基于微纳增材制备仿生黏附材料的方法

文档序号:839862 发布日期:2021-04-02 浏览:11次 >En<

阅读说明:本技术 基于微纳增材制备仿生黏附材料的方法 (Method for preparing bionic adhesion material based on micro-nano additive ) 是由 何青松 张昊 于敏 孙正 尹国校 潘辉 赵泽芳 戴振东 于 2020-12-10 设计创作,主要内容包括:本发明公开了一种基于微纳增材制备仿生黏附材料的方法,包括以下步骤:将增塑剂和有机溶剂混合,加入聚氯乙烯粉末,得到聚氯乙烯凝胶溶液;将微纳增材制造的微纳模具置于容器中,倒入聚氯乙烯凝胶溶液,抽真空去除聚氯乙烯凝胶溶液中的气泡;将容器放入在玻璃密封罐中,置于真空干燥箱中升温使有机溶剂挥发后取出,脱模获得微纳模具的聚氯乙烯凹模;将聚氯乙烯凹模置于容器中,倒入二次倒模材料,抽真空去除气泡;待二次倒模材料固化后,取出后分离聚氯乙烯凹模即获得仿生黏附材料。本发明通过两次倒模法所制备的仿生黏附材料具有较好的黏附性能、较高弹性模量、重复采用性,本发明公开了其制法,该方法适用于制备多种微纳结构的仿生黏附材料。(The invention discloses a method for preparing a bionic adhesion material based on micro-nano additive materials, which comprises the following steps: mixing a plasticizer and an organic solvent, and adding polyvinyl chloride powder to obtain a polyvinyl chloride gel solution; placing a micro-nano die manufactured by micro-nano additive manufacturing in a container, pouring a polyvinyl chloride gel solution, and vacuumizing to remove bubbles in the polyvinyl chloride gel solution; putting the container into a glass sealing tank, putting the container into a vacuum drying oven, heating to volatilize the organic solvent, taking out the container, and demolding to obtain a polyvinyl chloride female die of the micro-nano die; placing a polyvinyl chloride female die in a container, pouring a secondary die-pouring material, and vacuumizing to remove bubbles; and after the secondary die-casting material is solidified, taking out the secondary die-casting material, and separating the polyvinyl chloride female die to obtain the bionic adhesive material. The bionic adhesive material prepared by the two-time reverse mold method has good adhesive performance, high elastic modulus and reusability, and the preparation method is suitable for preparing the bionic adhesive materials with various micro-nano structures.)

基于微纳增材制备仿生黏附材料的方法

技术领域

本发明涉及一种基于微纳增材制备仿生黏附材料的方法,属于仿生黏附材料技术领域。

背景技术

作为自然界中具有卓越爬行能力的代表动物——壁虎,可以在垂直墙面和天花板上,甚至在光滑玻璃窗上自由的爬行,壁虎脚趾腹面密布的微纳米层级结构刚毛,以其末端纳米级匙突结构与表面紧密接触,产生微弱范德华力并汇聚成宏观黏附力,使壁虎黏附系统具有高强黏附、易脱附、可重复黏附等优异性能,引起诸多领域的科学家和工程技术人员的极大关注。国内外在仿壁虎粘附阵列的研制方面已经做了大量工作,并取得很大的进展。美国斯坦福大学Cutkosky等人从优化黏附支杆形貌出发,研制了末端尖锐的倾斜毫米级阵列。采用机加工微模具浇注法制备,浇注材料为聚氨酯(Innovative polymers,IE-20AHPolyurethane,E=0.3MPa),浇注试验得到的黏附阵列黏附强度约为0.24N/cm2,且具有明显的各向异性,能实现壁虎爬行过程中类似的滑粘现象,已初步应用在仿壁虎爬壁机器人上,取得了良好的效果(Santos D,Kim S,Spenko M,Parness A,Cutkosky M.Directionaladhesive structures for controlled climbing on smooth verticalsurfaces.2007IEEE International Conference on Robotics and Automation,Roma,Italy,10-14April 2007.)。德国Binder公司Jan通过辊压模具加工出支杆末端蘑菇状结构的仿壁虎干黏附结构,得到长100μm,直径35μm的微黏附阵列,最大的法向黏附强度可达6N/cm2(Tuma Jan,Gottlieb Binder GMBH&CO.KG.Process for creating adhesionelements on a substrate material.European Patent,EP20040722156,WO 2005/087033A1.)。清华大学田煜采用超精密金刚石加工模具,制备获得了聚二甲基硅氧烷基倾斜状干黏附阵列,黏附强度可达1.05N/cm2(Tao D,Gao X,Lu H,Liu Z,Li Y,Tong H,Pesika N,Meng Y,and Tian Y.Controllable Anisotropic Dry Adhesion in Vacuum:Gecko Inspired Wedged Surface Fabricated with Ultraprecision DiamondCutting.Adv.Funct.Mater.2017,27,16065761-9.)。卡内基梅隆大学Metin Sitti等人和西安交通大学邵金友等人通过光刻模板制备获得了支杆末端为蘑菇头结构的仿生干黏附材料(Wang Y,Hu H,Shao J Y,Ding Y C.Fabrication of Well-Defined Mushroom-Shaped Structures for Biomimetic Dry Adhesive by ConventionalPhotolithography and Molding.ACS Applied Materials&Interfaces,2014,6,2213-2218.,Cheung E,Sitti M.Adhesion of Biologically Inspired Polymer Microfiberson Soft Surfaces.Langmuir 2009,25(12),6613–6616.)。中科院合肥智能机械研究所的梅涛课题组利用ICP深刻蚀方法制备模板,浇注聚二甲基硅氧烷,固化后脱模得到多种长径比的微黏附阵列,其中长5μm,直径2μm的阵列所测得的法向黏附强度最大,可达1.94N/cm2(陈士荣,梅涛,倪林,等.仿壁虎微纳米黏附阵列的工艺制备.MEMS器件与技术,2006,9,434-437.)。美国Dayton大学Dai LM等人采用低压化学气相沉积法制备出强黏附-易脱附的垂直定向排列碳纳米管阵列,切向黏附强度接近100N/cm2,是壁虎脚掌刚毛黏附强度的10倍(Qu L,Dai L,Stone M,Xia Z,Wang Z.Carbon nanotube arrays with strong shearbinding-on and easy normal lifting-off.Science,2008,322,238-242.,Li Y,Xu G,Zhang H,Li T,Yao Y,Li Q,Dai Z.Alcohol-assisted rapid growth of verticallyaligned carbon nanotube arrays.Carbon,2015,91,45-55.)。

综上所述,各研究机构采用了机加工、光刻模具、化学气相沉积等不同的方法来研制仿生黏附材料,尽管上述方法取得了较好的效果,但是这些制备方法具有高成本、耗时间的不足。

发明内容

本发明的目的是提供一种基于微纳增材制备仿生黏附材料的方法,旨在降低仿生黏附材料制备成本,缩短制备周期,并同时解决微纳结构脱模时材料与模具的粘连现象。

为实现上述目的,本发明采用如下技术方案:

一种基于微纳增材制备仿生黏附材料的方法,包括以下步骤:

步骤1,将增塑剂和有机溶剂混合,置于磁力搅拌机搅拌;然后向混合液中加入聚氯乙烯粉末,置于磁力搅拌机上搅拌,得到聚氯乙烯凝胶溶液;

步骤2,将微纳增材制造的微纳模具置于容器中,倒入步骤1得到的聚氯乙烯凝胶溶液,抽真空去除聚氯乙烯凝胶溶液中的气泡;将容器放入在玻璃密封罐中,置于真空干燥箱中升温使有机溶剂挥发后取出,脱模获得微纳模具的聚氯乙烯凹模;

步骤3,将步骤2所得聚氯乙烯凹模置于容器中,倒入二次倒模材料,抽真空去除气泡;待二次倒模材料固化后,取出后分离聚氯乙烯凹模即获得与增材制造微纳模具具有相同结构的仿生黏附材料。

所述步骤1中,聚氯乙烯粉末与增塑剂的质量比例为1:1~1:5,聚氯乙烯粉末与有机溶剂的质量比为1:10~1:20。

所述聚氯乙烯粉末的平均分子量为10000~200000。

所述增塑剂为己二酸二丁酯(DBA)、邻苯二甲酸二辛酯(DOP)、磷酸三甲苯酯(TCP)的一种。

所述有机溶剂为四氢呋喃(THF),N,N-二甲基甲酰胺(DMF),乙酸正丁酯(BAC)的一种。

所述步骤1中,第一次磁力搅拌是以500r/min搅拌5分钟,第二次磁力搅拌是以1500r/min搅拌24小时。

所述步骤2中,微纳模具通过微纳增材制造技术得到,微纳增材制造技术包括面投影微立体光刻成型、双光子、光固化;微纳模具的材质为硬性树脂。

所述步骤3中,二次倒模材料为聚二甲基硅氧烷(PDMS)、环氧树脂(EP)、聚氨酯(PU)的一种。

有益效果:本发明采用PVC凝胶溶液浇筑增材制造的微纳模具获得对应结构的凹模,利用PVC凝胶溶液在挥发固化过程中体积会产生轻微缩小,使PVC凝胶与模具自动分离从而实现脱模,显著降低了微纳结构脱模时的难度;并且利用PVC凝胶本身的优良弹性,通过在PVC凹模上浇筑获得了仿生黏附材料。该方法降低仿生黏附材料制备成本,缩短制备周期。同时解决微纳结构脱模时材料与模具的粘连现象。

附图说明

图1a和图1b为本发明实施例1中所使用的光固化打印微结构模具的SEM图;其中图1a为表面;图1b为侧面;

图2为本发明实施例1中PVC阴模的制备方法示意图;

图3a和图3b为本发明实施例1中所制备的聚二甲基硅氧烷基仿生黏附材料的SEM图;其中图3a为表面;图3b为侧面;

图4a和图4b为本发明实施例1中所制备的碳纳米管掺杂聚二甲基硅氧烷基仿生黏附材料的SEM图;其中图4a为表面;图4b为侧面;

图5a和图5b为本发明实施例1中所制备的环氧树脂基仿生黏附材料的SEM图;其中图5a为表面;图5b为侧面;

图6为实施例1、2、3中所制备的三种仿生黏附材料在不同负载下法向粘附力。

具体实施方式

本发明的一种基于微纳增材制备仿生黏附材料的方法,包括以下步骤:

步骤1,将增塑剂和有机溶剂混合,置于磁力搅拌机上以500r/min搅拌5分钟;在锥形瓶中加入PVC粉末,置于磁力搅拌机上以1500r/min搅拌24小时,得到聚氯乙烯凝胶溶液;

其中,聚氯乙烯粉末与增塑剂的质量比例为1:1~1:5,聚氯乙烯粉末与有机溶剂的质量比为1:10~1:20;

其中,聚氯乙烯粉末的平均分子量为10000~200000;增塑剂为己二酸二丁酯(DBA)、邻苯二甲酸二辛酯(DOP)、磷酸三甲苯酯(TCP)的一种;有机溶剂为四氢呋喃(THF),N,N-二甲基甲酰胺(DMF),乙酸正丁酯(BAC)的一种。

步骤2,将微纳增材制造的微纳模具置于容器中,倒入步骤1得到的聚氯乙烯凝胶溶液,抽真空去除聚氯乙烯凝胶溶液中的气泡;将容器放入在玻璃密封罐中,置于真空干燥箱中升温使有机溶剂挥发后取出,脱模获得微纳模具的聚氯乙烯凹模;

其中,采用面投影微立体光刻成型、双光子、光固化等微纳增材制造技术获得微纳模具,微纳模具的材质为硬性树脂。

步骤3,将步骤2所得聚氯乙烯凹模置于容器中,倒入二次倒模材料,抽真空去除气泡;待二次倒模材料固化后,取出后分离聚氯乙烯凹模即获得与增材制造微纳模具具有相同结构的仿生黏附材料;

其中,二次倒模材料为聚二甲基硅氧烷(PDMS)、环氧树脂(EP)、聚氨酯(PU)等基体材料的一种。

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,各实施例及试验例中所用的设备和试剂如无特殊说明,均可从商业途径得到。此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

以下实施例中所浇筑的增材制造的微纳仿生干黏附材料阵列平面尺寸为14mm*14mm,其中上表面具有如图1所示的蘑菇头微支柱结构微支柱尺寸为高度70um,直径50um;蘑菇头尺寸为高度30um,直径80um,两微柱间中心线距离为120um。

实施例1

聚二甲基硅氧烷基蘑菇状仿生黏附材料的制备

选择己二酸二丁酯(DBA),四氢呋喃(THF)作为本实施例的增塑剂和有机溶剂,其他种类的增塑剂和有机溶剂具有相似的功能与作用。

步骤1,PVC凝胶溶液配置:

按PVC粉末,增塑剂(DBA),有机溶剂(THF)质量比1:1.75:15加入锥形瓶中,置于磁力搅拌机上以500r/min搅拌5分钟后在锥形瓶中加入PVC,置于磁力搅拌机上以1500r/min搅拌24小时获PVC凝胶溶液;

步骤2,一次倒模:

将增材制造微纳模具置于玻璃培养皿中,采用PVC溶液对模具进行浇筑,待溶液自然流平后置于真空箱中,通过抽真空去除气泡,并且使PVC凝胶溶液充分渗入模具中;将烧杯放入在玻璃密封罐中,置于鼓风干燥箱中以60°鼓风干燥24小时,获得对应微纳增材制造模具的PVC凹模其制备流程如图2所示。

步骤3,对PVC凹模进行二次倒模:

按照A,B组分10:1的质量比例配置道康宁184聚二甲基硅氧烷,搅拌均匀;将PVC凹模具置于烧杯中,倒入上述配置的聚二甲基硅氧烷,抽真空去除气泡;将烧杯置于鼓风干燥箱中,80°保持1小时,取出后分离PVC凹模即可获得与增材制造具有相同结构的聚二甲基硅氧烷基仿生黏附材料。

所制备出的聚二甲基硅氧烷基仿生黏附材料相较于模具本身,蘑菇头微支柱结构微支柱尺寸为高度47um,直径40um;蘑菇头尺寸为高度20um,直径60um,两微柱间中心线距离为90um。横向尺寸缩小约20%,纵向尺寸缩小约30%,如图3所示。

实施例2

碳纳米管掺杂聚二甲基硅氧烷基仿生黏附材料的制备

选择己二酸二丁酯(DBA),四氢呋喃(THF)作为本实施例的增塑剂和有机溶剂,其他种类的增塑剂和有机溶剂具有相似的功能与作用。

步骤1,PVC凝胶溶液配置:

按PVC粉末,增塑剂(DBA),有机溶剂(THF)质量比1:1.75:15加入锥形瓶中,置于磁力搅拌机上以500r/min搅拌5分钟后在锥形瓶中加入PVC,置于磁力搅拌机上以1500r/min搅拌24小时获PVC凝胶溶液;

步骤2,一次倒模:

将增材制造微纳模具置于玻璃培养皿中,采用PVC溶液对模具进行浇筑,待溶液自然流平后置于真空箱中,通过抽真空去除气泡,并且使PVC凝胶溶液充分渗入模具中;将烧杯放入在玻璃密封罐中,置于鼓风干燥箱中以60°鼓风干燥24小时,获得对应微纳增材制造模具的PVC凹模。

步骤3,对PVC凹模进行二次倒模:

使用中国专利文献“戴振东,何青松,于敏,张昊.用于仿壁虎粘附阵列的粘附材料及其制备.中国发明专利,ZL201310284325.2”中所公开的碳纳米管掺杂聚二甲基硅氧烷进行二次倒模;

按照道康宁184的A组分,道康宁184的B组分,道康宁186的B组分,碳纳米管质量比为10:0.5:0.5:0.05配置碳纳米管掺杂聚二甲基硅氧烷,搅拌均匀;将PVC凹模具置于烧杯中,倒入上述配置的碳纳米管掺杂聚二甲基硅氧烷,抽真空去除气泡;将烧杯置于鼓风干燥箱中,80°保持1小时,取出后分离PVC凹模即可获得与增材制造具有相同结构的碳纳米管掺杂聚二甲基硅氧烷基仿生黏附材料,蘑菇头微支柱结构微支柱尺寸为高度47um,直径40um;蘑菇头尺寸为高度20um,直径60um,两微柱间中心线距离为90um。横向尺寸缩小约20%,纵向尺寸缩小约30%,如图4所示。

实施例3

环氧树脂基仿生黏附材料的制备:

步骤1,PVC凝胶溶液配置:

按PVC粉末,增塑剂(DBA),有机溶剂(THF)质量比1:1.75:15加入锥形瓶中,置于磁力搅拌机上以500r/min搅拌5分钟后在锥形瓶中加入PVC,置于磁力搅拌机上以1500r/min搅拌24小时获PVC凝胶溶液;

步骤2,一次倒模:

选择己二酸二丁酯(DBA),四氢呋喃(THF)作为本示例的增塑剂和有机溶剂,其他种类的增塑剂和有机溶剂具有相似的功能与作用。

将增材制造微纳模具置于玻璃培养皿中,采用PVC溶液对模具进行浇筑,待溶液自然流平后置于真空箱中,通过抽真空去除气泡,并且使PVC凝胶溶液充分渗入模具中;将烧杯放入在玻璃密封罐中,置于鼓风干燥箱中以60°鼓风干燥24小时,获得对应微纳增材制造模具的PVC凹模。

步骤3,对PVC凹模进行二次倒模:

选择环氧树脂(EP)作为本示例二次倒模的材料;

按照A,B组分3:1的质量比例环氧树脂溶液浇筑溶液,搅拌均匀;将PVC凹模具置于烧杯中,倒入上述配置的环氧树脂溶液,抽真空去除气泡;将烧杯置于室温环境下保持24小时,取出后分离PVC凹模即可获得与增材制造具有相同结构的环氧树脂基仿生黏附材料,蘑菇头微支柱结构微支柱尺寸为高度47um,直径30um;蘑菇头尺寸为高度20um,直径46um,两微柱间中心线距离为90um。横向尺寸缩小约40%,纵向尺寸缩小约30%,如图5所示。

图6为实施例1、2、3中所制备的三种仿生黏附材料在不同负载下法向粘附力;通过制备阵列结构可以在一定程度上提升其黏附力,其黏附力与制备工艺,微阵列尺寸,结构等有关;同时比较上述三种示例材料,使用具有较高表面能的碳纳米管掺杂聚二甲基硅氧烷与环氧树脂亦可增强其粘附力。

根据上述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的具体的物料规格(所用增材制造方法、微纳模具材料与结构、PVC凝胶组分,基体材料种类与型号等)、工艺条件及其结果仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于沉孔深度修正的液体垫片成型方法及模具

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!