实施例中,生成了可以包括例如由控制器映射至位置的特性矩阵的映图。作为示例,映图可以包括:在第一位置处从第一等离子体发出的第一信号辐射的第一特性可以映射至针对第一位置的坐标,并且在第二位置处从第二等离子体发出的第二信号辐射的第二特性可以映射至针对第二位置的坐标。例示性映图可以包括具有与焦点区域的位置相关的三个正交轴和与等离子体的一个或多个特性相关的第四轴的四维矩阵。在一些版本中,映图可以用作对个体治疗有效性的指示。下文详细地描述了适合于执行上文所描述的等离子体检测方法的系统。

参看图10,示出了根据一些实施例的等离子体检测和治疗系统1000的示意图。在一些实施例中,窗口1006被配置为接触组织1008的表面,例如组织1008的外表面。窗口1006包括被配置为透射EMR束的光学材料,例如:玻璃、透明聚合物(例如聚碳酸酯)、石英、蓝宝石、金刚石、硒化锌、或硫化锌。

成像和治疗系统1000包括聚焦光学器件1010。聚焦光学器件1010(例如物镜)被配置为聚焦电磁辐射(EMR)束1011并且在组织1008内生成等离子体1012。可以在组织1008内的发色团处通过热离子生成选择性地生成等离子体。在其他一些实施例中,通过光学击穿非选择性地生成等离子体1012。可以使用辐射源(未示出)来生成EMR束1011。EMR束1011可以包括准直或非准直光以及相干和非相干光中的任一者。

检测器1014被配置为检测等离子体1012。等离子体检测器1014的示例包括:光电传感器,例如光电二极管和图像传感器;声学传感器,例如表面声波传感器、压电膜、振动计以及标准具;以及更专业的检测器,例如光谱仪、分光光度计、以及等离子体亮度(或屏蔽)光学探针。

在所示出的实施例中,等离子体检测器包括光电检测器(例如光电二极管),该光电检测器感测从等离子体1012发出的可见光1016(例如信号辐射)。根据一些实施例,镜筒透镜1018与聚焦光学器件1010结合使用以引导和聚焦入射检测器1014的可见光1016。检测器1014与控制器1015通信,以使得向控制器1015输入与检测到的等离子体相关联的数据。

扫描器1022被配置为扫描EMR束1011的焦点区域。扫描器通常在至少一个维度上扫描焦点区域。而且,在一些实施例中,扫描器1022在所有的三个维度上扫描焦点区域。参看图10,将扫描器1022示出为从组织1008的第一区域1024到第二区域1026从左至右地扫描焦点区域。

在扫描器1022扫描焦点区域时,可以将EMR束1011脉冲化,从而在第一区域1024处生成第一等离子体,然后在第二区域1026处生成第二等离子体。第一等离子体和第二等离子体均由检测器1014检测。在一些实施例中,向控制器1015输入与第一检测到的等离子体和第二检测到的等离子体相关联的数据。在一些实施例中,与一个或多个等离子体事件相关联的数据由控制器使用来控制与EMR束1011和扫描器1022中的至少一者相关联的参数。

根据一些实施例,控制器1015被配置为基于确定等离子体1012是否至少部分地位于窗口1008内来控制EMR束1011(例如终止EMR束1011)。在一些版本中,控制器1015基于从等离子体1012发出的信号辐射1016的强度来确定等离子体1012是否至少部分地位于窗口1006内。可以使用光电传感器(例如光电二极管)来检测信号辐射1016的强度。根据另一版本,控制器1015基于信号辐射1016的频谱分量来确定等离子体1012是否至少部分地位于窗口1006内。例如,根据一些实施例,窗口1006可以包括蓝宝石,其包括铝。对应于铝的光谱峰值集中于约396nm处。皮肤通常不含铝。因此,如果信号辐射(在花费激光脉冲之后取精确时间[例如10μs])包括集中于约396nm处的频谱峰值,那么等离子体1012有可能至少部分地位于窗口1006内。根据一些实施例,频谱滤波器(例如陷波滤波器)和光电传感器用于检测信号辐射的频谱含量。根据其他实施例,光谱仪或分光光度计用于检测信号辐射的频谱含量。

控制器1015可以被配置为记录等离子体1012的一个或多个检测到的特性。在一些实施例中,控制器1015被配置为记录等离子体1012的检测到的特性的矩阵(或映图)。例如,控制器1015可以被配置为:记录在第一位置1024处从第一等离子体1012发出的第一信号辐射的第一特性;将第一特性映射至针对第一位置1024的坐标;记录在第二位置1026处从第二等离子体发出的第二信号辐射的第二特性;以及将第二特性映射至针对第二位置1026的坐标。

下文提供了单独实施例,以进一步解释EMR治疗设备中的等离子体检测。

等离子体反馈示例1

第一等离子体反馈示例描述了体外研究,该体外研究量化了展示等离子体存在的相对等离子体光强度的变化。用来自雌性Yucatan猪的皮肤执行体外研究,该雌性Yucatan猪因其深色皮肤而被选择。在体外研究中,将具有约1060nm的波长的10W Nufern光纤激光器用作激光源。

图11A是对在体外研究中所使用的治疗光学系统1100的示意性图示。治疗光学系统1100包括被配置为接收准直的激光束1112的束组合器1110。束组合器1110包括反射入射激光束1112的反射器1114。选择反射器1114以反射具有预定波长范围的光。在当前体外研究中,激光束1112具有1060nm的波长,并且反射器是Thorlabs NB1-K14,其在1047nm至1064nm的波长范围上具有99.5%的反射率。所反射的激光束1112由聚焦光学器件1116成像并聚焦。在体外研究中所使用的聚焦光学器件1116是Thorlabs C240TME-C,其为能够具有0.5的NA和8mm的有效焦距的衍射限制性能的非球面透镜。在皮肤样本1118中激光束1112被聚焦至腰部(例如焦点体积)。在激光束1112的腰部处,在皮肤样本1118内生成等离子体羽流1120。从等离子体羽流1120生成的辐射1124由聚焦光学器件1116成像并透射通过反射器1114。辐射1124在透射通过反射器1114之后由光纤耦合器1122成像至光纤(未示出)的第一端中。在体外研究中所使用的光纤耦合器是Thorlabs PAF-SMA-7-A。光纤的第二端耦合至光谱仪(未示出),该光谱仪是Ocean Optics HR2000+ES。在体外研究的另一实施方式中,陷波滤波器(未示出)设置在反射器1114与光纤耦合器1122之间,以阻止具有与激光束1112的波长类似的波长的辐射1124的部分进入光纤。皮肤样本1118安装在机动载物台1130上。维持皮肤样本1118与聚焦光学器件1116之间的工作距离以控制激光束1112的腰部在皮肤样本1118内的深度。

在体外研究的另一实施方式中,将具有黑色素纹身的皮肤样本1118放置于机动载物台1130上,使得激光束1112的腰部位于样本1118中的约0.2mm深度。黑色素纹身中所使用的黑色素色素来自墨鱼墨水(例如乌贼墨水)。黑色素纹身大致位于皮肤样本的真皮中的四分之一毫米与一毫米之间。通过查看皮肤的组织样本来验证皮肤内的纹身色素的深度。

图11B图示了具有黑色素纹身的皮肤样本1118的组织样本的扫描。在组织顶部示出了皮肤表面1150。表皮-真皮接合部1152划分了皮肤的表皮层和真皮层的界线。存在于真皮中的黑色素液滴1154构成了黑色素纹身。激光以20KHz、100ns的脉冲持续时间以及0.5mJ/脉冲运行。在激光辐照期间以100mm/s的速率扫描样本。调整光谱仪以在5000ms的时段内捕获光并且响应于激光辐照而触发捕获。

图12图示了与来自黑色素纹身的光洁皮肤的辐射相关联的光谱。横轴表示来自样本皮肤1118的辐射的波长,且纵轴表示辐射的相对强度。图12图示了在利用激光束1112(例如具有集中于约1060nm处的光谱)辐照皮肤1118时生成的黑色素纹身光谱(例如集中于约600nm处)和光洁皮肤光谱。黑色素纹身光谱示出了在黑色素纹身的位置处的样本的辐照期间(例如在输入激光束1112的腰部/焦点体积辐照具有黑色素纹身的皮肤的部分时)所进行的测量。光洁皮肤光谱示出了在辐照样本皮肤1118的不包括黑色素纹身的区域期间所进行的测量。黑色素纹身光谱示出了存在广谱光,该广谱光包括可见光谱中的辐射(例如在400nm至800nm之间)。广谱光指示在黑色素纹身的辐照期间的等离子体形成。光洁皮肤光谱通常不具有可见光谱分量或具有非常小的可见光谱分量。在光洁皮肤光谱中缺少可见光分量指示在光洁皮肤的辐照期间通常不形成等离子体。

将具有碳纹身(例如印度墨水)的另一皮肤样本1118放置于聚焦光学器件1116下方的机动载物台1130上,使得激光束的聚焦腰部位于皮肤样本1118的表面下方的约0.2mm处。碳纹身大致位于皮肤样本1118的真皮中的四分之一毫米与一毫米深之间。激光以20KHz、100ns的脉冲持续时间和0.5mJ/脉冲运行。在激光辐照期间以100mm/s的速率扫描样本。调整光谱仪以在5000ms的时段内捕获光并且响应于激光辐照而触发捕获。

图13图示了与来自碳纹身以及光洁皮肤的辐射相关联的光谱。横轴表示来自样本皮肤1118的辐射的波长,且纵轴表示辐射的相对强度。图13图示了在利用激光束1112辐照皮肤1118时生成的碳纹身光谱和光洁皮肤光谱。碳纹身光谱示出了在碳纹身的位置处的样本的辐照期间(例如在输入激光束1112的腰部/焦点体积辐照皮肤的具有碳纹身的部分时)所进行的测量。光洁皮肤光谱示出了在辐照样本皮肤1118的不包括碳纹身的区域期间所进行的测量。碳纹身光谱示出了存在广谱光,该广谱光包括可见光谱中的辐射(例如在400nm至800nm之间)。广谱光指示在碳纹身的辐照期间的等离子体形成。光洁皮肤光谱通常不具有可见光谱分量。缺少光指示在光洁皮肤的辐照期间通常不形成等离子体。

应注意,在上述实验中捕获的广谱是由在许多位置处以20KHz的速率生成等离子体而产生的,该速率是激光束1112的重复速率。光谱仪的积分时间设置为1ms或更大。这允许表征通过激光束1112的多个脉冲生成的等离子体的频谱信息。在(激光束1112的)入射激光脉冲与等离子体之间的相互作用之后,等离子体开始冷却并且其电子的能级下降,从而通过窄频谱带发射光。由于上述光谱仪测量是通过多个脉冲进行积分,因此应理解,在该示例中无法观察到这些窄带。下文描述了检测到窄频谱带的第二示例。

等离子体反馈示例2

在第二示例中,实验观察由皮肤样本1118中的等离子体生成的辐射1124的窄频谱带。图11A中描述了用于该检测的光学系统。光学系统包括允许光学系统与型号为HR 2000+ES的海洋光学光谱仪之间进行光学通信的光纤。光学系统与具有关节臂的Q开关Nd:YAG激光器(Quantel Q-Smart 450)进行光学通信,使得来自Q开关Nd:YAG激光器的激光束被引导至系统中。

皮肤样本1118通常与激光束的焦点区域平行放置。首先将焦点区域放置于皮肤样本1118的表面正下方。朝向样本皮肤1118引导多个激光脉冲,其中在每个激光脉冲之后立即进行光谱仪测量。每个激光脉冲具有足够的峰值功率以产生光学击穿,从而导致在皮肤样本1118中生成等离子体。如参考图11所描述的,来自等离子体的辐射1124被捕获,并且与光谱仪进行通信。

图14图示了由皮肤样本1118中的等离子体生成的辐射1124的光谱。对在每个激光脉冲之后从等离子体捕获到的频谱结果进行平均。平均光谱示出于图14中所示出的图表1400中。图表1400具有沿着纵轴以任意单位为单位的相对强度和沿着横轴以纳米为单位的波长。平均光谱包括在约589nm和766nm处的频谱峰值。平均光谱还包括在约422nm、约455nm、约493nm、约521nm、约553nm、约614nm以及约649nm的次要光谱峰值。

在实验期间,将蓝宝石窗口沿着激光束1112的路径放置于皮肤样本1118与聚焦光学器件1116之间。激光束1112被引导穿过蓝宝石窗口进入位于皮肤的表面下方约0.5mm的腰部/焦点区域中。图15含有图示了来自使用与组织接触的蓝宝石窗口形成的等离子体的辐射光谱的图表1500。图表1500沿着纵轴具有以任意单位为单位的相对强度和沿着横轴以纳米为单位的波长。在图15中可以看出,在约589nm和约766nm处存在主峰。另外,甚至更大的峰位于约396nm处。在测量之后已经发现,蓝宝石窗口被以与其中形成的等离子体一致的方式损伤(例如蚀刻)。在存在蓝宝石窗口的情况下,396nm的峰重复出现,只有在存在蓝宝石窗口时才会出现;而且,蓝宝石窗口看起来因等离子体形成而损伤。该观察指示在约396nm处的该峰可以用作蓝宝石窗口内的等离子体形成的指示符。

根据一些实施例,通过频谱分析来确定等离子体的材料分量,并且基于等离子体的材料分量来调整激光束的一个或多个参数。例如,根据一些实施例,控制器从频谱数据中确定除了正在被处理的材料以外的材料正在受等离子体影响,并且调整激光参数或禁用激光源。尽管第二示例使用光谱仪来检测等离子体的频谱含量,但一些实施例通过备选方法来确定等离子体的频谱含量。例如,在一些版本中,仅使中心约396nm的光通过的窄带滤波器被放置在光电二极管上方,使得光电二极管仅检测到396nm的光。光电二极管被触发,以在EMR脉冲之后在(例如10μS)之后收集时间(moment)。而且,控制器被配置为在光电二极管检测到相对较高的值时停止发射EMR源,这是由于只有在等离子体影响蓝宝石窗口时才会出现相对较高的值。

等离子体反馈示例3

第三示例展示了被并入到基于EMR的治疗手持件中的检测等离子体的等离子体检测系统。

图16A至图16C图示了根据组织治疗和等离子体检测的第三示例的图式。在图16A至图16C中示出了组织治疗和等离子体检测系统1600。图16A示出了系统1600的正视图。图16B示出了沿着图16A中的B-B截面线截取的系统1600的横截面视图。而且,图16C示出了从图16B中的C细节圆圈内截取的细节视图。

光纤激光器1610被配置为输出治疗辐射。光纤激光器1610的示例是来自中国上海的Feibo激光技术有限公司的Feibo 1060nm,40W,20kHz光纤激光器。通过光学系统将治疗辐射引导至聚焦光学器件1620。示例聚焦光学器件是Thorlabs零件号:A240。聚焦光学器件1620被配置为将治疗辐射通过窗口1622聚焦至组织(未示出)中的焦点区域。光学系统被配置成允许聚焦光学器件1620在所有的三个维度上被扫描。随后,这使得在组织内的所有的三个维度上扫描治疗辐射的焦点区域。扫描通过三个单独载物台来完成,每个载物台负责单个轴。X载物台1625在X轴上扫描聚焦光学器件。安装至X载物台1625的Y载物台1626在Y轴上扫描聚焦光学器件。而且,安装至Y载物台1626的Z载物台1627在Z轴上(例如大体上沿着聚焦光学器件的光轴)扫描聚焦光学器件。例示性X载物台是来自美国马萨诸塞州巴克斯柏路的Dover运动公司的Dover MMX 50,其由以色列佩塔提克瓦的Elmo运动控制有限公司的Elmo DC whistle Gold控制器控制。例示性Y载物台是由E 873控制器控制的Q545.140载物台,他们均来自美国马萨诸塞州奥本的Physik Instrumente L.P.公司。例示性Z载物台是来自美国纽约维克多市的New Scale技术公司的New Scale 3M-FS。

印刷电路板(PCB)1640贴附至Z载物台1627并且面向窗口1622。PCB 1640含有若干电子部件和四个光电二极管1642。示例光电二极管是来自德国慕尼黑的OSRAM股份有限公司的Osram CHIPLED零件号SFH 2711。另一示例光电二极管是基于氮化镓的传感器,来自奥地利维也纳Roithner Lasertechnik股份有限公司的GUVA-S12SD。这两个示例光电二极管在一些实施例中可以是有利的,这是因为与在近红外(NIR)中相比,这两个示例光电二极管在检测紫外线(UV)和可见光谱中的光时更为敏感。为此,这些示例光电二极管将检测来自等离子体的光,但检测更少的反射或散射治疗辐射(例如1060nm激光)。在其他一些实施例中,光电二极管可以涂覆有光学涂层(例如干涉陷波滤波器涂层)以防止对治疗波长的检测。在又一些实施例中,可以将光电二极管放置于频谱滤波器(例如干涉陷波滤波膜)的后面,以防止对治疗波长的检测。

通过光电二极管1642中的一个或多个光电二极管将来自等离子体的光转换为小电流。通过跨阻抗放大器将电流转换为电压。然后通过一个或多个放大器放大电压,并且通过微控制器对电压进行采样。微控制器使用模数转换器(ADC)和比较器中的至少一者对电压进行采样。

在一些版本中,比较器将电压与阈值进行比较,并且在电压超过阈值时触发计时器(例如32678Hz)。当电压在所限定的持续时间内(例如计时器的3个滴答声)保持在阈值之上时,微控制器检测到等离子体。在一些实施例中,将阈值设置为高,使得源自组织内的治疗的等离子体将不超过阈值,但源自光学窗口内的更近且更亮的等离子体将超过阈值。在这样的情况下,等离子体检测器可以用于检测多余的等离子体(诸如周围组织或光学窗口中的等离子体),这些等离子体可能会对患者或系统造成损伤。一旦检测到等离子体,就可以向另一控制器(例如激光控制器)发送信号,该控制器可以记录等离子体检测或基于该检测来更改治疗(例如停止治疗辐射)。

根据一些实施例,ADC可以用于检测组织内的等离子体(例如与治疗一致的等离子体)。ADC基于来自一个或多个光电检测器的电压来分配表示等离子体强度的数字值。在一些情况下,记录数字值连同X载物台1625、Y载物台1626以及Z载物台1627中的一者或多者的当前位置值。在这样的情况下,可以将数字值相对于焦点区域位置的记录格式化为矩阵(例如映图)。矩阵可以用于指示治疗有效性或组织内的发色团的存在。

在一些实施例中,在第一深度(例如相对浅的)处存在等离子体可以指示对系统的损伤或不良事件;而在第二深度(例如组织内相对深的)处存在等离子体可以指示有效治疗。因此,在一些实施例中,重要的是确保EMR束的焦点区域是在期望焦深处的位置。

焦深参考示例

如上文详细描述的,在一些实施例中,需要严密控制组织内的焦点区域的深度(例如+/-20μm)。例如,真皮色素的治疗需要将焦点区域放置于大致位于组织内的真皮色素的深度的深度处。如果焦点区域在真皮色素治疗下方过深,那么治疗将无效。如果焦点区域过浅,那么基底层处的黑色素细胞将被辐照,从而潜在地引起不良事件(例如色素沉着过度或色素沉着不足)。

参看图17,示出了根据一些实施例的焦深参考方法1700的流程图1700。首先,电磁辐射(EMR)束沿着光轴聚焦至焦点区域(1710)。在许多情况下,EMR束由EMR源(例如激光)生成。光学窗口设置成与光轴相交。在一些版本中,窗口的表面与光轴基本上正交。EMR束照射于光学窗口的至少一个表面上,并且生成了信号辐射。在一些实施例中,信号辐射包括EMR束的在窗口的表面处反射的反射部分。在一些实施例中,窗口被配置为接触组织。窗口的表面可以在光学上被理解为窗口的窗口材料与邻近窗口的表面的相邻材料(例如空气或组织)之间的光学界面。在一些情况下,窗口材料与相邻材料之间的折射率差会导致EMR束的反射部分的反射。根据一些实施例,通过在窗口处散射或透射EMR束的一部分来生成信号辐射。

检测信号辐射(1712)。根据一些实施例,通过成像系统对信号辐射成像。在一些情况下,通过成像系统将信号辐射的图像形成于传感器处。传感器的示例包括光电传感器和图像传感器。在一些版本中,检测器检测并测量图像宽度。一般而言,图像宽度将与入射窗口的表面的EMR束的束宽成比例地相关。成像系统的放大率通常确定图像宽度与入射窗口的EMR束的宽度的比例。根据一些实施例,检测器检测并且测量了信号辐射的强度。

基于信号辐射,确定参考焦点位置(1714)。例如,在一些版本中,测量入射窗口的表面的EMR束的束宽,并且在测量束宽时沿着光轴平移焦点区域的焦点位置。参考位置在束宽被确定为处于最小值之处被找到。针对另一示例,在一些版本中,在沿着光轴平移焦点区域的焦点位置时检测信号辐射的强度。在这样的情况下,参考位置在辐射信号强度被发现处于最大值之处被找到。

一旦确定了参考焦点位置,就将焦点区域平移至治疗焦点位置(1716)。通常,治疗焦点位置沿着光轴与参考焦点位置相距预定距离。根据一些实施例,通过沿着光轴移动光学元件(例如物镜)来平移焦点区域。在其他一些实施例中,通过调整EMR束的散度(例如调整光学元件的光功率)来平移焦点区域。最终,将窗口放置成与靶标组织接触,从而导致焦点区域定位于靶标组织内。根据一些实施例,靶标组织是皮肤,且焦点区域定位于皮肤的真皮组织内。焦点区域在组织内的精确深度定位允许通过热离子等离子体或热破坏来治疗先前无法治愈的色素性状况。例如,EMR束可以在不存在对表皮的不良辐照的风险的情况下在位于真皮内的焦点区域处执行真皮色素性状况(例如真皮黑斑)的选择性热离子-等离子体介导的治疗。

参看图18B,在一些实施例中,第二EMR束1816B被配置为通过聚焦光学器件会聚至位于治疗位置中的第二焦点区域1818B。在这样的情况下,第一EMR束1816A可以仅被配置成参考(例如通过递送入射于窗口1810的表面上的第一焦点区域1818A,并且第二EMR束1816B可以被配置为在组织中实现期望效果(例如美容效果)。这在一个实施例中可以是有利的,其中,组织效果需要非常高的通量(例如1012W/cm2),并且如果在参考期间要使用第一EMR束,那么窗口1810将有可能会被损伤。根据一些实施例,第二EMR束1816B具有约等于第一EMR束1816A的波长。在其他一些实施例中,第二EMR束1816B具有与第一EMR束1816A的波长不同的波长。在这样的情况下,治疗位置可能需要基于聚焦光学器件的在两个不同波长下的焦距的差异的校准。

现在参看图18A至图18B,示出了根据一些实施例的焦深参考和治疗系统1800的示意图。焦深参考系统1800包括被配置为接触靶标组织1812的窗口1810。光学系统(例如物镜或聚焦光学器件)被配置为沿着光轴1820将电磁辐射(EMR)束1816聚焦至焦点区域1818。光轴1820与窗口1810相交。光学检测器1822被配置为检测信号辐射1824。根据一些实施例,信号辐射1824由EMR束1820与窗口1810之间的相互作用生成。在一些版本中,EMR束1820与窗口1810之间的相互作用是窗口1810的表面与EMR束之间的相互作用。EMR束1820与窗口1810之间的相互作用通常是反射、透射以及散射中的至少一种。

控制器1826被配置为从光学检测器1822取得输入并且沿着光轴1820平移焦点区域1818的焦点位置。至少部分地基于来自光学检测器1822的反馈,控制器1826确定焦点区域1818的一部分与窗口1810的表面基本重合的参考位置1828。

信号辐射1824可以从入射窗口1810的表面的EMR束1816的反射发出,并且使用(部分地)聚焦光学器件1814入射图像传感器1822而被成像。根据一些实施例,控制器1826通过基于信号辐射确定入射于窗口的表面上的EMR束1816的横向宽度来确定参考位置;而且,平移焦点区域,直至横向宽度具有最小值为止。根据另一实施例,信号辐射从EMR束1816在窗口1810的表面处的反射发出,并且检测器1822被配置为检测信号辐射的强度。在这样的情况下,控制器可以通过以下方式来确定参考位置:平移焦点区域,直至信号辐射的强度具有最大值为止。

最后,控制器1826将焦点区域1818平移至与参考位置1828相距预定距离1830的治疗位置。一般而言,使焦点区域1818远离参考位置1828平移是沿着光轴1820在正方向上(即,远离光学系统1814)进行的。在一些实施例中,治疗位置被配置为位于组织内。例如,预定距离可以被配置为定位皮肤中的真皮组织内的治疗位置。载物台1832可以用于平移一个或多个光学元件(例如聚焦光学器件)以便平移焦点区域。EMR束1816通常被配置为在位于治疗位置中的焦点区域处或附近的组织中执行效果(例如美容效果)。示例组织效果是组织1812的选择性热离子等离子体介导的治疗。

在一些实施例中,第二EMR束被配置为通过聚焦光学器件会聚至位于治疗位置中的第二焦点区域。在这样的情况下,第一EMR束可以仅被配置成参考,并且第二EMR束可以被配置为执行组织效果。这在一个实施例中可以是有利的,其中,组织效果需要非常高的通量(例如1012W/cm2),并且窗口1810将有可能会在参考期间被损伤。根据一些实施例,第二EMR束具有等同于第一EMR束的波长。在其他一些实施例中,第二EMR束具有与第一EMR束的波长不同的波长。在这样的情况下,将需要基于聚焦光学器件的在两个不同波长下的焦距的差异来对治疗位置进行校准。在一些实施例中,窗口参考和治疗系统1800用于测量一个以上的参考位置1828。

例如,根据一些实施例,窗口参考和治疗系统1800还包括扫描系统。扫描系统被配置为在至少一个扫描轴上移动焦点区域1818和光轴1820。在一些情况下,扫描轴可以大体上垂直于光轴1820。

窗口与扫描轴之间的平行度测量可以通过在多个扫描位置处的多个参考位置1828测量来确定。例如,参考系统1800首先用于确定第一扫描位置处的第一参考位置。然后,扫描系统将光轴1818重新定位至沿着扫描轴与第一扫描位置相距一定距离的第二扫描位置。参考系统1800然后确定第二参考位置。第一参考位置与第二参考位置之间的差除以沿着扫描轴的距离指示窗口与扫描轴之间的不平行度的斜率。下文提供了单独实施例,以进一步解释EMR治疗设备中的焦深参考。

焦深参考示例1

下文描述了第一焦深参考示例。第一焦深参考示例采用诸如共焦显微镜的反馈系统。该配置在一些实施例中是有利的,这是由于其可以用于参考组织内的表面以及外部组织表面和窗口表面。例如,根据一些实施例,焦点区域是相对于皮肤内的真皮-表皮(DE)接合部进行参考的。这在一些实施例中因表皮(或表皮的基底层中的黑色素)与真皮之间的折射率差而是可以实现的。

图19图示了用于共焦成像和等离子体介导的治疗的工作台样机1900。准直的激光束1901通过入口光圈1902进入样机1900并且被投影于反射器1904上。反射器1904将激光束1901朝向物镜1906折叠。物镜1906将激光束1901聚焦至焦点区域1907。朝向样本固持器1908引导所聚焦的激光束1901。样本固持器1908包括窗口1910和以光学方式位于窗口1910的下游的样本。图19中所示出的样本是包括表皮1912和以光学方式位于表皮1912的下游的真皮1914的皮肤。顺应性材料(诸如泡沫1916)用于将样品压靠于窗口1910上并且将窗口压靠于样本固持器1908的平台上。样本固持器安置于X-Y载物台1918X和1918Y的顶部。样机1900相对于激光束扫描样本。Z载物台1920允许调整物镜1906与样本固持器1908之间的距离。螺旋测微计允许Z载物台1920的严密控制移动。物镜1906准直来自焦点区域1907的所返回的光1922。辐射1922至少部分地透射通过反射器1904。根据一些实施例,辐射1922穿过滤波器1923(例如陷波滤波器),使得辐射1922的仅具有某一波长范围的部分被接受。通过镜筒透镜1924将辐射1922聚焦至光圈1926。光圈1926的大小被设定为仅接受源自焦点1907的光线(例如小于50μm)。最后,将辐射1922投影于光电二极管1928上。

在一个实施方式中,将光学系统1900用作共焦显微镜。这可以例如通过将第二物镜1924放置于光圈1926的上游来完成。光圈1926可以通过将信号辐射聚焦于包括光圈1926的焦平面处来对信号辐射1922进行重新成像。光圈1926可以过滤(例如遮挡)信号辐射1922的不期望的空间频率。该配置可以允许过滤与靶标组织1912和1914中的不同区域(例如相对于组织表面在不同深度处的靶标组织的区域)相关联的信号辐射。通过改变成像光圈1926与靶标组织1912和1914之间的距离(例如通过沿着信号辐射1922的路径移动成像光圈1926),可以通过向致动器传输命令来对靶标组织的不同深度成像(1926)。控制器506可以分析检测数据并且确定靶标组织1912和1914中的等离子体的存在、靶标组织中的色素的分布等。

将激光束聚焦于表面下方的规定深度处需要焦点区域1907相对于表面的精确放置。因此,在一些实施例中,确定物镜1916相对于样本的表面(例如面向物镜1906的样本的表面)的位置是有利的。这可以通过将焦点区域1907与样本的表面相参考来完成。使用如上文所描述的工作台样机,执行测试以确定焦点区域相对于窗口1910的顶部表面和底部表面以及相对于猪皮样本的顶部表面位于何处。

使用在1060nm的波长下运行的Nufern 30W光纤激光器来提供具有约7.5mm的直径的激光束1901。反射器1904是二向色镜,其在1060nm的波长下反射超过90%的激光束1901且透射小于10%。物镜具有约8mm的有效焦距。镜筒1924以约30mm的有效焦距聚焦所返回的光1922。光圈1926为约30微米宽。光纤激光器在0.1%(1mJ/脉冲)的功率位准和30KHz的重复率下运行。将来自光电二极管1928的信号显示于示波器上。当光纤激光器打开时,缓慢地扫描Z载物台1920,直至通过示波器捕获到最大信号为止。

图20图示了最大辐射强度量度。沿着纵轴以任意单位为单位示出了强度,并且沿着横轴示出了时间。在焦点区域1907并置于窗口1910的顶部表面上时生成最大辐射强度信号2002。Z载物台1920测微计报告了0.487mm的、观察到最大信号2002的相对位置。在0.458mm和0.519mm的相对Z载物台位置处未观察到可检测的信号。

在上述示例中,在窗口界面处参考焦点区域的位置,在该位置处发现界面处的反射最大。材料之间的折射率差导致在两种材料(例如空气与窗口)之间的界面处反射。由折射率不匹配而引起的反射有时被理解为Fresnel反射。Fresnel反射随着入射角和光偏振而改变。出于简单起见,以法向入射角(其不取决于偏振)的Fresnel反射将被示出为示例。在具有不同折射率的材料之间的边界处产生的正常Fresnel反射通常将根据以下等式而起作用:

其中R是反射率(反射光的比例),n1是第一材料的折射率,且n2是第二材料的折射率。通过金刚石提供Fresnel反射的良好示例。金刚石具有非常高的折射率(例如2.42)。空气具有单位折射率(例如1.00)。垂直于空气-金刚石界面的光的Fresnel反射率大约为17%。Fresnel反射率倾向于在垂直角处处于最小值,而在掠射角处增大。因此,针对金刚石,最少有差不多1/5的光在空气金刚石界面处反射。结果是,金刚石在光中闪耀。

在皮肤内,黑色素在光学波长下具有与周围组织不同的不同折射率(例如黑色素在1064nm下的折射率约为1.78且表皮折射率约为1.35)。因此,在皮肤黑色素界面处的正常Fresnel反射率为约2%。表皮的底部的基底层含有黑色素细胞,因此极其富含黑色素。除非在病理情况下(尤其是真皮黑斑),在基底层正下方的真皮通常不含黑色素。因此,在一些实施例中,焦点区域以皮肤的真皮-表皮接合部(例如基底层)为参考。

焦深参考示例2

第二焦深参考示例使用相机传感器而非成像(例如共焦)光圈。图21A至图21C图示了根据一些实施例的示例。图21A示出了被配置为将辐射(例如激光)引导和聚焦至靶标组织中的治疗系统2100。辐射束由光纤2110提供并且由准直仪2112准直。辐射束被光学系统聚焦并引导通过系统2100。所聚焦的辐射束最终被引导出系统2100的底部的窗口2114。窗口2114被配置为接触治疗组织,以使得聚焦辐射束的焦点区域位于靶标组织内。系统2100还包括端口2116。端口允许来自焦点区域附近的辐射的至少某一部分被引导出去。因此,端口2116允许来自焦点区域附近的信号辐射被“拾取”和检测。信号辐射的一种用途是焦深参考以确定与部分反射界面(例如窗口2114的表面)对应的参考焦点位置。

图21A至图21C图示了具有附接至端口2116的可移除参考系统2120的系统2100。根据系统2100的例示性使用,可移除参考系统2120在治疗之前安装并且可以用于相对于已知参考(例如组织表面或窗口表面)可靠地定位焦点区域。参看图21C,信号辐射2129大体上沿着光轴2130传播。分束器2132允许信号辐射2129的至少一部分朝向窗口参考系统2120透射。根据一些实施例,分束器基本上反射从准直仪2112输出的准直的辐射束2134。信号辐射通过成像透镜2136(例如Edmund Optics PN:33-020)成像至相机传感器2138(Mightex PN:SCE-B013-U)上。下面提供了利用第二焦深参考示例系统进行的测量,以展示该系统的准确性和实用性。

测量表示物镜沿着光轴的位置,该位置导致对应焦点区域与窗口的表面并置。焦点区域和窗口表面的并置由进行测量的参与者确定。参与者负责确定使信号辐射的图像具有最小大小的物镜位置。通过两名参与者来进行测量。第一参与者执行了编号为1至3的所有测量,且第二参与者执行了编号为4至6的所有测量。在窗口表面的所有的4个角(左上(TL)、右上(TR)、左下(BL)、右下(BR))处进行测量。下表概述了测量结果。

例示性基于EMR的治疗和窗口参考系统

即使在图像的最小大小由不同参与者主观确定时,测量结果也指示例示性窗口参考系统的可重复性。尽管这些测量是部分地通过使用人类参与者的判断来进行的,但在一些实施例中,使用控制器来确定图像大小并且自动控制焦点区域位置。此外,如根据结果可以推断出,可以从由窗口参考系统进行的测量中计算出窗口表面相对于一个或多个扫描轴的平行度。例如,人们可以根据以下等式近似扫描轴与窗口表面之间的角度,该等式假设小角度近似:

其中:α是扫描轴与窗口表面之间的角度,以弧度为单位;Zref,1是在第一位置(例如窗口表面的第一拐角)处测得的深度,以微米为单位;Zref,2是在第二位置(例如窗口表面的第二拐角)处测得的深度,以微米为单位;且d1-2是在第一位置和第二位置之间沿着大体上垂直于光轴的一个或多个扫描轴的距离,以微米为单位。图18A至图18C的反馈和治疗系统2100需要来自光学路径(例如分束器1832)“拾取”。根据一些实施例,不存在“拾取”。

焦深参考示例3

图22A至图22C示出了根据一些实施例的另一例示性焦深参考和治疗系统2200。图22A示出了被配置为将辐射(例如激光)引导和聚焦至靶标组织中的治疗系统2200。辐射束由光纤2210提供并且由准直仪2212准直。辐射束被光学系统聚焦并引导通过系统2200。聚焦辐射束最终被引导出系统2200的底部的窗口2214。窗口2214被配置为接触治疗组织,以使得聚焦辐射束的焦点区域位于靶标组织内。该系统2200在光学系统中不含有端口或“拾取部”。

图22B至图22C图示了附接有可移除参考系统2220的系统2200。根据系统2200的例示性使用,可移除参考系统2220在治疗之前安装并且用于相对于已知参考(例如窗口表面)可靠地定位焦点区域。可移除参考系统2220附接至准直仪2212的外径。这允许参考系统2220的光轴2222与治疗系统的光轴2224名义上成一直线。参考辐射由参考辐射源2226(例如二极管激光器Thorlabs PN:LPS-1064-APC-SP和准直透镜[例如Edmund Optics PN 33-020])生成。参考辐射被分束器2232(例如50-50分束器Thorlabs PN:BSW4R-1064)部分反射并且沿着参考系统的光轴2222引导。通过参考物镜2233(例如Thorlabs PN:C240TME-1064)聚焦参考辐射。

在一些版本中,参考物镜2233具有约等于治疗物镜2234的处方的处方。参考物镜2233位于沿着光轴2222平移参考物镜2233的参考载物台2235中。参考物镜2233沿着光轴2222将参考辐射引至参考焦点区域。因此,参考载物台2235平移参考焦点区域以及参考物镜2233。在参考焦点区域位于窗口2215的表面附近的情况下,参考辐射的某一部分由窗口2215反射。所反射的参考辐射的一部分由参考物镜2233准直,透射通过分束器2232,并且通过成像透镜2236成像于相机传感器2238上。同样,来自准直仪2212的透射辐射由治疗物镜2234聚焦,透射通过窗口2215,透射光的一部分由参考物镜2233准直,透射通过分束器2232,并且由成像透镜2236成像于相机传感器2238上。

根据系统2200的例示性实施例,在使用中,通过平移参考载物台2235将参考焦点区域引至与窗口2215的外表面重合的参考位置。使用由相机2238捕获到的参考图像来确定参考焦点区域与窗口2215的外表面重合的位置。参考图像大小在参考焦点区域与窗口2215重合之处将具有最小值。此时,参考物镜2233具有与窗口2215的外表面大体上重合的焦平面。然后打开治疗辐射源,从而生成透射辐射。尽管在一些情况下,治疗辐射源以比在治疗期间的典型功率更低的功率(例如10%)运行。

透射辐射由治疗物镜2234聚焦并且透射通过窗口2215。透射辐射的一部分由参考物镜2233准直,透射通过分束器2232,并且由成像透镜2236成像于相机传感器2238上。通过相机传感器2238检测透射图像,该透射图像表示在参考物镜2233的焦平面(例如窗口的外表面)处的透射辐射束的宽度。治疗载物台2240沿着光轴2224平移治疗物镜2234。透射图像在透射焦点区域的位置与参考物镜2233的焦平面重合之处具有最小大小。尽管参考系统的光轴2222与治疗系统2224的光轴名义上对准,但在一些形式中,两个轴彼此稍微位移是有利的。在一些实施例中,平移载物台2242用于使参考系统光轴2222位移。一旦透射焦点区域被定位在与窗口的外表面重合,就可以将治疗载物台调零,并且可以移除参考系统,并且可以执行治疗。

上文所描述的反馈通知的基于EMR的治疗的示例用途(例如在治疗期间对有害和有利的等离子体事件的检测和焦点区域的准确放置)通常与提供安全且有效的治疗有关。反馈通知的基于EMR的治疗的附加用途可以与附加目标有关,例如捕获和记载组织图像以帮助确定诊断或展示积极的治疗结果。

组织成像示例

由组织成像反馈通知的基于EMR的治疗对于皮肤病学和美学治疗具有广泛的用途和益处。例如,根据一些实施例,组织成像允许用户在基于EMR的治疗期间准确地靶向治疗部位。组织成像的另一例示性用途是提供随时间推移的治疗结果的文件记载(例如治疗前图像和治疗后图像)。根据又一些实施例,组织成像用于明判治疗之前的状况的诊断或治疗计划或治疗期间的终结点。许多例示性基于EMR的皮肤治疗的目标是美观(例如与皮肤外观相关)。在这些情况下,对正在进行治疗的皮肤成像可以向治疗利害相关者(患者和执业医师)提供一些最重要的反馈。

图23图示了根据一些实施例的基于成像和辐射的治疗的方法2300的流程图。方法2300开始于利用成像辐射对组织进行照明(2306)。通常,通过使用照明源部分地实现组织的照明。照明可以以多种方式执行,包括:亮场照明,其中将成像辐射基本上同轴提供给成像系统;以及暗场照明,其中将成像辐射基本上离轴提供给成像系统。在一些实施例中,成像辐射基本上为单色的。在其他一些实施例中,成像辐射基本上为宽带(例如白光)。

接着,对组织的视图的图像成像(2310)。使用聚焦光学器件(例如物镜)至少部分地执行成像。在一些情况下,视图是与聚焦光学器件相关联的焦点区域的视场。在一些实施例中,对图像成像(2310)包括:结合聚焦光学器件使用再一个附加光学器件。例如,聚焦光学器件可以显著地准直来自视图的光,并且可以使用镜筒透镜来根据准直光形成图像。图像可以形成于图像平面处。

接着,检测图像(2312)。通常,使用检测器检测图像。检测示例包括:光电检测、共焦光电检测、干涉检测、以及光谱检测。检测器可以在图像平面处检测图像。可以通过图像传感器来检测图像。图像传感器的示例包括半导体电荷耦合设备(CCD)、互补金属氧化物半导体(CMOS)中的有源像素传感器、以及N型金属氧化物半导体(NMOS)。图像传感器通常以二维(2D)数据矩阵(例如位图)输出检测到的图像。

然后显示图像(2314)。通常,通过电子视觉显示器来显示图像。显示器的示例包括:电致发光(EL)显示器、液晶(LC)显示器、发光二极管(LED)背光液晶(LC)显示器、发光二极管(LED)显示器(例如有机LED(OLED)显示器和有源矩阵有机LED(AMOLED)显示器)、等离子体显示器、以及量子点显示器。所显示的图像由指定用户(例如临床医生)查看。在一些情况下,例如通过控制器2419来记录和存储图像。根据一些实施例,所显示的图像用于靶向需要治疗的组织区域。

然后在组织内指定靶标治疗区域(2316)。在一些实施例中,部分地基于图像来指定靶标治疗区域。例如,可以基于如图像中所显示的组织的一部分中的明显过量的色素(例如真皮黑色素)来指定靶标治疗区域(2316)。在一些情况下,查看所显示的图像的临床医生指定靶标治疗区域。备选地,在一些实施例中,控制器基于图像来自动指定靶标治疗区域。靶标治疗区域通常至少部分地存在于图像中。

最后,将治疗辐射聚焦至治疗区域内的焦点区域(2318)。通常,使用聚焦光学器件聚焦治疗辐射,并且该治疗辐射被配置为在组织内执行效果(例如在发色团处选择性地生成热离子等离子体;实现美容效果)。在一些实施例中,部分地基于图像来控制影响治疗辐射的参数。上文详细地描述了影响利用治疗辐射进行治疗的参数。在一些实施例中,在靶标治疗区域内扫描焦点区域。

在一些实施例中,从组织的第一区域到第二区域扫描视图。扫描示例包括:倾倒/倾斜视图、使视图旋转、以及平移视图。对相关扫描手段的进一步描述在Dresser等人的美国专利申请第16/219,809号“电磁辐射束扫描系统和方法”中进行了描述,该申请以引用的方式并入本文中。在一些实施例中,位于第一区域处的视图与位于第二区域处的视图交叠。在这样的情况下,一些组织存在于第一区域和第二区域两者中。在一些其他实施例中,位于第一区域处的视图与位于第二区域处的视图不交叠。在一些实施例中,利用与视图位置相关的反馈来实现视图的扫描。例如,在一些情况下,通过利用两个线性载物台移动聚焦光学器件来扫描视图。当位于第一区域和/或第二区域处时,来自存在于每个线性载物台上的编码器的反馈可以用于推断视图的位置。

可以对来自第二区域的视图的第二图像成像。通常,以与对第一图像成像(2310)相同的方式执行对第二图像成像,只有视图的位置在这两个步骤之间不同。使用聚焦光学器件至少部分地执行成像。在一些情况下,视图是与聚焦光学器件相关联的焦点区域的视场。可以检测第二图像。通常,以与检测第一图像(2312)相同的方式执行检测第二图像,唯一区别为检测第二图像,而非第一图像。

在一些情况下,将第一图像与第二图像一起拼接成拼接图像(或映图)。拼接图像还可以包括利用位于附加区域处的视图拍摄的附加图像。拼接图像可以用于记载组织的治疗前图像或组织的治疗后图像。可以在治疗之前拍摄第一图像、第二图像以及拼接图像中的任何图像,并且该图像可以用于支持对例如医务人员的诊断的确定。同样地,可以在治疗期间或之后拍摄第一图像、第二图像以及拼接图像中的任何图像,以展示治疗的有效性或寻找治疗期间的终结点,其可以暗示治疗结束。

参看图24,示出了根据一些实施例的用于组织成像和治疗系统2400的示意图。成像和治疗系统2400包括聚焦光学器件2410。聚焦光学器件2410(例如物镜)被配置为对组织2413的视图2412成像。检测器2414被配置为检测至少部分地通过聚焦光学器件2410形成的图像2416。检测器2414与显示器2417进行通信。显示器被配置为将图像显示给指定用户(例如临床医生)。根据一些实施例,镜筒透镜2418与聚焦光学器件2410结合使用以形成图像2416。检测器2414与控制器2419进行通信,使得向控制器2419输入与来自检测器的检测到的图像相关联的数据。聚焦光学器件2410用于传递治疗辐射2420以及成像。扫描器2422被配置为扫描视图2412。扫描器通常在至少一个维度上扫描视图。在一些实施例中,扫描器2422在所有的三个维度上扫描视图。参看图24,示出了从组织2413的第一区域2424到第二区域2426扫描视图2412的扫描器2422。

在扫描器2422扫描视图2412时,聚焦光学器件2410对第一区域2424处的第一图像和第二区域2426处的第二图像成像。第一图像和第二图像均由检测器2414检测。而且,向控制器2419输入与第一检测到的图像和第二检测到的图像相关联的数据。在一些实施例中,与多个图像相关联的数据由控制器2419拼接在一起,从而产生拼接图像(或映图)。拼接图像和/或一个或多个图像可以由控制器记录和存储以供将来查看。在一些实施例中,来自一个或多个图像的数据用于确定治疗区域。根据一些实施例,确定治疗区域由控制器自动地完成。在其他一些实施例中,确定治疗区域是由指定的用户在查看一个或多个图像之后手动完成的。

治疗辐射2420由聚焦光学器件2410聚焦至焦点区域。而且,焦点区域被引导至治疗区域。根据一些实施例,扫描器2422被配置为扫描治疗区域内的焦点区域。系统2400的一些实施例包括被放置成与组织2413的表面接触的窗口2430。窗口2430可以用于若干目的,一个目的是基准组织的外表面。因此,窗口2430允许焦点区域可靠地位于组织2413内距离组织2413的表面预定深度处。

图25示意性地图示了根据一些实施例的拼接图像(或映图)2500。拼接图像2500包括若干(例如9个)个体图像2510。扫描路径2520示出了视图在遍历组织时所采取的路径。所示出的扫描路径包括栅格图案,但其他图案也是可能的(例如螺旋形)。在沿着扫描路径定位的点处拍摄每个个体图像2510。拼接图像2500可以以若干方式由个体图像形成。例如,如果视图的位置对于每个个体图像都是可估计的(例如通过扫描器反馈),那么可以通过航位推算计算来构造拼接图像2500。备选地,可以使用用于拼接的机器视觉算法来构造拼接图像2500。第一示例成像拼接软件是Hugin-Panorama照片拼接器。Hugin是托管在http:// hugin.Sourceforge.net处的开源项目。第二示例图像拼接软件是Adobe Photoshop中的照片合成工具。下面提供了特定的单独实施例,以进一步解释EMR治疗设备中的组织成像。

组织成像示例1

图26A至图26B图示了示例组织成像和治疗系统2600的示意图。图26A示出了系统2600的正视图。图26B示出了沿着图26A中的B-B截面线截取的系统2600的横截面视图。

系统2600包括光纤激光器2610。光纤激光器2610被配置为输出治疗辐射。光纤激光器的示例是来自中国上海的Feibo激光技术有限公司的Feibo 1060nm,40W,20Khz光纤激光器。通过光学系统将治疗辐射引导至聚焦光学器件2620,该聚焦光学器件将治疗辐射通过窗口2622聚焦至组织(未示出)中的焦点区域。光学系统被配置成允许聚焦光学器件2620在所有的三个维度上被扫描。这允许在组织内的所有的三个维度上扫描治疗辐射的焦点区域。扫描通过三个单独载物台来完成,每个载物台负责单个轴。X载物台2625在X轴上扫描聚焦光学器件。安装至X载物台2625的Y载物台2626在Y轴上扫描聚焦光学器件。而且,安装至Y载物台2626的Z载物台在Z轴上(例如大体上沿着聚焦光学器件的光轴)扫描聚焦光学器件。例示性X载物台是来自美国马萨诸塞州巴克斯柏路的Dover运动公司的Dover MMX 50,其由以色列佩塔提克瓦的Elmo运动控制器有限公司的Elmo DC whistle Gold控制器控制。例示性Y载物台是由E 873控制器控制的Q545.140载物台,他们均来自美国马萨诸塞州奥本的Physik Instrumente L.P.公司。例示性Z载物台是来自美国纽约维克多市的New Scale技术公司的New Scale 3M-FS。

光学系统包括被配置为反射治疗辐射并传递其他辐射(例如可见光)的分束器2630。因此,由聚焦光学器件2620通过分束器2630对来自组织的成像辐射(例如可见光)成像。沿着分束器2630的束定位透镜组件2632。透镜组件的示例是美国纽约州康宁市Corning公司的VarioOptic自动对焦透镜模块零件号:C-C-39NO-250。成像辐射进一步通过透镜组件成像,并且最终通过相机2634,且更具体地,通过相机内的图像传感器进行检测。示例相机是加拿大安大略省的PixelLink的PL-D755。PL-D755具有图像传感器,其为具有全局快门的SONY IMX250 CMOS。为了对非常小的区域进行显微成像,所示出的成像系统需要对组织进行照明。

框架2640被示出为具有贯穿其的多个孔2642。在孔2642内,放置多个光纤束(未示出)。在例示性照明方案中,将容纳于直径为0.06”的不锈钢管内的12个光纤束放置于被定位在框架2640周围的孔2642中。光纤束在远端会聚成单个束。将单个束放置成与光源进行光学通信。例示性光源是购自美国康涅狄格州Pomfret的光纤技术公司的日光白6500K 38W光引擎零件号FTIII24015。孔2642朝向窗口2622倾斜,因此,当存在束时,朝向组织引导来自光纤束的光。相对于聚焦光学器件的光轴成一定角度进行照明可以称为暗视野照明。在一些实施例中,暗场照明是有利的,这是由于来自窗口表面的镜面反射并未通过聚焦光学器件成像(作为眩光)。在其他一些实施例中,照明通常与光轴同轴地提供。该照明技术可以被称为亮场照明。在一些实施例中,亮场照明是有利的,这是由于其在聚焦光学器件的视野内提供了更大的照明密度。为了展示实践性,描述了利用示例成像系统拍摄的图像。

图27A示出了由图26A至B中所示出的示例系统2600拍摄的图像2710。该图像拍摄了空军1951年靶标。拍摄了18个如该图像2710这样的图像(2个数为9的行)。将这18个图像一起拼接成拼接图像2720,其在图27B中示出。使用Adobe Photoshop中的照片合成工具来自动执行拼接。查阅拼接图像2720表明第7组元素6是可解析的。第7组元素6中的线为约2.2μm宽。因此,使用图26A至B中所示出的示例系统2600,显微成像是实用的。

附加实施例

在一些实施例中,输入激光束的重复率可以比靶标组织/靶标材料中的等离子体的衰减率更快。这可以允许等离子体的连续的(例如时间上连续的、空间上连续的等)生成。可以通过改变激光束的重复率来控制治疗区域/靶标区域(例如生成等离子体的区域)的面积。

附加实施例包括与基于EMR的治疗结合使用的备选成像技术。这些备选成像技术包括:显微成像、宽视场成像、反射共焦成像、光学相干断层成像、光学相干弹性成像、相干反斯托克斯拉曼光谱成像、双光子成像、二次谐波生成成像、相共轭成像、光声成像、红外频谱成像以及超谱成像。

本领域的技术人员应基于上述实施例了解本发明的其他特征和优点。因此,除了如由所附权利要求书所指示的之外,本发明不受已经特定示出和描述的内容限制。本文中所引用的所有出版物和参考文献的全部内容以引用的方式明确地并入本文中。

本文中所描述的主题可以利用数字电子电路系统或计算机软件、固件或硬件(包括在本说明书中公开的结构装置及其结构等效物)或其组合来实施。本文中所描述的主题可以实施为一种或多种计算机程序产品(诸如有形地实施在信息载体中(例如实施在机器可读存储设备中)或实施在传播信号中的一种或多种计算机程序),以供由数据处理设备(例如可编程处理器、计算机、或多个计算机)执行或控制该数据处理设备的操作。可以用任何形式的编程语言(包括:编译语言或解译语言)来编写计算机程序(也称为程序、软件、软件应用、或代码),并且可以按照任何形式(包括:作为独立式程序或模块、部件、子例程、或适合用于计算环境的其他单元)来部署计算机程序。计算机程序并不一定对应于文件。可以将程序存储在保持其他程序或数据的文件的一部分中,或存储在专用于所探讨中的程序的单个文件中,或存储在多个协作文件(例如存储一个或多个模块、子程序、或部分代码的文件)中。可以将计算机程序部署为在一个计算机上执行或在位于一个站点处或分布在多个站点中并且通过通信网络互接的多个计算机上执行。

本说明书中所描述的进程和逻辑流程(包括本文中所描述的主题的方法步骤)可以由一个或多个可编程处理器执行,该可编程处理器执行一个或多个计算机程序以通过在输入数据上运行并且生成输出来执行本文中所描述的主题的功能。也可以通过专用逻辑电路系统(例如FPGA(现场可编程门阵列)或ASIC(专用集成电路))来执行进程和逻辑流程,并且也可以将本文中所描述的主题的装置实施为该专用逻辑电路系统。

适合执行计算机程序的处理器包括:例如,通用微处理器和专用微处理器以及任何种类的数字计算机的任何一个或多个处理器。一般而言,处理器将接收来自只读存储器或随机存取存储器或两者的指令和数据。计算机的必要元件是:用于执行指令的处理器和用于存储指令和数据的一个或多个存储器设备。一般而言,计算机还将包括用于存储数据的一个或多个海量存储设备(例如磁盘、磁光盘或光盘),或计算机可以操作地耦合以接收来自该海量存储设备的数据或将数据传送至该海量存储装置或进行两者。适合于实施计算机程序指令和数据的信息载体包括所有形式的非易失性存储器,包括:例如,半导体存储器设备(例如EPROM、EEPROM、以及闪速存储器设备)、磁盘(例如内部硬盘或可移除盘)、磁光盘、以及光盘(CD盘和DVD盘)。处理器和存储器可以由专用逻辑电路系统补充或可以并入该专用逻辑电路系统中。

为了提供与用户的交互,可以在计算机上实施本文中所描述的主题,该计算机具有:用于向用户显示信息的显示设备,例如CRT(阴极射线管)或LCD(液晶显示器)监测器;以及键盘和指向设备(例如鼠标或轨迹球),用户可以通过该键盘和该指向设备来将输入提供给计算机。其他种类的设备也可以用于提供与用户的交互。例如,提供给用户的反馈可以是任何形式的感观反馈(例如视觉反馈、听觉反馈或触觉反馈),并且可以以包括声学的、语音或触觉输入的任何形式接收来自用户的输入。

本文中所描述的技术可以使用一个或多个模块来实施。如本文中所使用,术语“模块”是指计算软件、固件、硬件和/或其各种组合。然而,在最低程度上,模块不应被解释为未在硬件、固件上实施或未记录在非暂时性处理器可读可记录存储介质上的软件(即,模块本身不是软件)。实际上,“模块”将被解释为始终包括至少一些物理的、非暂时性硬件,诸如处理器或计算机的一部分。两个不同模块可以共享相同的物理硬件(例如两个不同模块可以使用相同处理器和网络接口)。本文中所描述的模块可以被组合、集成、分离、和/或复制以支持各种应用。此外,代替在特定模块处执行的功能或除了在特定模块处执行的功能之外,可以在一个或多个其他模块处和/或通过一个或多个其他设备来执行本文中被描述为在特定模块处执行的功能。进一步地,可以横跨彼此本地或远程的多个设备和/或其他部件来实施模块。另外,模块可以从一个设备移动并添加至另一设备和/或可以包括在两个设备中。

可以将本文中所描述的主题实施在包括后台部件的计算系统(例如数据服务器)、或包括中间件部件的计算系统(例如应用服务器)、或包括前端部件的计算系统(例如具有图形用户界面或网络浏览器的客户端计算机,用户可以通过该图形用户界面或该网络浏览器来与本文中所描述的主题的实施方式交互)、或包括这样的后台部件、中间件部件以及前端部件的任何组合的计算系统中。可以通过任何形式或介质的数字数据通信(例如,通信网络)来将系统的部件互连。通信网络的示例包括:局域网(“LAN”)和广域网(“WAN”),例如互联网。

如本文中在整个本说明书和权利要求书中所使用的,可以将近似语言应用于修饰可能获准在不导致与之相关的基本功能的变化的情况下发生改变的任何定量表示。除非另有陈述或从上下文中明显看出(除了此数字将不被获准超过可能值的100%的情况之外),否则“大约”、“基本上”或“约”可以包括在任一方向上(大于或小于该数字)落入数字的1%的范围内、或在一些实施例中落入数字的5%的范围内、或在一些实施例中落入数字的10%的范围内的数字。因此,由诸如“约”、“大约”或“基本上”的一个或多个术语修饰的值不限于所指定的精确值。在至少一些情况下,近似语言可以对应于用于测量值的仪器的精确度。此处以及在整个说明书和权利要求书中,可以组合和/或互换范围限制,除非上下文或语言另有指示,否则这样的范围被标识并且包括其中所含有的所有子范围。

除非明确相反地指出,否则如本文中在说明书和权利要求书中所使用的冠词“一”和“一个”应被理解为包括复数参照对象。除非相反地指出或以其他方式从上下文中明显看出,否则如果一组构件中的一个构件、一个以上的构件或所有构件存在于在给定产品或进程中、在给定产品或进程中采用或以其他方式与给定产品或进程相关,那么将在这个组的一个或多个构件之间包括“或”的要求或描述视为被满足。本公开包括这组中恰好有一个构件存在于给定产品或进程中、在给定产品或进程中采用或与给定产品或进程相关的实施例。本公开还包括这组构件中的一个以上的构件或所有构件存在于给定产品或进程中、在给定产品或进程中采用或与给定产品或进程相关的实施例。此外,应理解,除非另外指出或除非对于本领域的普通技术人员而言明显会出现矛盾或不一致,否则所公开的实施例提供了所有变型、组合和置换,其中将来自所列权利要求中的一个或多个权利要求的一个或多个限制、元素、从句、描述性术语等引入到从属于同一基本权利要求(或作为相关的任何其他权利要求)的另一权利要求中。可以预期,在适当的情况下,本文中所描述的所有实施例可以应用于所公开的实施例的所有不同方面。还可以预期,在任何适当的情况下,实施例或方面中的任何实施例或方面都可以与一个或多个其他这样的实施例或方面自由组合。在元素以列表形式(例如以马库什组或类似格式)呈现的情况下,应理解,还公开了元素的每个子组,并且可以从组中移除任何(多个)元素。应理解,一般而言,在所公开的实施例或所公开的实施例的方面被称为包括特定元素、特征等的情况下,本公开或本公开的方面的某些实施例由这样的元素、特征等组成或基本上由这样的元素、特征等组成。出于简单起见,在每种情况下都没有在本文中用过多字词具体地阐述这些实施例。还应理解,可以在权利要求中明确地排除本公开的任何实施例或方面,而不管说明书中是否列举了特定排除。例如,可以排除任何一种或多种活性剂、添加剂、成分、任选剂、生物体类型、疾病、主体或其组合。

在本文中给定范围的情况下,本公开的实施例包括端点被包括进来的实施例、两个端点均被排除的实施例以及一个端点被包括进来而另一端点被排除的实施例。除非另有说明,否则应假设包括两个端点。此外,应理解,除非另外指出或从上下文和本领域的普通技术人员的理解中明显看出,否则在本公开的不同实施例中,被表述为范围的值可以假设在本公开的不同实施例中的所陈述范围内的任何特定值或子范围,除非上下文另外明确指出,否则直到该范围的下限的十分之一。还应理解,在本文中陈述了一系列数值的情况下,本公开包括与由该系列中的任两个值限定的任何中间值或范围以类似方式相关的实施例,并且最低值可以被视为最小值,而最大值可以被视为最大值。如本文中所使用,数值包括被表述为百分比的值。

应理解,除非另外明确相反地指出,否则在本文中所要求的包括一个以上的动作的任何方法中,该方法的动作的顺序不必限于叙述该方法的动作的顺序,但本公开包括顺序被如此限制的实施例。还应理解,除非另外指出或从上下文中明显看出,否则本文中所描述的任何产品或组合物可以被视为是“分离的”。

如本文中所使用的,术语“包括(comprising/comprises)”用于指组合物、方法及其(多个)相应部件,这些组合物、方法以及相应部件对于所公开的实施例是必要的,但对于包括未经指定的元素(无论是否为必要的)都是开放的。

如本文中所使用,术语“基本上由……组成”是指给定实施例所需的元素。该术语允许存在实质上不影响本公开的该实施例的(多个)基本且新颖的或功能性特点的附加元素。

术语“由……组成”是指如本文中所描述的组合物、方法及其相应部件,这些组合物、方法以及相应部件排除了在该实施例的该描述中未叙述的任何元素。

尽管上文已经详细地描述了一些变型,但其他修改或添加也是可能的。

在以上描述和权利要求中,可以出现诸如“中的至少一个”或“中的一个或多个”的短语,其后是元素或特征的组合列表。术语“和/或”也可以出现在两个或多个元素或特征的列表中。除非另外就使用短语的上下文而言隐含或明确存在矛盾,否则此短语旨在表示单独列出的元素或特征中的任何元素或特征,或与其他叙述元素或特征中的任何元素或特征组合的叙述元素或特征中的任何元素或特征。例如,短语“A和B中的至少一者”、“A和B中的一个或多个”以及“A和/或B”分别旨在表示“单独A、单独B或A和B一起”。类似解释也适用于包括三个或更多个项的列表。例如,短语“A、B以及C中的至少一者”、“A、B以及C中的一个或多个”以及“A、B和/或C”分别旨在表示“单独A、单独B、单独C、A和B一起、A和C一起、B和C一起或A和B和C一起”。此外,上文以及权利要求中使用术语“基于”旨在表示“至少部分地基于”,使得也允许未叙述的特征或元素。

根据期望配置,本文中所描述的主题可以实施在系统、装置、方法和/或制品中。在前述描述中所阐述的实施方式并不表示根据本文中所描述的主题的所有实施方式。相反,这些实施方式仅仅是根据与所描述的主题相关的方面的一些示例。尽管上文已经详细地描述了一些变型,但其他修改或添加也是可能的。特定地,除了本文中所阐述的那些特征和/或变型之外,还可以提供其他特征和/或变型。例如,上文所描述的实施方式可以涉及所公开的特征的各种组合和子组合和/或上文所公开的若干其他特征的组合和子组合。此外,在附图中描绘和/或本文中所描述的逻辑流程并不一定需要所示出的特定顺序或相继顺序来实现期望结果。其他实施方式可以在以下权利要求书的范围内。

77页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:辐照设备和辐照方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!