Application of T-RAPA cell transformed by lentivirus vector in improvement of lysosomal storage disease

文档序号:862851 发布日期:2021-03-16 浏览:16次 中文

阅读说明:本技术 慢病毒载体转化的t-rapa细胞在改善溶酶体贮积症中的应用 (Application of T-RAPA cell transformed by lentivirus vector in improvement of lysosomal storage disease ) 是由 J·A·梅迪 D·H·福勒 M·S·那吉 T·菲力扎多 于 2019-04-29 设计创作,主要内容包括:本公开提供了治疗溶酶体贮积症的方法。该方法包括产生表达目的转基因的载体转导的T-Rapa细胞,并将该细胞施用于有需要的患者。(The present disclosure provides methods of treating lysosomal storage disorders. The method comprises generating T-Rapa cells transduced with a vector expressing a transgene of interest and administering the cells to a patient in need thereof.)

1. A method of treating a lysosomal storage disease in a subject, comprising the steps of:

(a) ex vivo conditioning of T cells from a subject or suitable donor with rapamycin to produce T-Rapa cells;

(b) transducing T-Rapa cells in vitro with a vector comprising a transgene of interest encoding an enzyme associated with a lysosomal storage disease; and

(c) administering the transduced T-Rapa cells to a subject, wherein the T-Rapa cells express an enzyme associated with a lysosomal storage disorder in the subject and alleviate one or more symptoms of the lysosomal storage disorder.

2. The method of claim 1, wherein after step (b) the method comprises expanding vector-transduced T-Rapa cells by in vitro culture, and

step (c) comprises administering the transduced and expanded T-Rapa cells to a subject.

3. The method of claim 1, wherein step (a) further comprises detecting and isolating CD4+ T cells from the subject or a suitable donor, and culturing the T cells in vitro prior to conditioning the T cells, optionally wherein the CD4+ T cells are at least 75% pure.

4. The method of any preceding claim, wherein step (a) comprises culturing the T cells in a chemically defined medium comprising an effective amount of rapamycin to produce T-Rapa cells.

5. The method of claim 4, wherein the effective amount of rapamycin is from about 0.1 to about 2 micromolar, preferably about 1 micromolar.

6. The method of claim 4 or 5, wherein the chemically-defined medium further comprises recombinant human IL-4 and recombinant human IL-2, preferably about 5-20IU/mL IL-2 and about 500 IU/mL IL-4.

7. The method of any one of the preceding claims, wherein the method further comprises maintaining and expanding the vector-transduced T-Rapa cells in vitro culture and storing a portion of the vector-transduced T-Rapa cells for future administration to a subject.

8. The method of claim 6, wherein the transduced T-Rapa cells are stored for future use by cryopreservation.

9. The method of any one of the preceding claims, wherein step (c) comprises infusing the transduced T-Rapa cells into the subject in an amount effective to alleviate one or more symptoms of a lysosomal storage disorder.

10. The method of any one of the preceding claims, wherein the cells are administered by intravenous infusion.

11. The method of any one of the preceding claims, wherein the vector is a lentiviral vector.

12. The method of claim 10, wherein the vector is a dual promoter lentiviral vector, wherein the vector expresses the transgene of interest and a mutant form of inosine-5' -monophosphate dehydrogenase 2 (IMPDH2(IY)) when transduced into T-Rapa cells.

13. The method of claim 11, wherein the vector comprises SEQ ID No. 11.

14. The method of any one of the preceding claims, wherein the disease is selected from fabry's disease, gaucher's disease, fabry's disease and pompe's disease.

15. The method of any one of the preceding claims, wherein the disease is fabry disease and the transgene of interest encodes a-galactosidase a (a-galA).

16. The method of claim 14, wherein the transgene is SEQ ID NO:1 or an AGA transgene in combination with SEQ ID NO:1, optionally wherein the vector is a vector comprising SEQ ID NO:1 or a sequence identical to SEQ ID NO: 1a lentiviral vector having a sequence with at least 75% sequence identity.

17. The method of claim 14 or 15, wherein the vector is SEQ ID NO: 2.

18. The method of claim 11, wherein the vector is a dual promoter lentiviral vector, wherein the vector expresses both alpha galactosidase a and a mutant form of inosine-5' -monophosphate dehydrogenase 2 (IMPDH2(IY)) when transduced into T-Rapa cells.

19. The method of claim 11 or 17, wherein the method further comprises administering Mycophenolate Mofetil (MMF) to the subject in an amount sufficient to enrich the subject for lentiviral vector transduced T-Rapa cells.

20. The method of any one of claims 1-13, wherein the disease is gaucher's disease, and wherein the transgene encodes β -glucocerebrosidase.

21. The method of claim 19, wherein the vector encoding β -glucocerebrosidase comprises the amino acid sequence of SEQ ID NO:7 or a transgene sequence substantially identical to SEQ ID NO:7 having at least 75% sequence identity.

22. The method of claim 20, wherein the vector is a lentiviral vector encoding a β -glucocerebrosidase, wherein the lentiviral vector comprises the amino acid sequence of SEQ ID NO:7 or a transgene sequence substantially identical to SEQ ID NO:7 having at least 75% sequence identity.

23. The method of claim 21, wherein the lentiviral vector sequence is SEQ ID NO: 4 or a sequence identical to SEQ ID NO: 4 having at least 75% sequence identity.

24. The method of any one of claims 1-13, wherein the disease is fabry disease, and wherein the transgene encodes acid ceramidase.

25. The method of claim 23, wherein the vector encodes acid ceramidase, wherein the vector comprises SEQ ID NO:8 or a transgene that hybridizes to the ASAH1 transgene of SEQ ID NO:8 with at least 75% identity.

26. The method of claim 24, wherein the vector is a lentiviral vector comprising a transgenic ASAH1, preferably wherein the lentiviral vector comprises the amino acid sequence of SEQ ID NO: 5 or a sequence identical to SEQ ID NO: 5 with at least 75% identity.

27. The method of any one of claims 1-13, wherein the disease is pompe disease, and wherein the transgene is GAA.

28. The method of claim 26, wherein the vector comprises a GAA transgene, preferably wherein the vector comprises SEQ ID NO:9 or a sequence identical to SEQ ID NO:9 with at least 75% identity.

29. The method of claim 27, wherein the vector is a lentiviral vector, preferably wherein the lentiviral vector comprises the amino acid sequence of SEQ ID NO: 6 or a sequence identical to SEQ ID NO: 6 sequences having at least 75% identity.

30. A method of generating a population of transduced T-Rapa cells expressing an enzyme encoded by a transgene of interest for use in the treatment of a lysosomal storage disorder, comprising:

(a) conditioning T cells from a subject or a suitable donor with rapamycin to generate a population of T-Rapa cells; and

(b) T-Rapa cells are transduced in vitro with a vector comprising a transgene of interest to produce a population of transduced T-Rapa cells.

31. The method of claim 29, further comprising (c) expanding the vector-transduced T-Rapa cells in vitro in culture.

32. The method of claim 29 or 30, wherein step (a) comprises detecting and isolating CD4+ T cells from the subject or a suitable donor, and culturing the T cells in vitro prior to conditioning.

33. The method of claim 31, wherein the step of detecting comprises detecting CD4+ T cells with an antibody specific for CD 4.

34. The method of any one of claims 29-32, wherein the CD4+ T cells in step (a) are at least about 75% pure.

35. The method of any one of claims 29-33, wherein the method comprises (c) culturing and expanding transduced T-Rapa cells in a chemically-defined medium further comprising recombinant human IL-4 and recombinant human IL-2 in amounts sufficient to maintain the transduced T-Rapa cells in culture.

36. The method of any one of claims 29-33, wherein the method further comprises (d) maintaining and expanding the vector-transduced T-Rapa cells in vitro culture and preserving a portion of the vector-transduced T-Rapa cells for future administration to a subject.

37. The method of claim 35, wherein the transduced T-Rapa cells are stored for future use by cryopreservation.

38. The method of claim 36, wherein the cells are stored below-80 ℃.

39. The method of any one of claims 19-37, wherein the vector is a lentiviral vector.

40. The method of claim 38, wherein the vector is a dual promoter lentiviral vector, wherein the vector expresses the transgene of interest and a mutant form of inosine-5' -monophosphate dehydrogenase 2 (IMPDH2(IY)) when transduced into T-Rapa cells.

41. The method of any one of claims 29-39, wherein the transgene is AGA.

42. The method of any one of claims 29-39, wherein the transgene is GBA.

43. A method according to any one of claims 29 to 39, wherein the transgene is ASAH 1.

44. The method of any one of claims 29-39, wherein the transgene is GAA.

45. A population of transduced T-Rapa cells prepared by the method of any one of claims 29-43.

46. A method of treating a subject having Fabry's disease, the method comprising administering an effective amount of transduced T-Rapa cells prepared by the method of claim 40 to treat one or more symptoms of Fabry's disease.

47. A method of treating a subject having gaucher's disease comprising administering an effective amount of transduced T-Rapa cells prepared by the method of claim 41 to treat one or more symptoms of gaucher's disease.

48. A method of treating a subject having Fabry disease, the method comprising administering an effective amount of transduced T-Rapa cells prepared by the method of claim 42 to treat one or more symptoms of Fabry disease.

49. A method of treating a subject having Pompe disease comprising administering an effective amount of transduced T-Rapa cells prepared by the method of claim 40 to treat one or more symptoms of Pompe disease.

50. A method of treating a subject having a lysosomal storage disease, comprising administering an effective amount of the transduced T-Rapa cells of claim 44 to treat one or more symptoms of the lysosomal storage disease.

51. The method of any one of claims 45-49, wherein the cells are introduced by intravenous infusion.

52. The method of any one of claims 1-26 or 45-49, wherein the subject is a human subject.

53. The method of any one of claims 1-26 or 44-49, wherein the subject has been previously treated by one or more methods of treating a lysosomal storage disease.

The field of the invention is the treatment of lysosomal storage diseases (LSDs, lysosomal storage diseases). LSDs are associated with dysregulation or deficiency of a single protein (e.g., fabry disease) or a combination of enzyme deficiency and coactivator proteins.

Lysosomes are membrane-bound organelles in eukaryotic cells that contain over 60 enzymes capable of digesting virtually any biomolecule. They perform a number of key biological functions, including acting as a waste treatment system for cells by digesting unwanted material in the cytoplasm (from extracellular and intracellular waste components). Lysosomal Storage Disorders (LSDs) are a group of over 60 rare inherited metabolic diseases caused by lysosomal dysfunction, usually due to a deficiency in a single enzyme required for intracellular digestion of lipids, glycoproteins or polysaccharides. This defect results in the accumulation of normally degradable molecules within the cell, causing cell dysfunction or death.

Fabry's disease is an LSD resulting from the absence of alpha-galactosidase a (alpha-galA encoded by the AGA transgene) which hydrolyzes the alpha-galactose in glycosphingolipids, especially spherical triacyl ceramides (Gb 3).

The standard treatment for fabry's disease is Enzyme Replacement Therapy (ERT). Rombach et al outlined the efficacy of ERT (Orphanet J Rare Dis.8: 47-10.1186/1750-. Although some benefit may be obtained, disease progression does not stop. ERT requires a prolonged intravenous infusion of recombinant α -galA once every few weeks, usually at an outpatient center. Fabry patients often require treatment for pain, gastrointestinal dysfunction, arrhythmia and other cardiac problems, as well as the use of blood thinners and hypotensive drugs to protect kidney function. Although fabry disease is relatively rare, there are approximately 4000 patients in the united states with a treatment cost of approximately $ 300,000 per year per patient (12 billion dollars per year for all U.S. patients).

Hematopoietic Stem Cells (HSCs) are "pluripotent" cells that reside in the bone marrow and can eventually differentiate into all blood cell types. One characteristic of HSCs is that they express a cell surface glycoprotein called CD34, sometimes referred to as CD34+ hematopoietic cells, or more simply as CD34+ HSCs. Clinically, the presence of CD34 on HSCs can be used to facilitate selective enrichment of bone marrow transplanted HSCs. In addition, CD34+ HSCs have been used experimentally to treat a variety of non-hematopoietic diseases, including spinal cord injury, cirrhosis and peripheral vascular disease. HSCs can be obtained from bone marrow, but also from peripheral blood after "mobilization" with certain drugs. Thus, HSCs can be harvested from blood (e.g., by apheresis). Hematopoietic stem cells are also "mobile," meaning that they can pass from the bone marrow into the bloodstream to different parts of the human body. Administration may be by injection of HSCs into the bloodstream to restore bone marrow.

The inventors have previously used HSCs harvested from fabry patients to genetically modify HSCs to produce α -galA, an enzyme that is deficient in fabry patients. These genetically modified HSCs are returned to the same patient (autograft) after the patient has been "conditioned" by drug treatment to ablate endogenous HSCs to improve the likelihood of treatment success.

After reintroduction of the patient's modified cells into the patient, the genetically modified HSCs will fill all downstream lineages of the hematopoietic system and then circulate throughout the human body. The modified cells secrete a-galA forms with molecular "tags" (mannose-6-phosphate) that enable uncorrected "bystander" cells in patients to take up and transport a-galA to intracellular lysosomes, where they can compensate for the patient's a-galA deficiency and efficiently degrade accumulated glycosphingolipids. This method is being subjected to clinical trials in canada (government clinical trial # NCT 02800070).

The central principle of the previous protocol is that the genetically modified HSCs will differentiate into all possible blood cell (hematopoietic) lineages and circulate throughout the body. However, due to the low implantation efficiency, it is necessary to modulate the recipient by blood ablation. In most cases, the extent of ablation may determine the efficiency of the implantation. In addition, the number of transduced bonafide stem cells that can be obtained and used to correct the disease is limited. Even with autografts, additional rounds of grafting may be required to effectively treat the disease.

Thus, there is a need to refine a reproducible source of cells within a subject that can be used for treatment and that requires minimal or no ablation of the subject.

Background

Disclosure of Invention

The present invention overcomes the above-described disadvantages by providing a method of treating a lysosomal storage disease.

In one aspect, the present disclosure provides a method of treating a lysosomal storage disorder in a subject, the method comprising the steps of: (a) ex vivo conditioning of T cells from a subject or suitable donor with rapamycin to produce T-Rapa cells; (b) transducing T cells in vitro with a vector comprising a transgene of interest encoding an enzyme associated with a lysosomal storage disease; and (c) administering the transduced T-Rapa cells to the subject, wherein the T-Rapa cells express an enzyme associated with the lysosomal storage disease in the subject and alleviate one or more symptoms of the lysosomal storage disease. In some aspects, the method after step (b) comprises expanding the vector-transduced T-Rapa cells by in vitro culture, and step (c) comprises administering the transduced and expanded T-Rapa cells to the subject.

In another aspect, the present disclosure provides a method of treating a lysosomal storage disorder in a subject, the method comprising the steps of: (a) obtaining T cells from a subject or suitable donor, (b) ex vivo conditioning of the T cells with rapamycin to produce T-Rapa cells; (c) transducing T cells in vitro with a vector expressing a transgene of interest in T-Rapa cells; (d) expanding the vector-transduced T-Rapa cells in an in vitro culture, and (e) administering the T-Rapa cells to the subject, wherein the T-Rapa cells express the transgene of interest in the subject and alleviate one or more symptoms of the lysosomal storage disease.

In some embodiments, the administering step is by infusion or intravenous injection.

In some aspects, the method further comprises maintaining and expanding the vector-transduced T-Rapa cells in vitro culture, and storing a portion of the vector-transduced T-Rapa cells for future administration to a subject.

In another aspect, the disclosure provides a method of producing a population of transduced T-Rapa cells expressing an enzyme encoded by a transgene of interest for use in treating a lysosomal storage disease, comprising: (a) conditioning T cells from a subject or a suitable donor with rapamycin to produce a population of T-Rapa cells; and (b) transducing T-Rapa cells in vitro with a vector comprising a transgene of interest to produce a population of transduced T-Rapa cells. The method results in transduced T-Rapa cells that express a protein (e.g., an enzyme) encoded by the transgene of interest. In certain aspects, the method further comprises (c) expanding the vector-transduced T-Rapa cells in vitro in culture.

In another aspect, the present disclosure provides a method of generating a population of transduced T-Rapa cells expressing a transgene of interest for use in the treatment of a lysosomal storage disease, comprising: (a) obtaining T cells from a subject or suitable donor, (b) conditioning the T cells with rapamycin, producing T-Rapa cells; and (c) transducing T-Rapa cells in vitro with a vector expressing the transgene of interest in T-Rapa cells. In certain aspects, the method further comprises (d) expanding the vector-transduced T-Rapa cells in vitro in culture.

In another aspect, the disclosure provides a method of treating a subject having fabry disease, the method comprising administering an effective amount of α -galA expressing transduced T-Rapa cells prepared by the methods described herein to treat one or more symptoms of fabry disease.

In another aspect, the disclosure provides a population of transduced T-Rapa cells expressing a protein encoded by a transgene of interest. In one aspect, the disclosure provides a population of transduced T-Rapa cells expressing α -galA. In another aspect, the disclosure provides a population of transduced T-Rapa cells expressing β -glucocerebrosidase. In another aspect, the disclosure provides a population of transduced T-Rapa cells expressing acid ceramidase. In another aspect, the disclosure provides a population of transduced T-Rapa cells expressing acid alpha-glucosidase.

In another aspect, the present disclosure provides a method of treating a subject having gaucher disease comprising administering an effective amount of transduced T-Rapa cells expressing GBA to treat one or more symptoms of gaucher disease.

In another aspect, the disclosure provides a method of treating a subject having fabry disease, the method comprising administering an effective amount of transduced T-Rapa cells expressing ASAH1 to treat one or more symptoms of fabry disease.

In another aspect, the disclosure provides a method of treating a subject having pompe disease comprising administering an effective amount of transduced T-Rapa cells expressing GAA to treat one or more symptoms of pompe disease.

In another aspect, the disclosure provides a method of treating a subject having a lysosomal storage disease, comprising administering transduced T-Rapa cells expressing a transgene associated with treatment of the lysosomal storage disease in an amount effective to treat one or more symptoms of the lysosomal storage disease.

The above and other aspects and advantages of the present invention will become apparent from the following description. In the following description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration preferred embodiments of the invention. Such embodiments do not necessarily represent the full scope of the invention, but are to be construed by reference to the claims, which are hereby incorporated into this disclosure to illustrate the scope of the invention.

Brief description of the drawings

This patent or application document contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the office upon request and payment of the necessary fee.

FIG. 1 is a schematic representation of a prior art method of hematopoietic stem cell gene therapy.

FIG. 2 depicts the transduction efficiency of T-Rapa cells isolated from healthy and Fabry's disease donors using vector only (NT) or lentiviral vector expressing alpha-galA (LV/AGA).

FIGS. 3A-3B depict α -galA expression in transduced T-Rapa cells from healthy and Fabry's disease donors. The expression of α -galA is determined in the supernatant (B) of the transduced cells or in the cell lysate (A).

FIG. 4 is a block diagram WesTMRepresentative Western blots of α -galA protein levels in normal donor and Fabry's disease donor-derived transduced T-Rapa cells performed by Western blotting system.

FIG. 5 is a block diagram of a block diagram formed by WesTMThe Western blot system quantitated the amount of α -galA in transduced T-Rapa cells from normal donors and Fabry's disease donors.

FIG. 6 is a schematic representation of the protocol for testing transduced T-Rapa cells in vivo in a NOD/SCID/Aga-/-Fabry mouse model.

FIG. 7 depicts the enzyme activity levels of α -galA in the plasma of mice transplanted with T-Rapa transduced cells from normal donors or Fabry's disease donors.

Figure 8 is the raw data from the mouse experiment of example 5 and figure 7.

FIG. 9 is a schematic of a method of generating transduced T-Rapa cells.

Fig. 10 is an exemplary schematic diagram of a method of treating a subject with a bruise's disease in accordance with the present invention. The use of alternative viruses is contemplated and is exemplary only.

FIG. 11 is a schematic representation of one suitable method for preparing lentiviral vectors for use in the present method.

FIG. 12A is a schematic representation of a suitable lentiviral vector that can be used in the present method; pDY/CO. alpha-galA (i.e., LV/AGA) expresses alpha-galA. LTR, long terminal repeat, Ψ, HIV packaging signal; SD, 5' splice donor site; Δ GAG, a truncated portion of the HIV-1 group specific antigen gene; RRE, Rev response element; SA, 3' splice acceptor site; cPPT, central polypurine tract; EF-1 alpha, elongation factor 1a promoter; co, α -galA, codon optimized cDNA of the human GLA gene, encoding the wild-type α -galA enzyme; WPRE, woodchuck hepatitis virus post-transcriptional regulatory element; SIN/LTR, self-inactivating LTR.

Fig. 12B is a schematic of a dual promoter lentiviral vector comprising a codon optimized and mutated IMPDH2 cDNA sequence (IMPDH2(IY)) and an AGA codon optimized transgene as described in fig. 12A.

Fig. 12C shows an exemplary scheme of lentiviral vectors comprising GBA, ASAH1 and GAA genes, respectively.

FIG. 13A is a plasmid map of a lentiviral vector expressing α -galA (SEQ ID NO: 3).

FIG. 13B is a plasmid map of a dual promoter lentiviral vector containing a mutant IMPDH2 gene (IMPDH2(IY)) and an AGA codon optimized gene (vector: SEQ ID NO: 4).

FIG. 13C is a plasmid map made from a lentiviral vector comprising a wild-type codon-optimized GBA transgene (SEQ ID NO: 4).

Figure 13D is a plasmid map of a lentiviral vector containing a wild-type ASAH1 transgene (SEQ ID NO 5).

FIG. 13E is a plasmid map of a lentiviral vector comprising a wild-type codon-optimized GAA transgene (SEQ ID NO: 6).

Figure 14 demonstrates the ability of lentiviruses encoding AGA, GBA, ASAH1 or GAA to express and produce the corresponding enzymes in transduced HEK293T cells.

FIG. 15 demonstrates the ability of lentiviruses encoding enzymes of transgenic AGA, GBA, ASAH1 or GAA to express and secrete the respective enzymes in transduced Jurkat cells.

Figure 16 demonstrates the ability of lentiviruses encoding enzymes associated with the AGA transgene or GBA transgene to transduce T-Rapa cells (from healthy donors) and the ability of T-Rapa cells to survive cryopreservation and subsequent thawing.

FIG. 17 demonstrates the ability of transduced T-Rapa cells from Fabry patients to produce α -galA after transduction (left panel), and the ability of α -galA produced by Fabry patients transduced T-Rapa cells to be taken up by patient cells due to their molecular "tags" (right panel).

FIG. 18 demonstrates the ability of human transduced T-Rapa cells to produce enzymes in vivo after conditioning and transplantation into immunocompromised fabry mice. Transplantation was confirmed by detection of hCD3/hCD4 in peripheral blood. In vivo α -galA activity was detected in plasma or lysates of designated tissues (liver, spleen, heart or kidney) 4 weeks after T-Rapa (n ═ 4-5) transplantation, a healthy donor of xenotransplantation.

FIG. 19 demonstrates the ability of lentivirus-transduced human T-Rapa cells to reduce the substrate, spherical triacylglyceride (Gb3), the primary substrate accumulated in fabry's disease mice, after transplantation into immunocompromised fabry's disease mice.

FIG. 20 demonstrates the ability of T-Rapa cells from Fabry's patients transduced with lentiviruses encoding AGA to secrete α -galA in vivo. α -galA activity was detected in vivo in designated tissues 4 weeks after xenografting of transduced fabry disease donor T Rapa (n ═ 4-5).

FIG. 21 demonstrates the ability of lentivirally transduced Fabry disease patient T-Rapa cells to reduce the substrate, globotriacetyl ceramide (Gb3), the major substrate accumulated in Fabry disease mice, after transplantation into immunocompromised Fabry disease mice.

Detailed description of the invention

Existing methods of using Hematopoietic Stem Cell (HSC) directed gene therapy are currently being tested in modifiable lysosomal storage defects caused by a single enzyme deficiency. For example, the inventors are currently conducting a phase I clinical trial (NCT02800070) aimed at treating patients with brury's disease (FD) by gene transfer. FD is an alpha-galactosidase a (alpha-galA) deficiency in which global triacyl ceramide (Gb3) and other metabolites accumulate. In this prior protocol, CD34+ hematopoietic cells were transduced in vitro with a recombinant Lentivirus (LV) engineered to overexpress α -galA. These cells are then returned to the patient. Cells derived from vector-transduced HSCs, including leukocytes, can secrete α -galA, while uncorrected cells in patients can take up the secreted α -galA, a process known as "cross-correction". For efficient implantation, patients receive conditioning regimens (e.g., ablation) that can be problematic. In addition, HSCs must be mobilized to the peripheral blood by the drug and collected by apheresis. It would be more desirable to have alternative populations of circulating cells that are more readily available and engravable for systemic delivery of therapeutic cargo.

The present disclosure provides improved methods of treating lysosomal storage diseases, in particular fabry disease (online human mendelian genetic library (OMIM) ID #301500), gaucher disease (OMIM ID #230800, 230900, 231000, 231005), fabry disease (OMIM ID #228000) and pompe disease (OMIM ID # 232300). In particular, the invention describes the use of autologous or donor (non-autologous) CD4+ T-Rapa cells for systemic delivery of therapeutic transgene products. T-Rapa cells can be produced from peripheral blood cells of a diseased subject or a Normal Donor (ND) and can be productively transduced with a vector (e.g., a lentiviral vector) containing a transgene (e.g., a sequence encoding an enzyme) lacking the disease, such as, but not limited to, the enzyme α -galA of fabry disease, β -glucocerebrosidase of gaucher disease (GBA, β -glucocerebrosidase, acid β -glucosidase, D-glucosyl-N-acylsphingosine glucohydrolase or GCase, used interchangeably), acid ceramidase of fabry disease (encoded by the ASAH1 transgene), acid α -glucosidase of pompe disease (encoded by the GAA transgene, also known as acid maltase). The present disclosure provides an improved method of using cells (e.g., T cells) obtained from peripheral blood and can provide a population of transduced T-Rapa cells expressing an enzyme that can be stored and infused at any time to enhance circulating transgene-producing T-Rapa cells in vivo when needed. Furthermore, the method requires as low ablation as possible to provide an efficient implantation of the subject.

T cells are the natural protein secretion mechanism and have been used in many clinical trials. Unlike HSCs, T cells can be obtained from Peripheral Blood (PB) without mobilization and can be logarithmically expanded in culture. Ex vivo treatment of rapamycin caused many changes in T cells (e.g., CD4+ T cells), in summary conferring their pro-engraftment and anti-apoptotic phenotypes. These are called T-Rapa cells. For more information on T-Rapa cells, see Fowler et al ("phase 2 clinical trial of rapamycin resistant donor CD4+ Th2/Th1(T-Rapa) cells after low strength allogeneic hematopoietic cell transplantation," Blood (2013) 11: 121 (15): 2864-. Successful allogeneic transplantation of donor T-Rapa cells requires less host conditioning (lymphocyte specificity, preservation of myeloid cells) to create sufficient immune space for T cell engraftment while minimizing host bone marrow cell depletion. This host opsonization and T cell driven gene therapy approach is very different from HSC driven gene therapy, which generally requires relatively strong bone marrow cell depletion. Without being bound by any theory, but from a number of perspectives, it would be advantageous to administer gene therapy via T cells rather than HSCs, including the fact that bone marrow cell depletion is reduced; reducing infectious complications associated with bone marrow depletion; allows gene therapy in outpatient settings, thereby reducing treatment mortality and cost; and allowing gene therapy to be repeated, thereby ultimately improving therapeutic efficacy.

As shown in the examples, transduced T-Rapa cells continue to secrete the transgene product (e.g., an enzyme, such as α -galA) in the absence of in vitro stimulation after 2 weeks of in vitro expansion. Transduced and control T-Rapa cells from FD patients and normal donors were xenografted into NOD/SCID/Aga-/-mice (NSF). Higher α -galA activity was detected in plasma and organs of mice given LV modified cells. Vector copy number analysis indicated stable transduction. NSF mice receiving transduced cells also exhibit reduced Gb3Horizontally, the ability of the enzyme expressed from transduced T-Rapa cells to reduce substrate targets in vivo was demonstrated.

The examples demonstrate the in vitro development of lentivirus transduced T-Rapa cells, which can result in increased enzymatic activity and secretion of enzymes in the cell. Although the examples demonstrate that lentivirus-transduced T-Rapa cells using increased α -galA activity can be used to treat Gray's disease, lentivirus-transduced T-Rapa cells can also be used to express other enzymes to treat other lysosomal storage diseases, as shown in FIGS. 14 and 15 for transgenic GBA, ASAH1 and GAA.

In one embodiment, the present disclosure provides a method of treating a lysosomal storage disease in a subject, the method comprising the steps of: (a) ex vivo conditioning of T cells from a subject or suitable donor with rapamycin to produce T-Rapa cells; (b) transducing T cells in vitro with a vector comprising a transgene of interest encoding an enzyme associated with a lysosomal storage disease; and (c) administering the transduced T-Rapa cells to the subject, wherein the T-Rapa cells express an enzyme associated with the lysosomal storage disease in the subject and alleviate one or more symptoms of the lysosomal storage disease. In some embodiments, the method after step (b) comprises expanding the vector-transduced T-Rapa cells by in vitro culture, and then administering the transduced and expanded T-Rapa cells to the subject in step (c).

Suitable methods of administering transduced T-Rapa cells are known in the art and include infusion and intravenous administration.

In one embodiment, the present disclosure provides a method of treating a lysosomal storage disease in a subject. The method comprises the following steps: (a) ex vivo conditioning of T cells with an effective amount of rapamycin to produce T-Rapa cells; (b) transducing T-Rapa cells with a vector comprising a transgene of interest encoding an enzyme associated with a lysosomal storage disease; (c) expanding the vector-transduced T-Rapa cells in vitro culture, and (d) administering the transduced T-Rapa cells to a subject, wherein the T-Rapa cells express a protein encoded by the transgene of interest in the subject and can subsequently alleviate one or more symptoms of the lysosomal storage disorder.

In another embodiment, the present disclosure provides a method of treating a lysosomal storage disease in a subject. The method comprises the following steps: (a) obtaining T cells from a subject or suitable donor, (b) ex vivo conditioning of the T cells with rapamycin to produce T-Rapa cells; (c) transducing T cells in vitro with a vector expressing a transgene of interest when functionally present in T-Rapa cells; (d) expanding the vector-transduced T-Rapa cells in an in vitro culture, and (e) administering the transduced T-Rapa cells to a subject, wherein the T-Rapa cells express a protein encoded by a transgene of interest in the subject and subsequently alleviate one or more symptoms of the lysosomal storage disorder.

Suitable methods of obtaining T cells (e.g., CD4+ T cells) from a subject are known in the art, including standard outpatient blood sampling or apheresis. In one embodiment, obtaining T cells comprises detecting and isolating CD4+ T cells from a peripheral blood sample of the subject or a suitable donor. Suitable methods for detecting and isolating CD4+ T cells from peripheral blood are known in the art and include, but are not limited to, for example, flow cytometry cell sorting, including Fluorescence Activated Cell Sorting (FACS) or magnetic separation using T cell-recognizing magnetic beads, including Magnetic Assisted Cell Sorting (MACS). In suitable embodiments, antibodies specific for CD4 may be attached to magnetic beads in some instances and used to separate CD4+ T cells from other cells present in the peripheral blood. Alternatively, negative selection can be used to deplete CD4 "cells, thereby enriching for CD4+ cells. The advantage of the method of the present technology is that the CD4+ T cells used in the method can be obtained from a peripheral blood sample obtained from an outpatient blood draw and do not require any priming or other processing steps prior to isolation of the peripheral blood. In some embodiments, the isolated CD4+ T cells used in the methods are at least about 70% CD4+ (70% pure), more preferably at least about 75% CD4+ (75% pure), or at least about 80% CD4+ (80% pure), or at least about 85% (85% pure), at least about 90% CD4+ (90% pure), at least about 95% CD4+ (95% pure).

In some embodiments, once CD4+ T cells are isolated, CD4+ T cells are cultured in vitro to expand the cells.

In some embodiments, once isolated, the isolated CD4+ T cells are conditioned/treated with rapamycin to form T-Rapa cells. Suitably, the T cells may be conditioned/treated with rapamycin prior to transduction with a vector or other suitable therapeutic construct comprising a transgene (e.g., an AGA, GAA, ASAH1 and GBA transgene). Methods of conditioning T cells to form T-Rapa cells are known in the art and described in Fowler et al (j.biol.chem., 2013), the contents of which are incorporated by reference in their entirety. Suitably, the isolated T cells are cultured in a chemically-defined medium comprising appropriate amounts of cytokines and rapamycin to convert the T cells into rapamycin resistant T cells (T-Rapa cells).

Suitable amounts of rapamycin to convert T cells to T-Rapa cells include, but are not limited to, concentrations of about 0.1 micromolar to about 2 micromolar (0.1-2. mu.M), or about 0.8-1.5 micromolar. Lower concentrations of rapamycin, such as 0.1 micromolar; however, reducing rapamycin concentration may impair the ability of rapamycin-resistant T cells to grow, and therefore, a preferred concentration of rapamycin is about 1 micromolar. Increasing the concentration of rapamycin above 1 micromolar has limited feasibility, as the drug cannot be completely dissolved in conventional media above this concentration. Thus, a concentration of about 1 micromolar is optimal for achieving the rapamycin resistant (T-Rapa) phenotype.

Once T-Rapa cells have been derived, they are transduced in vitro with a vector that allows expression of the transgene of interest. Suitable transgenes of interest will depend on the lysosomal storage disorder being treated.

Suitable vectors are known in the art and contain the necessary elements to allow expression of the gene encoded within the vector in a host cell. The term "vector" includes a nucleic acid molecule or genetic construct capable of transporting other nucleic acids linked thereto. One type of vector is a "plasmid," which refers to a circular double-stranded DNA loop into which additional DNA segments can be ligated, particularly foreign DNA segments that encode a protein of interest. Another type of vector is a viral vector, in which additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced. Other vectors (e.g., lentiviral vectors) can be integrated into the genome of a host cell upon introduction into the host cell, and thereby replicate together with the host genome. Also, certain vectors are capable of directing the expression of a foreign gene to which they are operatively linked. Such vectors are referred to herein as "recombinant expression vectors" (or simply "expression vectors" or "vectors"). Vectors commonly used in recombinant DNA technology are usually in the form of plasmids. In the present specification, "vector" includes expression vectors, such as viral vectors (e.g., replication defective retroviruses (including lentiviruses), adenoviruses and adeno-associated viruses), which have equivalent functions. Methods of transducing cells using viral vectors and methods of producing viruses to infect or transduce cells are known in the art.

A vector is a heterologous, exogenous construct containing sequences from two or more different sources. Suitable vectors include, but are not limited to, plasmids, expression vectors, lentiviruses (lentiviral vectors), adeno-associated viral vectors (rAAV), and the like, and include constructs capable of expressing a protein encoded by a gene of interest (e.g., an AGA transgene). Preferred vectors are lentiviral vectors. Suitable methods for preparing lentiviral vector particles are known in the art, and one embodiment is described in the examples. Although specific lentiviral vectors have been used in the examples, these vectors are not limited to these embodiments, and any lentiviral or other vector capable of expressing the transgene of interest is contemplated for use in the practice of the invention.

The vector may preferably transduce, transform or infect a cell, thereby causing the cell to express the nucleic acid and/or protein encoded by the vector.

The transgene or transgene of interest may express any protein or enzyme associated with the disease or disorder, and in some cases, the transgene expresses an enzyme or protein associated with the lysosomal storage disorder.

Suitable lysosomal storage disorders and transgenes of interest for which the lysosomal storage disorder is suitable for targeting are listed in table 1. In one embodiment, the lysosomal storage disease and transgene are selected from table 1.

Lysosomal storage disorders Transgenes of interest Seq ID (nucleotide)
Fabry's disease AGA SEQ ID NO:1
Gaucher disease GBA SEQ ID NO:7
Faber's disease ASAH1 SEQ ID NO:8
Pompe disease GAA SEQ ID NO:9

In one embodiment, the lysosomal storage disease is selected from the group consisting of fabry's disease, gaucher disease, fabry's disease and pompe's disease.

In one embodiment, the vector is a lentiviral vector comprising a transgene for expressing alpha-galactosidase a (alpha-galA) for the treatment of brury's disease. As used herein, the terms α -gal or α -galA are used interchangeably to refer to an α -galactosidase a enzyme (protein).

Fabry's disease

Suitable methods for cloning a transgene of interest, e.g., a codon optimized AGA transgene (SEQ ID NO: 1), into a foreign expression vector, e.g., a lentiviral vector, are known in the art for generating functional vectors for engineering T-Rapa cells to express alpha-galA for the treatment of Burley's disease. In a preferred embodiment, suitable expression vectors include, for example, lentiviral vectors such as pDY/CO. alpha. -galA (i.e., LV/AGA) (SEQ ID NO: 2).

Suitably, the AGA transgene will be identical to SEQ ID NO:1, or at least 80% similar to SEQ ID NO:1, or has at least 85% sequence similarity to SEQ ID NO:1, or has at least 90% sequence similarity to SEQ ID NO:1, or a sequence having at least 95% sequence similarity to SEQ ID NO:1, or a sequence having at least 98% sequence similarity to SEQ ID NO:1, or a sequence having at least 99% sequence similarity to SEQ ID NO:1 has at least 100% sequence similarity. Suitable lentiviral vectors for treating brucellosis include SEQ ID NO: 2, and comprises a sequence identical to SEQ ID NO: 2, or a sequence that is at least 80% similar to SEQ ID NO: 2, or has at least 85% sequence similarity to SEQ ID NO: 2, or a sequence having at least 90% sequence similarity to SEQ ID NO: 2, or a sequence having at least 95% sequence similarity to SEQ ID NO: 2, or a sequence having at least 98% sequence similarity to SEQ ID NO: 2, or a sequence having at least 99% sequence similarity to SEQ ID NO: 2 with at least 100% sequence similarity.

In some embodiments, a dual promoter lentiviral vector may be used, which allows expression of multiple genes of interest. For example, a dual promoter lentiviral vector can express a transgene of interest for treating one lysosomal storage disease and another protein of interest for treating the same or a different disease. Alternatively, the dual promoter lentiviral vector may express the transgene of interest and a second protein that facilitates survival or screening of the transduced T-Rapa cells in vitro or in vivo. For exemplary purposes only, one suitable dual promoter vector is LV/AGA + (IY) (SEQ ID NO: 3, FIG. 13B), as described in provisional application No. 62/516,022, the contents of which are incorporated herein by reference in their entirety. In one suitable embodiment, T-Rapa cells are transduced with a lentiviral vector as shown in FIG. 12. In another embodiment, T-Rapa cells are transduced with a dual promoter lentiviral vector (e.g., the vector encoded by SEQ ID NO: 3) that expresses alpha-galactosidase A and a mutant form of inosine-5' -monophosphate dehydrogenase 2 (IMPDH2 (IY)). Use of such lentiviral vectors will further enrich the transduced T-Rapa cells in a subject by treating the subject with an effective amount of Mycophenolate Mofetil (MMF) or mycophenolic acid (MPA) sufficient to enrich the population of lentiviral vector transduced T-Rapa cells in the subject.

The main result of MPA/MMF administration is T-cell and B-cell depletion. By expressing IMPDH2(IY), transduced T-Rapa cells were resistant to MPA/MMF. Treatment with low doses of MMF can increase the amount of therapeutic T-Rapa without affecting the original implant, while causing minimal or no toxicity. This, in turn, increases the total number of circulating cells that express and secrete the transgene (e.g., α -galactosidase a), which can better correct the disease. The current method provides a means to enrich transduced cells in vivo and allows some gating to be performed to determine how the selectivity and intensity of enrichment is dependent on administration of MMF. The method of the invention also allows cells carrying the lentiviral vector to be enriched in the next years to renew the corrected cell population expressing the transgene of interest.

In suitable embodiments, MMF is administered in an effective dose. An "effective dose" refers to a dose that allows selective enrichment of T-Rapa cells expressing a transgene via a lentiviral vector with minimal side effects. In one embodiment, the effective dose is a low dose. Suitable low doses include, but are not limited to, for example, 0.1 to 5mg/kg body weight for a given TID (three times a day), or about 0.1 to 3mg/kg body weight for a given TID. Alternatively, an effective dose may comprise a higher dose of MMF. Suitable higher doses of MMF for use in the practice of the present invention include about 5-10mg/kg body weight TID (3 times a day), or 1000mg MMF BID (twice a day). Suitably, an "effective amount" of MMF will result in a subject having a blood concentration of free mycophenolic acid (MPA) of from about 0.4 to about 2 μ Μ. The appropriate dosage to achieve this blood concentration is readily determined by the physician treating the subject. MMF can also replace mycophenolic acid (MPA) formulations (Myfortic, nova or approved general drugs).

Gaucher disease

In some embodiments, the disorder or disease is gaucher's disease. In gaucher's disease, mutations in the GBA gene greatly reduce or eliminate the activity of β -glucocerebrosidase, breaking down the waxy substance, the lipid glycosphingolipid known as glucocerebroside, into sugars (glucose) and ceramides (another sphingolipid). Without sufficient of this enzyme, glucocerebroside and related substances accumulate to toxic levels within the cell. The abnormal accumulation and storage of these substances can damage tissues and organs, thereby causing the characteristics of gaucher disease. Suitable embodiments of the invention provide T-Rapa cells expressing GBA for use in the treatment of gaucher's disease. In one embodiment, the lentiviral vector comprises a transgene (e.g., a GBA transgene) that allows for expression of β -glucocerebrosidase (e.g., the GBA transgene found in SEQ ID NO: 7) in the transduced cell. Suitably, the GBA transgene will be identical to SEQ ID NO:7 or has at least 80% similarity to SEQ ID NO:7, or has at least 85% sequence similarity to SEQ ID NO:7, or has at least 90% sequence similarity to SEQ ID NO:7 or a sequence having at least 95% sequence similarity to SEQ ID NO:7 or a sequence having at least 98% sequence similarity to SEQ ID NO:7 or a sequence having at least 99% sequence similarity to SEQ ID NO:7 has at least 100% sequence similarity.

In one embodiment, the vector is a lentiviral vector comprising SEQ ID NO:7 or a transgene corresponding to GBA of SEQ ID NO:7 is at least 80% identical.

A suitable sequence for a lentiviral vector comprising GBA is set forth in SEQ ID NO: 4 and shown in fig. 13C, or a sequence corresponding to SEQ ID NO: 4 or at least 75% similar to SEQ ID NO: 4 or at least 80% similar to SEQ ID NO: 4, or has at least 85% sequence similarity to SEQ ID NO: 4 or at least 90% sequence similarity to SEQ ID NO: 4 or at least 95% sequence similarity to SEQ ID NO: 4 or a sequence having at least 98% sequence similarity to SEQ ID NO: 4 or at least 99% sequence similarity to SEQ ID NO: 4 with at least 100% sequence similarity. Other suitable vectors encoding proteins that express β -glucocerebrosidase are contemplated herein.

Fabry disease

In some embodiments, the lysosomal storage disorder is fabry disease (also known as fabry steatosis, ceramidase deficiency, "fibrocellular mucopolysaccharidosis" and "steatosis granulomatosis"), and the transgenic ASAH1 expresses ceramide hydrolase 1 or acid ceramidase (used interchangeably herein). Fabry disease is a very rare autosomal recessive lysosomal storage disorder characterized by a deficiency in acid ceramidase, leading to the accumulation of waxy lipids known as sphingolipids (particularly ceramides), which in turn lead to abnormalities in the joints, liver, throat, visceral tissues and central nervous system. Suitable embodiments provide T-Rapa cells expressing ceramide hydrolase 1 for the treatment of Fabry's disease. A suitable vector, preferably a lentiviral vector, is used to express ceramide hydrolase 1 in T-Rapa cells. As used herein, a suitable vector, preferably a lentiviral vector, may be used to express ceramide hydrolase 1 in T-Rapa cells. For example, a suitable vector may use SEQ ID NO:8 or a transgene that hybridizes to the ASAH1 transgene of SEQ ID NO:8 express ceramide hydrolase 1 with 80% similarity of sequence. Suitably, the ASAH1 transgene will be identical to SEQ ID NO:8, or a sequence that is at least 80% similar to SEQ ID NO:8, or a sequence similarity of at least 85% to SEQ ID NO:8, or a sequence similarity of at least 90% to SEQ ID NO:8 or a sequence having at least 95% sequence similarity to SEQ ID NO:8 or a sequence having at least 98% sequence similarity to SEQ ID NO:8 or a sequence having at least 99% sequence similarity to SEQ ID NO:8 have at least 100% sequence similarity.

Suitable lentiviral vectors include fig. 13D and SEQ ID NO: 5, and (c) a vector as shown in figure 5. A suitable sequence for a lentiviral vector comprising the ASAH1 transgene is set forth in SEQ ID NO: 5, or a sequence similar to SEQ ID NO: 5 or at least 75% similar to SEQ ID NO: 5, or at least 80% similar to SEQ ID NO: 5, or has at least 85% sequence similarity to SEQ ID NO: 5 or a sequence having at least 90% sequence similarity to SEQ ID NO: 5 or a sequence having at least 95% sequence similarity to SEQ ID NO: 5 has at least 98% sequence similarity to SEQ ID NO: 5 or a sequence having at least 99% sequence similarity to SEQ ID NO: 5 sequences having at least 100% sequence similarity. Other suitable vectors encoding proteins that express ceramide hydrolase 1 are contemplated herein.

Pompe disease

In another embodiment, the invention provides vectors and T-Rapa cells expressing acid alpha-glucosidase (encoded by the GAA transgene) for use in treating Pompe disease. Pompe disease is a genetic disease that impairs their normal function by causing the accumulation of glycogen in certain organs and tissues, particularly muscles, due to the inability to break down complex carbohydrates called glycogen, in somatic lysosomes. Mutations within the GAA gene can lead to pompe disease because the GAA gene provides instructions for the production of an enzyme known as acid alpha-glucosidase (also known as acid maltase). The enzyme is active in acting as a recycling core lysosome in the cell. This enzyme generally breaks down glycogen in lysosomes into simpler sugars called glucose, which is the major energy source for most cells. In some embodiments, T-Rapa cells expressing acid alpha-glucosidase are used to treat a subject with pompe disease. As described above, vectors, preferably lentiviral vectors, can be used to express acid alpha-glucosidase in T-Rapa cells via the GAA transgene for subsequent secretion therefrom. In one embodiment, the vector is preferably a lentiviral vector comprising SEQ ID NO:9 or a GAA transgene corresponding to SEQ ID NO:9 sequences having at least 80% similarity. Suitably, the GAA transgene will be identical to SEQ ID NO:9, or at least 80% similar to SEQ ID NO:9, or a sequence similarity of at least 85% to SEQ ID NO:9, or a sequence similarity of at least 90% to SEQ ID NO:9 or a sequence having at least 95% sequence similarity to SEQ ID NO:9 or a sequence having at least 98% sequence similarity to SEQ ID NO:9 or a sequence having at least 99% sequence similarity to SEQ ID NO:9 has at least 100% sequence similarity.

In one embodiment, suitable lentiviral vectors are shown in fig. 13E and SEQ ID NO: and 6. A suitable sequence for a lentiviral vector comprising GAA is set forth in SEQ ID NO: 6, or a sequence similar to SEQ ID NO: 6 or at least 75% similar to SEQ ID NO: 6 or at least 80% similar to SEQ ID NO: 6, or has at least 85% sequence similarity to SEQ ID NO: 6 or a sequence having at least 90% sequence similarity to SEQ ID NO: 6 or a sequence having at least 95% sequence similarity to SEQ ID NO: 6 or a sequence having at least 98% sequence similarity to SEQ ID NO: 6 or a sequence having at least 99% sequence similarity to SEQ ID NO: 6 sequences having at least 100% sequence similarity. Other suitable vectors encoding for expression of acid alpha-glucosidase protein are contemplated herein.

Other lysosomal diseases listed in table 1 are contemplated for treatment by the methods described herein.

"percent sequence identity" or "sequence similarity" is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window can comprise substitutions, additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise substitutions, additions or deletions) for optimal alignment of the two sequences. The percentage can be calculated as follows: the percentage of sequence identity is generated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100.

The term "substantial identity" or "similarity" of polynucleotide sequences means that the polynucleotides comprise sequences having at least 80% sequence identity. Suitable sequence similarity allows for minor changes in the transgene without affecting the function of the protein expressed by the transgene. In addition, the percent identity can be any integer between 75% and 100%. More preferred embodiments include programs such as BLAST that use standard parameters at least 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% as compared to the reference sequence. These values can be adjusted as appropriate to determine the corresponding identity of the proteins encoded by the two nucleotide sequences, taking into account codon degeneracy, amino acid similarity, reading frame positioning, etc.

Suitable amounts of lentivirus capable of transducing T-Rapa cells include, for example, using an MOI (multiplicity of infection) of 1 to 100, preferably an MOI of 1 to 30, or 1 to 60. The T-Rapa cells may be exposed to the lentivirus for 10-24 hours, suitably about 12-16 hours. T-Rapa cells may be transduced 1-3 times, suitably 1 time, in succession for the exposure times listed herein. Cytokines may be added to the culture medium during transduction. After transduction, the cells can either be transferred back into the patient, cryopreserved for later transplantation, or a combination of both. In some cases, the transduced cells may be cultured for several days and then transferred or cryopreserved. Suitable methods for cryopreservation are known in the art.

Other suitable vectors are known in the art and may be used to transduce cells including AAV vectors and the like. Any vector that enables stable expression of the enzyme encoded by the transgene of interest is contemplated in the present invention.

In some embodiments, the transduced T-Rapa cells are expanded in culture and cryopreserved at various stages of culture. Suitable cryopreservation methods include, but are not limited to, suspending the cells in a cryopreservation medium and storing the cells at a temperature of from-80 ℃ to-196 ℃, preferably below-80 ℃. Suitable cryopreservation media are known in the art and may comprise some combination of basal media, cryoprotectants (e.g., DMSO), and protein sources. For example, suitable cryopreservation media can include complete media and 10% glycerol, complete media containing 10% DMSO (dimethyl sulfoxide), or 45% cell conditioned media with 45% fresh media and 10% glycerol or DMSO. In an alternative embodiment, the cryopreservation media may be serum-free, e.g., comprising 46.25% fresh serum-free media and 7.5% DMSO with 46.25% cell-conditioned serum-free media.

Suitable chemically-defined media for culturing T cells are known in the art and include, but are not limited to, commercially available nutrient-rich media, such as X-Vivo 20. Suitably, the chemically-defined medium is further supplemented with a cytokine. Preferably, in one embodiment, recombinant human IL-2(rhu IL-2) and recombinant human IL-4(rhu IL-4) cytokines are used to supplement the culture medium. Suitable amounts of recombinant cytokine include about 10-100IU/mL IL-2, preferably about 20IU/mL IL-2 and about 500 IU/mL IL-4, preferably about 1000IU/mL IL-4.

In some embodiments, the transduced T-Rapa cells are expanded in vitro. During expansion, transduced T-Rapa cells can be cultured in chemically-defined media supplemented with cytokines described herein. Suitably, the transduced T-Rapa cells may be cultured for at least one day, and may suitably be cultured for at least 2 weeks, or at least 4 weeks, or at least 6 weeks.

The transduced T-Rapa cells may be maintained and expanded in culture for at least 5 passages, alternatively at least 10 passages, alternatively at least 15 passages, alternatively at least 20 passages in vitro. The transduced T-Rapa cells can be cryopreserved at any generation after transduction.

The present disclosure encompasses a population of transduced T-Rapa cells expressing a protein encoded by a transgene of interest and any method of use thereof. For example, the present disclosure provides a population of transduced T-Rapa cells expressing a protein encoded by a transgene of interest. In one embodiment, the disclosure provides a population of transduced T-Rapa cells expressing α -galA. In another aspect, the disclosure provides a population of transduced T-Rapa cells expressing β -glucocerebrosidase. In another aspect, the disclosure provides a population of transduced T-Rapa cells expressing acid ceramidase. In another aspect, the disclosure provides a population of transduced T-Rapa cells expressing acid alpha-glucosidase.

Suitably, the transduced T-Rapa cells are administered to a subject having a lysosomal storage disease (e.g., fabry disease) in an amount effective to reduce one or more symptoms of the lysosomal storage disease. Suitable methods of administering transduced T-Rapa cells are known in the art and include, but are not limited to, intravenous administration and infusion.

The transduced T-Rapa cells can be administered at least once, and suitably will be administered in the event that one or more symptoms of a lysosomal storage disorder (e.g., fabry disease) to be subsequently treated require increased expression of the enzyme or protein of interest (e.g., α -galA expression). . Those familiar with lysosomal storage disorders will understand the necessity to monitor the production of enzymes (e.g., α -galA) as well as additional dosing.

The terms "subject" or "patient" are used interchangeably and refer to a mammalian subject, e.g., mouse, rat, monkey, human, etc. In a preferred embodiment, the subject is a human. It is contemplated that the subject or patient may have been treated with one or more therapies for a lysosomal storage disease prior to undergoing the treatment contemplated herein. For example, patients treated with exogenous enzymes or by previous methods using transduced HSC cells are contemplated as subjects for use of the present invention.

The host cell is suitably a T cell, for example a CD4+ T cell. Although the examples provided herein describe the use of CD4+ T cells, in certain embodiments, it may be advantageous to make a mixed population of CD4+ and CD8+ T cells that secrete a therapeutic protein (transgene of interest). Furthermore, in one embodiment, T cells are biased toward the Th2 cytokine phenotype; in some embodiments, it may be advantageous to make T cells biased toward other phenotypes, such as Th1, Th17, or regulatory T cell subtypes.

Provided herein are suitable methods for generating transduced T-Rapa cell populations.

In some embodiments, the transduced T-Rapa cells are administered to a subject with a pharmaceutically acceptable carrier or excipient.

By "pharmaceutically acceptable carrier" is meant any conventional pharmaceutically acceptable carrier, vehicle or excipient used in the art for producing and administering compositions to a subject. Pharmaceutically acceptable carriers are generally physiologically balanced, non-toxic, inert, solid or liquid carriers. Typically, buffered saline or other saline solutions are physiologically acceptable carriers. Water is not considered a suitable physiologically acceptable carrier. In some embodiments, additional components may be added to maintain the structure and function of the T-Rapa cells of the invention, but are physiologically acceptable for administration to a subject.

The present invention has been described in terms of one or more preferred embodiments, but it will be understood that many equivalents, alternatives, variations, and modifications, in addition to those explicitly described, are possible and are within the scope of the invention.

It will be apparent to those skilled in the art that many additional modifications, in addition to those already described, may be made without departing from the inventive concepts herein. In interpreting the disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. The terms "comprises" and "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, such that the referenced elements, components, or steps may be combined with other elements, components, or steps that are not expressly referenced. Embodiments referred to as "comprising" certain elements are also considered to "consist essentially of" and "consist of" the element(s). Where a range of values is given, the disclosure expressly contemplates other combinations of the upper and lower limits of those ranges not expressly recited. For example, reciting values of 1 to 10 or 2 to 9 also contemplates values between 1 and 9 or 2 and 10. Ranges between two values are considered to be inclusive. For example, recitation of values of 1 to 10 includes values of 1 and 10.

Aspects of the disclosure described with respect to methods may be used in the context of compositions of matter or kits discussed in the disclosure. Similarly, aspects of the disclosure described with respect to the composition of matter may be utilized in the context of methods and kits, and aspects of the disclosure described with respect to kits may be utilized in the context of methods and composition of matter.

The invention may be more completely understood in consideration of the following non-limiting examples.

Examples

Example 1: production of lentiviral vectors

LV construction

A DNA fragment containing cDNA of the human GLA gene encoding α -galA was synthesized by GenScript. The cDNA of the GLA gene was codon optimized to enhance expression in human cells. The synthesized DNA fragment was subcloned into the 3 'self-inactivating (3' SIN) HIV-1 based lentiviral backbone plasmid pDY. cPPT-EF1a-MCS-WPRE previously generated in our laboratory between EcoRI and XmaI restriction sites in the Multiple Cloning Site (MCS). Afterwards, we used site-directed mutagenesis using Q5 site-directed mutagenesis kit (New England Biolabs) to edit the cDNA upstream sequences to create the optimal Kozak consensus sequence. These steps resulted in plasmid pDY/CO. alpha. -galA (SEQ ID NO: 2), which was used for all LV preparations in our study. The plasmid sequence covering the proviral region was verified by DNA sequencing. The method is described in Huang et al, 2017, and is incorporated herein by reference in its entirety.

Purification and functional titer analysis of study-grade and near-clinical LV

Study grade LV/AGA was prepared in our laboratory as previously described (Wang, j.c., Felizardo, t.c., Au, b.c., Fowler, d.h., Dekaban, g.a., and Medin, J.A. (2013) lentiviral vector engineering for modulating dendritic cell apoptotic pathways, virol.j.10, 240.). Near clinical grade LV/AGA was produced which meets current GMP requirements for potential human clinical trials according to research New drug (IND) applications.

LV particles were produced using HEK293T packaging cells. Packaging cells were expanded to 4L culture volume and transiently co-transfected with LV packaging plasmids (pCMV. DELTA.R 8.91 (packaging plasmid) and pMD.G (VSV-G envelope encoding plasmid)) and transfer plasmid (pDY/CO.a-gal A). The sequence of the amplified plasmid was verified by DNA sequencing. Culture supernatants were harvested twice, yielding a total of 8L of unconcentrated LV-containing supernatant. The LV-containing supernatant was further purified by Mustang Q ion exchange chromatography, concentrated by tangential flow filtration, and buffer exchanged into 100mL GMP grade Lonza X vivo 20 cell growth medium.

Vesicular stomatitis virus glycoprotein pseudotyped lentiviruses (VSVg-LV) were produced. Briefly, HEK293T cells were seeded in 15cm dishes and transfected with LV packaging and transfer plasmids after 24 hours. After 16-17 hours, the medium on the cells was changed to fresh medium. After 24 hours, culture supernatants were collected and replaced with fresh medium. After another 24 hours a second collection was performed. The culture supernatant was filtered through a 0.22 μm vacuum assisted filter and ultracentrifuged at 50,000g for 2 and half hours. Residual liquid was removed from the virus pellet, which was then resuspended in Lonza X Vivo 20 and stored at-80 ℃ until use. Viral supernatants were harvested after 24 and 48 hours and concentrated by 50,000g ultracentrifugation for 2 hours as shown in fig. 11. The virus stock was resuspended in lymphocyte medium (Lonza X Vivo 20) and stored at-80 ℃ until use.

The vial of final concentrated vector product was subjected to QC analysis including confirmation of vector identity by southern blot analysis, titration by p24 ELISA, and testing for aerobic and anaerobic sterility, mycoplasma levels, endotoxin levels, and residual DNA benzoate esterase levels.

We performed infectious titer tests on all LV preparations using serial dilutions of the vector to transduce HEK293T cells, followed by measurement of the average viral copy number per cell using quantitative real-time PCR analysis.

Example 2: transduced T-Rapa cell production

A schematic for the preparation of transduced T-Rapa cells is depicted in FIG. 9. Donor lymphocytes were collected by 10 liter steady state apheresis prior to stem cell mobilization. Positive selection CD4 cells (Miltenyi;device or laboratory equivalent) and co-stimulation (with GMP grade anti-CD 3[ OKT 3; ortho]Magnetic toluene sulfonic acid beads coupled with GMP-grade anti-CD 289.3 antibody [ Dynal][3: 1 bead: cell ratio]). Alternatively, donor lymphocytes as CD 34-depleted flow-through were obtained from a CD34+ cliniMACS protocol from stem cell mobilized donors. CD4+ cells were obtained using magnetic enrichment as described previously.

Purified CD4+ cells were cultured in polyolefin bags (Baxter) using X-VIVO 20 medium (Lonza), 5% donor plasma, recombinant human (rhu) IL-4(1000 IU/mL; prodigiosin), rhu IL-2(20 IU/mL; Chiron) andoral solution (Whitman; 1. mu.M) and anti-CD 3/CD28 magnetic beads (3: 1). After 3 days, the T cells were washed and transduced with a lentiviral vector capable of expressing α -galA at an MOI of 30-60. After 18 hours, the T cells were washed and propagated in supplemented X-VIVO 20 medium without rapamycin. On day 6, beads will be removed; t cells were washed to remove cytokines and then cryopreserved. All injected T-Rapa products meet release criteria including: CD4 cell purity>70% (median CD4 purity 99%) viability>70% (median viability 95%), no bacterial and fungal growth, no endotoxin content as determined by limulus assay, negative mycoplasma test, and<100 magnetic bead/3X 106And (4) cells. T-Rapa cells were cultured, expanded and cryopreserved for use.

As shown in FIG. 2, T-Rapa cells from healthy donors (ND) and Fabry's disease donors (FD) were efficiently transduced with lentiviral vectors.

Example 3: expression of alpha-galA in LV transduced T-Rapa cells

The levels of α -galA in transduced T-Rapa cells from healthy and Fabry's disease donors were determined. The specific α -galA activity was determined by fluorimetry as described previously (Yoshimitsu et al, 2004, PNAS: 942540-. Briefly, plasma or cell/organ protein extracts were incubated with 4-methylumbelliferone- α -D-galactopyranoside (5mmol/L) in the presence of α -N-acetylgalactosamine inhibitor, N-acetyl-D-galactosamine (100mmol/L) (Sigma Aldrich, St. Louis, Mo.). The enzymatic reaction products were quantified by comparison with known concentrations of 4-methylumbelliferone. Each measurement was evaluated in triplicate and normalized to total protein concentration (BCA protein assay kit; Pierce, Rockford, Ill.). The results are shown in FIGS. 3A and 3B, which show the content of α -galA in the cell lysate (A) and the supernatant (B).

As shown in fig. 4 and 5, also by WesTMThe simple western blot system detected the levels of α -galA.

Example 4: in vivo treatment of fabry disease mouse model.

The in vivo efficacy of treatment of brury's disease with transduced T-Rapa cells was tested using α -galA deficient and immunocompromised fabry disease mice (NOD/SCID/Aga-/-) as previously described (Pacienza et al, 2012). As shown in FIG. 6, 5X 10 from healthy or Fabry's disease donors5Transduced human T-Rapa cells were transplanted into NOD/SCID/Aga-/-mice. alpha-galA activity in transplanted animals was measured 4 weeks after xenograft transplantation. Liver, spleen, heart, kidney, plasma and PB-WBC were collected. PB-WBC was analyzed by flow cytometry and VCN for the presence of transduced T-Rapa cells. Plasma was evaluated for α -galA activity and the results are shown in fig. 7 and fig. 8 shows the raw data. Fig. 18 shows that α -galA activity was detectable in organs collected in vivo 4 weeks after T Rapa, a healthy donor transduced by xenograft (n-4-5).

In addition, the ability of transduced T-Rapa cells to reduce substrates in vivo was also tested. The major substrates, globotriacylceramide (Gb3) and globotriacylsphingosine (lyso-Gb3), accumulated in fabry mouse, were quantified by UPLC-MS/MS in plasma and tissue homogenates after treatment with healthy donor transduced T-Rapa cells. As shown in fig. 19, substrate decreased 4 weeks after transplantation of transduced healthy donor T Rapa (n-4-5).

LV/AGA vector transduced T-Rapa cells from healthy and Fabry's disease donors produce and secrete active enzymes in vivo.

As described above, CD4+ T cells from fabry patients were also transduced with lentiviral vectors encoding α -galA. First, we confirmed that T-Rapa cells from 3 patients with fabry disease showed α -galA activity, and as shown in fig. 17, the enzyme activity was measured both in the cell and in the cell supernatant. We then treated the Burley disease-derived immortalized fibroblasts with T-Rapa conditioned supernatant for 6 hours, with or without 1mM soluble mannose-6-phosphate, to see if the enzymes produced by the T-Rapa cells could be taken up (FIG. 17).

These transduced T-Rapa cells from fabry patients were also implanted into an immunocompromised fabry mouse model and α -galA activity was measured. As shown in fig. 20, α -galA (n-4-5) was detectable in vivo 4 weeks after T-Rapa xenograft in transduced fabry disease donors. In addition, these fabry disease T-Rapa transduced cells were able to reduce substrate (Gb3) in fabry disease mice, as shown in figure 21. Substrate was decreased 4 weeks after T-Rapa transplantation in the transduced fabry donor (n-4-5).

This example demonstrates that transduced T-Rapa expresses and secretes enzymes required to combat lysosomal storage diseases (e.g.,. alpha. -galA and GCase). Furthermore, this example shows that transduced T-Rapa cells from patients with Fabry's disease can be made and that transduced T-Rapa cells can act in vivo to deplete substrates.

Example 5: treatment of Fabry's disease

FIG. 10 depicts a schematic of a general protocol for treating a condition by the methods described herein, particularly showing the steps of treating a lysosomal storage disease such as Fabry's disease using transduced T-Rapa cells.

Peripheral blood from the patient is collected by methods known in the art. CD4+ T cells are then isolated from peripheral blood using methods known in the art, for example, flow cytometric or magnetic cell sorting using antibodies against CD 4. Alternatively, CD4+ cells may be similarly isolated from apheresis products, which may be obtained by using methods known in the art. Isolated CD4+ cells were cultured in the presence of rapamycin (e.g., 1 micromolar) in the presence of cytokines (IL-2 and IL-4) for 3 days, as described above. T-Rapa cells are transduced ex vivo using lentiviruses at an MOI of 1-30 or 1-60 for 12-18 hours and then cultured in cytokine-containing medium for an additional 3 days (which can be 3 days to about 1 month).

Patients receiving T-Rapa cells will not receive conditioning from myeloablative chemotherapy. In contrast, the type of chemotherapy to be administered will be lymphocyte specific and bone marrow preserved. Lymphocyte-specific chemotherapy may consist of the following protocol (although other protocols are contemplated): (1) fludarabine plus a small dose of cyclophosphamide per day; or (2) spraying statin and adding small dose of cyclophosphamide every day.

Intravenous infusion of about 2-10x10 into a patient6Kg of transduced T-Rapa cells. The patient is monitored for α -galA expression. The administration of the cells can be repeated and the cell dose can be adjusted as recommended by the appropriate physician.

Example 6: production of Dual promoter Lentiviral vectors for use in the method

In some examples, the invention can use a dual promoter lentiviral vector to transfer a transgene (e.g., an AGA transgene) and a resistance gene (e.g., IMPDH2(IY)) to confer resistance to a drug (e.g., Mycophenolate Mofetil (MMF)) within a target T cell. The dual promoter construct (pDY-DP (SEQ ID NO: 10)) was designed and constructed using pDY as a backbone using standard molecular biology techniques. The human ubiquitous constitutive promoter expresses the transgene of interest. For enrichment purposes, vectors with IMPDH2(IY) expressed from one promoter with IMPDH from another promoter (i.e., pDY- [ MCS) [ see FIGS. ]]+ (IY), (SEQ ID NO: 11)) ability to insert another transgene of interest). Vectors with the AGA transgene were constructed for use in the treatment of Burley's disease (SEQ ID NO: 3). The titer of the vector was 1x109Infectious virusParticle (IVP)/mL. Expression was measured using a vector with enhanced green fluorescent protein (eGFP) instead of IMPDH2(IY) and used as a non-enriched control. FIG. 13 shows a vector map of a lentiviral vector used in the present invention.

Suitable methods for generating lentiviral vectors are known in the art. A suitable protocol is shown in figure 11. Lentivirus production comprises the following steps: (a) three packaging plasmids, pCMV Δ R8.91(Zufferey et al, Nature Biotechnology 15: 871-. They were complexed with Polyethyleneimine (PEI) and transfected into HEK293T cells. The medium was changed after 16 hours. (b) Culture supernatants containing viral particles were harvested approximately 40 and 64 hours after transfection. The supernatant was filtered through a 0.22 μm filter to remove contaminants. (c) The collected supernatants were ultracentrifuged as indicated to concentrate the virus. (d) The virus pellet was resuspended in the appropriate culture medium at a volume 2000-fold less than the original supernatant.

Example 7: exemplary treatment of fabry disease using dual promoter lentiviral vectors.

Patients with Brachychiton disease were treated as described in example 5, except that a dual promoter lentiviral vector, such as described in example 6, was used, wherein the vector expressed IMPDH2(IY) in addition to α -galA, had a growth advantage on transduced T-Rapa cells when patients were treated with low doses of MMF.

If desired, enrichment can be initiated by treatment with mycophenolate mofetil (MMF; CellCept, Roche or approved general drugs); transduced T-Rapa cells are resistant to the action of this drug, giving them a growth advantage. Low doses of oral MMF may be effective (0.1-5mg/kg TID), but higher doses (5-10mg/kg TID or 1000mg BID) may also be tolerated depending on the patient. As a general guideline, blood concentrations of 0.4-2. mu.M free mycophenolic acid (MPA) are desirable. MMF can be administered for a duration of time that requires increased enzyme activity, and the dose adjusted to titrate the activity. MMF can also replace MPA formulations (Myfortic, nova or approved general drugs).

Each of the publications, patents and patent publications cited in this disclosure is incorporated by reference herein in its entirety. The invention is not limited to the foregoing embodiments, but covers all modifications and variations falling within the scope of the claims.

Sequence Listing declaration

The present application includes a sequence listing concurrently filed in computer readable form. This sequence listing is incorporated herein by reference.

The following sequences correspond to the plasmid map in fig. 13.

Genetic elements of plasmids and lentiviral vectors

f1 ori plasmid replication origin in bacteria

Amp (R) ampicillin resistance gene (beta-lactamase)

5 'LTR HIV1 derived 5' Long terminal repeat: viral elements required for integration into the host genome

3 'LTR/SIN HIV1 derived 3' long terminal repeat with 133bp deletion and ability to inactivate any viral replication after reverse transcription in host cells

Sequence Psi: retroviral Psi packaging element

5' Gag (del3rdG) viral elements required for transcription of proviral RNA in the second generation lentiviral System

RRE is a viral REV response element essential for export of proviral RNA nuclei

cPPT central polypurine tract, a lentiviral component, which enhances nuclear import/export of viral RNA, thereby enhancing viral titer and transduction.

EF1a ubiquitous constitutive expression promoter derived from human elongation factor 1. alpha. gene

WPRE is woodchuck hepatitis transcription post-regulation element; effectively terminating transcription and stabilizing mRNA.

hPGK-ubiquitous constitutive expression promoter derived from human phosphoglycerate kinase 1 gene

CTE and polyA C-terminal and poly A signal sequences for termination of transcription

CoIMPDH2(IY) codon-optimized transgene, T333I, S351Y mutant expressing human inosine-5' -monophosphate dehydrogenase 2

AGA/GBA/ASAH1/GAA the codon-optimized transgene of interest encodes human alpha-galactosidase A, beta-glucocerebrosidase, N-acylsphingosylamide hydrolase 1 or acid alpha-glucosidase, respectively.

The sequence is as follows:

SEQ ID NO:1(AGA)

>co.hAGA

ATGCAACTTCGAAACCCAGAGCTCCACCTCGGATGTGCCCTTGCTCTGAGGTTCCTGGCGCTGGTGTCTTGGGATATACCCGGAGCACGCGCTCTGGACAACGGGCTGGCCCGGACTCCAACCATGGGTTGGCTCCATTGGGAAAGGTTTATGTGCAACTTGGACTGCCAGGAAGAACCCGACTCCTGTATTTCCGAGAAACTCTTCATGGAGATGGCCGAGCTGATGGTTAGCGAAGGCTGGAAGGATGCCGGTTATGAATACTTGTGTATCGACGATTGTTGGATGGCTCCCCAGCGGGACAGTGAAGGACGACTCCAGGCAGATCCGCAACGGTTCCCTCATGGCATACGGCAGCTCGCCAATTACGTGCACAGCAAGGGTTTGAAGCTGGGGATATATGCTGACGTGGGCAACAAAACCTGTGCTGGTTTCCCCGGCAGCTTCGGCTACTATGATATAGATGCACAAACCTTCGCTGATTGGGGCGTGGACCTGCTTAAATTTGACGGCTGTTACTGCGACAGCTTGGAAAACCTCGCCGATGGATATAAACACATGAGCCTTGCACTCAATCGGACTGGCCGGAGCATTGTCTACTCTTGCGAGTGGCCATTGTACATGTGGCCTTTCCAGAAGCCTAACTATACGGAGATTAGACAGTATTGTAATCACTGGAGAAACTTTGCAGATATCGACGACTCATGGAAGTCCATCAAATCTATTCTGGACTGGACTTCATTCAATCAGGAGCGCATCGTCGATGTTGCCGGTCCAGGTGGATGGAACGACCCTGACATGCTCGTAATTGGGAATTTCGGACTGTCCTGGAATCAGCAGGTCACACAGATGGCTTTGTGGGCTATCATGGCAGCCCCACTCTTTATGTCTAACGATTTGCGGCATATTTCACCACAGGCCAAAGCCCTGCTGCAAGATAAGGACGTCATAGCGATTAACCAGGACCCACTGGGAAAGCAGGGCTACCAGCTGAGACAGGGCGACAATTTTGAGGTCTGGGAAAGACCTCTTAGCGGGCTGGCGTGGGCCGTAGCCATGATTAATCGCCAGGAAATTGGCGGCCCTCGCTCTTACACTATCGCGGTCGCCAGTCTGGGCAAGGGAGTCGCTTGTAACCCCGCCTGCTTCATAACTCAGTTGCTGCCCGTGAAACGGAAGCTGGGCTTCTATGAATGGACTAGCAGACTCCGCAGTCATATTAATCCGACTGGTACGGTGCTGCTGCAACTGGAGAATACCATGCAGATGTCACTTAAGGATCTTCTGTGA

SEQ ID NO:2

>pDY co.hAGA

AAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCGACGTCGCATGCTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGGATCGATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTATCGATAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGAGGAATTCGCCACCATGCAACTTCGAAACCCAGAGCTCCACCTCGGATGTGCCCTTGCTCTGAGGTTCCTGGCGCTGGTGTCTTGGGATATACCCGGAGCACGCGCTCTGGACAACGGGCTGGCCCGGACTCCAACCATGGGTTGGCTCCATTGGGAAAGGTTTATGTGCAACTTGGACTGCCAGGAAGAACCCGACTCCTGTATTTCCGAGAAACTCTTCATGGAGATGGCCGAGCTGATGGTTAGCGAAGGCTGGAAGGATGCCGGTTATGAATACTTGTGTATCGACGATTGTTGGATGGCTCCCCAGCGGGACAGTGAAGGACGACTCCAGGCAGATCCGCAACGGTTCCCTCATGGCATACGGCAGCTCGCCAATTACGTGCACAGCAAGGGTTTGAAGCTGGGGATATATGCTGACGTGGGCAACAAAACCTGTGCTGGTTTCCCCGGCAGCTTCGGCTACTATGATATAGATGCACAAACCTTCGCTGATTGGGGCGTGGACCTGCTTAAATTTGACGGCTGTTACTGCGACAGCTTGGAAAACCTCGCCGATGGATATAAACACATGAGCCTTGCACTCAATCGGACTGGCCGGAGCATTGTCTACTCTTGCGAGTGGCCATTGTACATGTGGCCTTTCCAGAAGCCTAACTATACGGAGATTAGACAGTATTGTAATCACTGGAGAAACTTTGCAGATATCGACGACTCATGGAAGTCCATCAAATCTATTCTGGACTGGACTTCATTCAATCAGGAGCGCATCGTCGATGTTGCCGGTCCAGGTGGATGGAACGACCCTGACATGCTCGTAATTGGGAATTTCGGACTGTCCTGGAATCAGCAGGTCACACAGATGGCTTTGTGGGCTATCATGGCAGCCCCACTCTTTATGTCTAACGATTTGCGGCATATTTCACCACAGGCCAAAGCCCTGCTGCAAGATAAGGACGTCATAGCGATTAACCAGGACCCACTGGGAAAGCAGGGCTACCAGCTGAGACAGGGCGACAATTTTGAGGTCTGGGAAAGACCTCTTAGCGGGCTGGCGTGGGCCGTAGCCATGATTAATCGCCAGGAAATTGGCGGCCCTCGCTCTTACACTATCGCGGTCGCCAGTCTGGGCAAGGGAGTCGCTTGTAACCCCGCCTGCTTCATAACTCAGTTGCTGCCCGTGAAACGGAAGCTGGGCTTCTATGAATGGACTAGCAGACTCCGCAGTCATATTAATCCGACTGGTACGGTGCTGCTGCAACTGGAGAATACCATGCAGATGTCACTTAAGGATCTTCTGTGAGAACCCGGGATCCAAGCTTCAATTGTGGTCACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGG

SEQ ID NO:3

>pDY AGA+(IY)(SEQ ID NO:3)

AAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCGACGTCGCATGCTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGGATCGATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTATCGATAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTGACCCCGTACGCCTCGAGAGATCTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAGGCAATAGCATCACAAATTTCACAAATAAGGCATTTTTTTCACTGCATTCTAGTTTTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTCAAATCCCTCGGAAGCTGCGCCTGTCTTAGGTTGGAGTGATACATTTTTATCACTTTTACCCGTCTTTGGATTAGGCAGTAGCTCTGACGGCCCTCCTGTCTTAGGTTAGTGAAAAATGTCACTCTCTTACCCGTCATTGGCTGTCCAGCTTAGCTCGCAGGGGAGGTGGTCTGCCTGCAGGTTAGAACAGTCTCTTTTCGTATGAGTGCAGTGAGTGGACGCCGCCTTCGACCTGGGCTGAAGAAGTTCTTTTCTCGAACTTCAGTTCGCCGGAATACATCATTGCCCGCACCTGTGTCAGGCTCTTAGCGCCGATATCCTGGCATGAATGCTGAATTCCGGCGATCAGGTAAGGCACGAATTTGTGAATACTGCCCTTATCCTGGACAGCTCCAGACACGCCCTGTGCGACTTTGATCTTGTCTGCCTCGGAAAAATACCTGTTCTGAGAGGACAGATGCTTATCCATGGCGTCCAGTGACCCCATGCCCCTATATTTCTTCAGTCTGAACCCATCACTAAAGAAGTACTCGCCGGGGGCTTCTGTGGTTGCAGCCAGCAGGCTGCCCATCATCACTGTGCTTGCCCCCAGAGCCAGGGCTTTTGCGATGTGGCCCACATTCTGAATTCCCCCGTCAGCGATCACTGGGACTCCGAATCTCCGGGCATACTCGTACACCTTGTAGACAGCAGTTGCCTGAGGTCGTCCACAGGCCAGCACTTCCTGAATGATGCAGATTGATCCACTCCCCATTCCGACCCTCAGAGCATCCACTCCTGCGTCAATCAGGTTTTTGGCCTGGGCTGCGGTCACGACATTGCCTCCGATGACCTGCAGATTTGGGTACTTGTCCTTAATGTACTTGATCATATTAATCTGGAAGATGCTGTTTCCCTGGCTTGAATCCAGCACGACCACGTCCACCCCTGCCTGAGCCAGCAGATCCAGGCGATATTTATCGTCCTCGTGTGTGCCAATAGCGGCTCCACACAGCAGCTGTTTCTTTGCGTCCTTACTAGCCAGAGGGTAATCTCGATTTTTCTTCAGGTCGGTGCGGGCAATGATTGCCACCAGCTCATCGTCTTCATTCACGATAGGCAGTTTTCCTTTCTTAGACCGCTGCAGAATCTCGTTGGCTTCCTTCAGTGTGATGCCGGCAGGTGCGACCACCAGATCTTCGCGTTTGGTCATAATCTCTTCCAGAAAACAGTCATGCTCTTCCTCCTTCAGGAAATCGATGTCTCGACTAGAAATGATTCCCACCAGTCGGCTGCCCATTCGTCCAGTATCTGTAATGGGGATGCCGCAAAATCCGTGCCTAGCTTTGGCCTCGAACACATCGCGGACCCTGTCCTTGGGGCTCAGGACCACTGGGTCGGTGATAAAGCCCTGTTCGTATTTCTTCACCTTTCTGACCTCATTGGCCTGAAATTCTGGAGTGCAGTTATGGTGAATGAACCCGATCCCGCCTGTCAGTGCCATAGCAATGGCCATGCCAGCCTCGGTGACAGTGTCCATAGGGGAGCTCACCAGGGGTGTCTTCAGGGTGATTTTCTTGGTCAGGGCAGAAGTCAGATCCACCTGGTCTGCGGTAAAATCAATATAGCCGGGCAGGATCAGGAAGTCGTTGTAAGTCAGCCCGTCTCCACAATTAAACAGCTGCTGGGCGGTCAGTCCATCATCAGGGACATAGGAAGTGCCTCCAGAAATCAGGTAGTCGGCCATGGTGGCGCTAGCCCTGGGGAGAGAGGTCGGTGATTCGGTCAACGAGGGAGCCGACTGCCGACGTGCGCTCCGGAGGCTTGCAGAATGCGGAACACCGCGCGGGCAGGAACAGGGCCCACACTACCGCCCCACACCCCGCCTCCCGCACCGCCCCTTCCCGGCCGCTGCTCTCGGCGCGCCCCGCTGAGCAGCCGCTATTGGCCACAGCCCATCGCGGTCGGCGCGCTGCCATTGCTCCCTGGCGCTGTCCGTCTGCGAGGGTACTAGTGAGACGTGCGGCTTCCGTTTGTCACGTCCGGCACGCCGCGAACCGCAAGGAACCTTCCCGACTTAGGGGCGGAGCAGGAAGCGTCGCCGGGGGGCCCACAAGGGTAGCGGCGAAGATCCGGGTGACGCTGCGAACGGACGTGAAGAATGTGCGAGACCCAGGGTCGGCGCCGCTGCGTTTCCCGGAACCACGCCCAGAGCAGCCGCGTCCCTGCGCAAACCCAGGGCTGCCAAGGAAAAGGCGCAACCCCAACCCCGTGGTTAATTAAGGTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGAGGAATTCGCCACCATGCAACTTCGAAACCCAGAGCTCCACCTCGGATGTGCCCTTGCTCTGAGGTTCCTGGCGCTGGTGTCTTGGGATATACCCGGAGCACGCGCTCTGGACAACGGGCTGGCCCGGACTCCAACCATGGGTTGGCTCCATTGGGAAAGGTTTATGTGCAACTTGGACTGCCAGGAAGAACCCGACTCCTGTATTTCCGAGAAACTCTTCATGGAGATGGCCGAGCTGATGGTTAGCGAAGGCTGGAAGGATGCCGGTTATGAATACTTGTGTATCGACGATTGTTGGATGGCTCCCCAGCGGGACAGTGAAGGACGACTCCAGGCAGATCCGCAACGGTTCCCTCATGGCATACGGCAGCTCGCCAATTACGTGCACAGCAAGGGTTTGAAGCTGGGGATATATGCTGACGTGGGCAACAAAACCTGTGCTGGTTTCCCCGGCAGCTTCGGCTACTATGATATAGATGCACAAACCTTCGCTGATTGGGGCGTGGACCTGCTTAAATTTGACGGCTGTTACTGCGACAGCTTGGAAAACCTCGCCGATGGATATAAACACATGAGCCTTGCACTCAATCGGACTGGCCGGAGCATTGTCTACTCTTGCGAGTGGCCATTGTACATGTGGCCTTTCCAGAAGCCTAACTATACGGAGATTAGACAGTATTGTAATCACTGGAGAAACTTTGCAGATATCGACGACTCATGGAAGTCCATCAAATCTATTCTGGACTGGACTTCATTCAATCAGGAGCGCATCGTCGATGTTGCCGGTCCAGGTGGATGGAACGACCCTGACATGCTCGTAATTGGGAATTTCGGACTGTCCTGGAATCAGCAGGTCACACAGATGGCTTTGTGGGCTATCATGGCAGCCCCACTCTTTATGTCTAACGATTTGCGGCATATTTCACCACAGGCCAAAGCCCTGCTGCAAGATAAGGACGTCATAGCGATTAACCAGGACCCACTGGGAAAGCAGGGCTACCAGCTGAGACAGGGCGACAATTTTGAGGTCTGGGAAAGACCTCTTAGCGGGCTGGCGTGGGCCGTAGCCATGATTAATCGCCAGGAAATTGGCGGCCCTCGCTCTTACACTATCGCGGTCGCCAGTCTGGGCAAGGGAGTCGCTTGTAACCCCGCCTGCTTCATAACTCAGTTGCTGCCCGTGAAACGGAAGCTGGGCTTCTATGAATGGACTAGCAGACTCCGCAGTCATATTAATCCGACTGGTACGGTGCTGCTGCAACTGGAGAATACCATGCAGATGTCACTTAAGGATCTTCTGTGAGAACCCGGGATCCAAGCTTCAATTGTGGTCACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGG

SEQ ID NO:4

gaucher disease

>pDY co hGBA

AAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCGACGTCGCATGCTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGGATCGATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTATCGATAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGAGGAATTCGCTAGCGCCACCATGGAGTTCTCAAGCCCCTCTCGGGAAGAATGCCCAAAACCTCTGTCACGGGTGTCTATCATGGCTGGATCACTGACTGGCCTGCTGCTGCTGCAGGCCGTGAGCTGGGCCTCCGGAGCCCGGCCTTGCATCCCAAAGTCTTTCGGCTACAGCTCCGTGGTGTGCGTGTGCAACGCCACCTATTGTGACTCCTTCGATCCCCCTACCTTTCCCGCCCTGGGCACATTTTCTCGGTACGAGTCTACACGCAGCGGCAGGAGAATGGAGCTGAGCATGGGCCCTATCCAGGCCAATCACACCGGAACAGGCCTGCTGCTGACCCTGCAGCCAGAGCAGAAGTTCCAGAAGGTGAAGGGCTTTGGAGGAGCAATGACAGACGCAGCCGCCCTGAACATCCTGGCCCTGTCCCCACCCGCCCAGAATCTGCTGCTGAAGTCCTACTTCTCTGAGGAGGGCATCGGCTATAACATCATCAGGGTGCCCATGGCCAGCTGCGACTTTTCCATCAGAACCTACACATATGCCGATACCCCTGACGATTTCCAGCTGCACAATTTTTCCCTGCCAGAGGAGGATACAAAGCTGAAGATCCCACTGATCCACAGGGCCCTGCAGCTGGCCCAGAGGCCCGTGAGCCTGCTGGCCAGCCCCTGGACCTCCCCTACATGGCTGAAGACCAACGGCGCCGTGAATGGCAAGGGCTCTCTGAAGGGACAGCCAGGCGACATCTACCACCAGACATGGGCCCGCTATTTCGTGAAGTTTCTGGATGCCTACGCCGAGCACAAGCTGCAGTTCTGGGCCGTGACCGCAGAGAACGAGCCTTCTGCCGGCCTGCTGAGCGGCTATCCCTTCCAGTGCCTGGGCTTTACACCTGAGCACCAGAGGGACTTTATCGCCAGAGATCTGGGCCCAACCCTGGCCAACTCCACACACCACAATGTGCGGCTGCTGATGCTGGACGATCAGCGCCTGCTGCTGCCTCACTGGGCCAAGGTGGTGCTGACCGACCCAGAGGCCGCCAAGTACGTGCACGGCATCGCCGTGCACTGGTATCTGGATTTCCTGGCACCAGCAAAGGCCACCCTGGGAGAGACACACAGGCTGTTCCCTAACACCATGCTGTTTGCCAGCGAGGCCTGCGTGGGCTCCAAGTTTTGGGAGCAGTCCGTGCGGCTGGGCTCTTGGGACAGGGGCATGCAGTACTCCCACTCTATCATCACCAATCTGCTGTATCACGTGGTGGGCTGGACAGACTGGAACCTGGCCCTGAATCCAGAGGGCGGCCCCAACTGGGTGAGAAATTTCGTGGATAGCCCCATCATCGTGGACATCACCAAGGATACATTCTACAAGCAGCCAATGTTTTATCACCTGGGCCACTTCTCTAAGTTTATCCCAGAGGGCAGCCAGAGGGTGGGCCTGGTGGCCAGCCAGAAGAACGACCTGGATGCAGTGGCCCTGATGCACCCTGACGGCTCCGCCGTGGTGGTGGTGCTGAATCGCTCTAGCAAGGACGTGCCTCTGACCATCAAGGACCCCGCCGTGGGCTTTCTGGAGACCATTTCACCCGGCTATTCTATTCATACCTATCTGTGGAGGAGGCAGTAACCTGCAGGGGATCCAAGCTTCAATTGTGGTCACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGG

SEQ ID NO:5

Fabry disease

>pDY hASAH1

GGGCGAATTGGGCCCGACGTCGCATGCTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGGATCGATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTATCGATAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGAGGAATTCTGCAGTCGACGCCACCATGCCGGGCCGGAGTTGCGTCGCCTTAGTCCTCCTGGCTGCCGCCGTCAGCTGTGCCGTCGCGCAGCACGCGCCGCCGTGGACAGAGGACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGAGGTGCAGTTCCATGGTACACCATAAATCTTGACTTACCACCCTACAAAAGATGGCATGAATTGATGCTTGACAAGGCACCAGTGCTAAAGGTTATAGTGAATTCTCTGAAGAATATGATAAATACATTCGTGCCAAGTGGAAAAATTATGCAGGTGGTGGATGAAAAATTGCCTGGCCTACTTGGCAACTTTCCTGGCCCTTTTGAAGAGGAAATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGGAGAGATTATTTCATTCAATATTTTTTATGAATTATTTACCATTTGTACTTCAATAGTAGCAGAAGACAAAAAAGGTCATCTAATACATGGGAGAAACATGGATTTTGGAGTATTTCTTGGGTGGAACATAAATAATGATACCTGGGTCATAACTGAGCAACTAAAACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAACAAAACTGTCTTCAAGGCTTCAAGCTTTGCTGGCTATGTGGGCATGTTAACAGGATTCAAACCAGGACTGTTCAGTCTTACACTGAATGAACGTTTCAGTATAAATGGTGGTTATCTGGGTATTCTAGAATGGATTCTGGGAAAGAAAGATGTCATGTGGATAGGGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTTATGAAGAAGCCAAGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTGGGAGGCAACCAGTCTGGGGAAGGTTGTGTGATTACACGAGACAGAAAGGAATCATTGGATGTATATGAACTCGATGCTAAGCAGGGTAGATGGTATGTGGTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCCTTGATGATCGCAGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAAGAGAATATCTCATTTGAAACCATGTATGATGTCCTGTCAACAAAACCTGTCCTCAACAAGCTGACCGTATACACAACCTTGATAGATGTTACCAAAGGTCAATTCGAAACTTACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGAGCGGCCGCCTCGAGGATCCAAGCTTCAATTGTGGTCACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATA

SEQ ID NO:6

Pompe disease (vector encoding GAA)

>pDY co hGAA

AAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCGACGTCGCATGCTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGGATCGATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTATCGATAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGAGGAATTCGCCACCATGGGCGTGAGGCACCCCCCTTGCTCTCACAGGCTGCTGGCCGTGTGCGCACTGGTGAGCCTGGCCACCGCCGCCCTGCTGGGCCACATCCTGCTGCACGACTTCCTGCTGGTGCCCAGGGAGCTGTCCGGCAGCTCCCCAGTGCTGGAGGAGACCCACCCAGCACACCAGCAGGGCGCCTCTCGGCCAGGCCCCCGCGATGCACAGGCACACCCAGGCCGGCCCCGCGCCGTGCCAACCCAGTGCGACGTGCCACCCAACAGCCGGTTTGACTGTGCCCCCGATAAGGCCATCACACAGGAGCAGTGCGAGGCCAGGGGCTGCTGTTATATCCCTGCAAAGCAGGGCCTCCAGGGCGCCCAGATGGGACAGCCATGGTGTTTCTTTCCTCCATCTTACCCCAGCTATAAGCTGGAGAATCTGTCTAGCTCCGAGATGGGCTACACAGCCACCCTGACAAGAACCACACCAACATTCTTTCCCAAGGACATCCTGACCCTGCGGCTGGACGTGATGATGGAGACAGAGAACCGCCTGCACTTCACCATCAAGGACCCCGCCAATAGGAGATATGAGGTGCCTCTGGAGACCCCACACGTGCACTCTCGGGCCCCTAGCCCACTGTACTCCGTGGAGTTCTCTGAGGAGCCATTTGGCGTGATCGTGCGGCGCCAGCTGGATGGACGCGTGCTGCTGAACACCACAGTGGCCCCCCTGTTCTTTGCCGACCAGTTCCTCCAGCTGAGCACATCCCTGCCCTCCCAGTATATCACCGGCCTGGCCGAGCACCTGTCTCCTCTGATGCTGTCTACCAGCTGGACAAGGATCACCCTGTGGAACAGAGACCTGGCACCAACCCCTGGCGCAAATCTGTACGGCAGCCACCCTTTCTATCTGGCCCTGGAGGATGGAGGCTCCGCCCACGGCGTGTTTCTGCTGAACTCTAATGCCATGGACGTGGTGCTCCAGCCAAGCCCCGCCCTGTCCTGGCGGTCTACCGGCGGCATCCTGGACGTGTACATCTTCCTGGGCCCTGAGCCAAAGTCCGTGGTGCAGCAGTACCTGGACGTGGTGGGCTATCCTTTCATGCCCCCTTACTGGGGACTGGGATTTCACCTGTGCCGCTGGGGCTATTCTAGCACAGCCATCACCCGGCAGGTGGTGGAGAACATGACCCGCGCCCACTTTCCACTGGATGTGCAGTGGAATGACCTGGATTACATGGACTCCAGGAGAGACTTCACCTTCAACAAGGACGGCTTCAGGGATTTTCCCGCCATGGTGCAGGAGCTGCACCAGGGCGGCCGGCGCTACATGATGATCGTGGACCCCGCCATCTCCTCTAGCGGACCTGCCGGCAGCTACAGACCATATGACGAGGGCCTGAGGAGAGGCGTGTTCATCACAAACGAGACCGGCCAGCCTCTGATCGGCAAGGTCTGGCCAGGCTCCACCGCCTTCCCAGACTTCACCAATCCAACCGCCCTGGCCTGGTGGGAGGACATGGTGGCCGAGTTCCACGACCAGGTGCCTTTTGATGGCATGTGGATCGACATGAACGAGCCATCTAATTTCATCAGGGGCAGCGAGGACGGCTGCCCCAACAATGAGCTGGAGAACCCACCATATGTGCCTGGCGTGGTGGGAGGCACCCTCCAGGCAGCAACCATCTGTGCCTCCTCTCACCAGTTTCTGTCTACACACTATAACCTGCACAATCTGTACGGACTGACCGAGGCAATCGCCAGCCACAGAGCCCTGGTGAAGGCCAGGGGCACAAGACCTTTCGTGATCTCCAGGTCTACCTTTGCCGGACACGGCAGATACGCAGGACACTGGACCGGCGACGTGTGGAGCAGCTGGGAGCAGCTGGCCTCTAGCGTGCCAGAGATCCTCCAGTTCAACCTGCTGGGCGTGCCCCTGGTGGGAGCAGACGTGTGCGGCTTTCTGGGCAATACATCCGAGGAGCTGTGCGTGAGGTGGACCCAGCTGGGAGCCTTCTATCCCTTCATGCGCAACCACAATAGCCTGCTGTCCCTGCCTCAGGAGCCATACAGCTTCTCCGAGCCTGCACAGCAGGCAATGAGGAAGGCCCTGACACTGCGCTATGCCCTGCTGCCACACCTGTACACCCTGTTTCACCAGGCACACGTGGCAGGAGAGACAGTGGCCCGGCCCCTGTTCCTGGAGTTTCCTAAGGATTCCTCTACCTGGACAGTGGACCACCAGCTGCTGTGGGGAGAGGCCCTGCTGATCACCCCCGTGCTCCAGGCAGGCAAGGCAGAGGTGACAGGCTATTTCCCTCTGGGCACATGGTACGACCTCCAGACCGTGCCAGTGGAGGCCCTGGGCAGCCTGCCTCCACCACCTGCCGCCCCCCGCGAGCCTGCCATCCACTCCGAGGGACAGTGGGTGACACTGCCAGCACCTCTGGACACCATCAACGTGCACCTGAGGGCCGGCTATATCATCCCCCTCCAGGGCCCTGGCCTGACCACAACCGAGTCCAGACAGCAGCCAATGGCCCTGGCCGTGGCCCTGACCAAGGGAGGCGAGGCCAGGGGCGAGCTGTTCTGGGACGATGGCGAGTCTCTGGAGGTGCTGGAGAGAGGCGCCTACACACAGGTCATCTTCCTGGCCAGGAACAATACAATCGTGAATGAGCTGGTGAGAGTGACCTCTGAGGGAGCAGGACTCCAGCTCCAGAAGGTGACAGTGCTGGGAGTGGCAACCGCACCACAGCAGGTGCTGAGCAACGGCGTGCCCGTGAGCAATTTCACATACTCCCCTGATACCAAGGTGCTGGACATCTGCGTGAGCCTGCTGATGGGCGAGCAGTTTCTGGTGTCCTGGTGTTGAGAACCCGGGATCCAAGCTTCAATTGTGGTCACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGG

7GBA transgene of SEQ ID NO

>co.hGBA

ATGGAGTTCTCAAGCCCCTCTCGGGAAGAATGCCCAAAACCTCTGTCACGGGTGTCTATCATGGCTGGATCACTGACTGGCCTGCTGCTGCTGCAGGCCGTGAGCTGGGCCTCCGGAGCCCGGCCTTGCATCCCAAAGTCTTTCGGCTACAGCTCCGTGGTGTGCGTGTGCAACGCCACCTATTGTGACTCCTTCGATCCCCCTACCTTTCCCGCCCTGGGCACATTTTCTCGGTACGAGTCTACACGCAGCGGCAGGAGAATGGAGCTGAGCATGGGCCCTATCCAGGCCAATCACACCGGAACAGGCCTGCTGCTGACCCTGCAGCCAGAGCAGAAGTTCCAGAAGGTGAAGGGCTTTGGAGGAGCAATGACAGACGCAGCCGCCCTGAACATCCTGGCCCTGTCCCCACCCGCCCAGAATCTGCTGCTGAAGTCCTACTTCTCTGAGGAGGGCATCGGCTATAACATCATCAGGGTGCCCATGGCCAGCTGCGACTTTTCCATCAGAACCTACACATATGCCGATACCCCTGACGATTTCCAGCTGCACAATTTTTCCCTGCCAGAGGAGGATACAAAGCTGAAGATCCCACTGATCCACAGGGCCCTGCAGCTGGCCCAGAGGCCCGTGAGCCTGCTGGCCAGCCCCTGGACCTCCCCTACATGGCTGAAGACCAACGGCGCCGTGAATGGCAAGGGCTCTCTGAAGGGACAGCCAGGCGACATCTACCACCAGACATGGGCCCGCTATTTCGTGAAGTTTCTGGATGCCTACGCCGAGCACAAGCTGCAGTTCTGGGCCGTGACCGCAGAGAACGAGCCTTCTGCCGGCCTGCTGAGCGGCTATCCCTTCCAGTGCCTGGGCTTTACACCTGAGCACCAGAGGGACTTTATCGCCAGAGATCTGGGCCCAACCCTGGCCAACTCCACACACCACAATGTGCGGCTGCTGATGCTGGACGATCAGCGCCTGCTGCTGCCTCACTGGGCCAAGGTGGTGCTGACCGACCCAGAGGCCGCCAAGTACGTGCACGGCATCGCCGTGCACTGGTATCTGGATTTCCTGGCACCAGCAAAGGCCACCCTGGGAGAGACACACAGGCTGTTCCCTAACACCATGCTGTTTGCCAGCGAGGCCTGCGTGGGCTCCAAGTTTTGGGAGCAGTCCGTGCGGCTGGGCTCTTGGGACAGGGGCATGCAGTACTCCCACTCTATCATCACCAATCTGCTGTATCACGTGGTGGGCTGGACAGACTGGAACCTGGCCCTGAATCCAGAGGGCGGCCCCAACTGGGTGAGAAATTTCGTGGATAGCCCCATCATCGTGGACATCACCAAGGATACATTCTACAAGCAGCCAATGTTTTATCACCTGGGCCACTTCTCTAAGTTTATCCCAGAGGGCAGCCAGAGGGTGGGCCTGGTGGCCAGCCAGAAGAACGACCTGGATGCAGTGGCCCTGATGCACCCTGACGGCTCCGCCGTGGTGGTGGTGCTGAATCGCTCTAGCAAGGACGTGCCTCTGACCATCAAGGACCCCGCCGTGGGCTTTCTGGAGACCATTTCACCCGGCTATTCTATTCATACCTATCTGTGGAGGAGGCAGTAA

8ASAH1 transgene

>hASAH1

ATGCCGGGCCGGAGTTGCGTCGCCTTAGTCCTCCTGGCTGCCGCCGTCAGCTGTGCCGTCGCGCAGCACGCGCCGCCGTGGACAGAGGACTGCAGAAAATCAACCTATCCTCCTTCAGGACCAACGTACAGAGGTGCAGTTCCATGGTACACCATAAATCTTGACTTACCACCCTACAAAAGATGGCATGAATTGATGCTTGACAAGGCACCAGTGCTAAAGGTTATAGTGAATTCTCTGAAGAATATGATAAATACATTCGTGCCAAGTGGAAAAATTATGCAGGTGGTGGATGAAAAATTGCCTGGCCTACTTGGCAACTTTCCTGGCCCTTTTGAAGAGGAAATGAAGGGTATTGCCGCTGTTACTGATATACCTTTAGGAGAGATTATTTCATTCAATATTTTTTATGAATTATTTACCATTTGTACTTCAATAGTAGCAGAAGACAAAAAAGGTCATCTAATACATGGGAGAAACATGGATTTTGGAGTATTTCTTGGGTGGAACATAAATAATGATACCTGGGTCATAACTGAGCAACTAAAACCTTTAACAGTGAATTTGGATTTCCAAAGAAACAACAAAACTGTCTTCAAGGCTTCAAGCTTTGCTGGCTATGTGGGCATGTTAACAGGATTCAAACCAGGACTGTTCAGTCTTACACTGAATGAACGTTTCAGTATAAATGGTGGTTATCTGGGTATTCTAGAATGGATTCTGGGAAAGAAAGATGTCATGTGGATAGGGTTCCTCACTAGAACAGTTCTGGAAAATAGCACAAGTTATGAAGAAGCCAAGAATTTATTGACCAAGACCAAGATATTGGCCCCAGCCTACTTTATCCTGGGAGGCAACCAGTCTGGGGAAGGTTGTGTGATTACACGAGACAGAAAGGAATCATTGGATGTATATGAACTCGATGCTAAGCAGGGTAGATGGTATGTGGTACAAACAAATTATGACCGTTGGAAACATCCCTTCTTCCTTGATGATCGCAGAACGCCTGCAAAGATGTGTCTGAACCGCACCAGCCAAGAGAATATCTCATTTGAAACCATGTATGATGTCCTGTCAACAAAACCTGTCCTCAACAAGCTGACCGTATACACAACCTTGATAGATGTTACCAAAGGTCAATTCGAAACTTACCTGCGGGACTGCCCTGACCCTTGTATAGGTTGGTGA

SEQ ID NO 9(GAA transgene)

>co.hGAA

ATGGGCGTGAGGCACCCCCCTTGCTCTCACAGGCTGCTGGCCGTGTGCGCACTGGTGAGCCTGGCCACCGCCGCCCTGCTGGGCCACATCCTGCTGCACGACTTCCTGCTGGTGCCCAGGGAGCTGTCCGGCAGCTCCCCAGTGCTGGAGGAGACCCACCCAGCACACCAGCAGGGCGCCTCTCGGCCAGGCCCCCGCGATGCACAGGCACACCCAGGCCGGCCCCGCGCCGTGCCAACCCAGTGCGACGTGCCACCCAACAGCCGGTTTGACTGTGCCCCCGATAAGGCCATCACACAGGAGCAGTGCGAGGCCAGGGGCTGCTGTTATATCCCTGCAAAGCAGGGCCTCCAGGGCGCCCAGATGGGACAGCCATGGTGTTTCTTTCCTCCATCTTACCCCAGCTATAAGCTGGAGAATCTGTCTAGCTCCGAGATGGGCTACACAGCCACCCTGACAAGAACCACACCAACATTCTTTCCCAAGGACATCCTGACCCTGCGGCTGGACGTGATGATGGAGACAGAGAACCGCCTGCACTTCACCATCAAGGACCCCGCCAATAGGAGATATGAGGTGCCTCTGGAGACCCCACACGTGCACTCTCGGGCCCCTAGCCCACTGTACTCCGTGGAGTTCTCTGAGGAGCCATTTGGCGTGATCGTGCGGCGCCAGCTGGATGGACGCGTGCTGCTGAACACCACAGTGGCCCCCCTGTTCTTTGCCGACCAGTTCCTCCAGCTGAGCACATCCCTGCCCTCCCAGTATATCACCGGCCTGGCCGAGCACCTGTCTCCTCTGATGCTGTCTACCAGCTGGACAAGGATCACCCTGTGGAACAGAGACCTGGCACCAACCCCTGGCGCAAATCTGTACGGCAGCCACCCTTTCTATCTGGCCCTGGAGGATGGAGGCTCCGCCCACGGCGTGTTTCTGCTGAACTCTAATGCCATGGACGTGGTGCTCCAGCCAAGCCCCGCCCTGTCCTGGCGGTCTACCGGCGGCATCCTGGACGTGTACATCTTCCTGGGCCCTGAGCCAAAGTCCGTGGTGCAGCAGTACCTGGACGTGGTGGGCTATCCTTTCATGCCCCCTTACTGGGGACTGGGATTTCACCTGTGCCGCTGGGGCTATTCTAGCACAGCCATCACCCGGCAGGTGGTGGAGAACATGACCCGCGCCCACTTTCCACTGGATGTGCAGTGGAATGACCTGGATTACATGGACTCCAGGAGAGACTTCACCTTCAACAAGGACGGCTTCAGGGATTTTCCCGCCATGGTGCAGGAGCTGCACCAGGGCGGCCGGCGCTACATGATGATCGTGGACCCCGCCATCTCCTCTAGCGGACCTGCCGGCAGCTACAGACCATATGACGAGGGCCTGAGGAGAGGCGTGTTCATCACAAACGAGACCGGCCAGCCTCTGATCGGCAAGGTCTGGCCAGGCTCCACCGCCTTCCCAGACTTCACCAATCCAACCGCCCTGGCCTGGTGGGAGGACATGGTGGCCGAGTTCCACGACCAGGTGCCTTTTGATGGCATGTGGATCGACATGAACGAGCCATCTAATTTCATCAGGGGCAGCGAGGACGGCTGCCCCAACAATGAGCTGGAGAACCCACCATATGTGCCTGGCGTGGTGGGAGGCACCCTCCAGGCAGCAACCATCTGTGCCTCCTCTCACCAGTTTCTGTCTACACACTATAACCTGCACAATCTGTACGGACTGACCGAGGCAATCGCCAGCCACAGAGCCCTGGTGAAGGCCAGGGGCACAAGACCTTTCGTGATCTCCAGGTCTACCTTTGCCGGACACGGCAGATACGCAGGACACTGGACCGGCGACGTGTGGAGCAGCTGGGAGCAGCTGGCCTCTAGCGTGCCAGAGATCCTCCAGTTCAACCTGCTGGGCGTGCCCCTGGTGGGAGCAGACGTGTGCGGCTTTCTGGGCAATACATCCGAGGAGCTGTGCGTGAGGTGGACCCAGCTGGGAGCCTTCTATCCCTTCATGCGCAACCACAATAGCCTGCTGTCCCTGCCTCAGGAGCCATACAGCTTCTCCGAGCCTGCACAGCAGGCAATGAGGAAGGCCCTGACACTGCGCTATGCCCTGCTGCCACACCTGTACACCCTGTTTCACCAGGCACACGTGGCAGGAGAGACAGTGGCCCGGCCCCTGTTCCTGGAGTTTCCTAAGGATTCCTCTACCTGGACAGTGGACCACCAGCTGCTGTGGGGAGAGGCCCTGCTGATCACCCCCGTGCTCCAGGCAGGCAAGGCAGAGGTGACAGGCTATTTCCCTCTGGGCACATGGTACGACCTCCAGACCGTGCCAGTGGAGGCCCTGGGCAGCCTGCCTCCACCACCTGCCGCCCCCCGCGAGCCTGCCATCCACTCCGAGGGACAGTGGGTGACACTGCCAGCACCTCTGGACACCATCAACGTGCACCTGAGGGCCGGCTATATCATCCCCCTCCAGGGCCCTGGCCTGACCACAACCGAGTCCAGACAGCAGCCAATGGCCCTGGCCGTGGCCCTGACCAAGGGAGGCGAGGCCAGGGGCGAGCTGTTCTGGGACGATGGCGAGTCTCTGGAGGTGCTGGAGAGAGGCGCCTACACACAGGTCATCTTCCTGGCCAGGAACAATACAATCGTGAATGAGCTGGTGAGAGTGACCTCTGAGGGAGCAGGACTCCAGCTCCAGAAGGTGACAGTGCTGGGAGTGGCAACCGCACCACAGCAGGTGCTGAGCAACGGCGTGCCCGTGAGCAATTTCACATACTCCCCTGATACCAAGGTGCTGGACATCTGCGTGAGCCTGCTGATGGGCGAGCAGTTTCTGGTGTCCTGGTGTTGA

SEQ ID NO 10 (double promoter vector)

>pDY-DP

AAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCGACGTCGCATGCTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGGATCGATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTATCGATAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTGACCCCGTACGCCTCGAGAGATCTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAGGCAATAGCATCACAAATTTCACAAATAAGGCATTTTTTTCACTGCATTCTAGTTTTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTCAAATCCCTCGGAAGCTGCGCCTGTCTTAGGTTGGAGTGATACATTTTTATCACTTTTACCCGTCTTTGGATTAGGCAGTAGCTCTGACGGCCCTCCTGTCTTAGGTTAGTGAAAAATGTCACTCTCTTACCCGTCATTGGCTGTCCAGCTTAGCTCGCAGGGGAGGTGGTCTGCCTGCAGGCGGATGGCGTTAACATATGACAACTTTCTCCCGGGTAATCTGACCGTTCGCTAGCCCTGGGGAGAGAGGTCGGTGATTCGGTCAACGAGGGAGCCGACTGCCGACGTGCGCTCCGGAGGCTTGCAGAATGCGGAACACCGCGCGGGCAGGAACAGGGCCCACACTACCGCCCCACACCCCGCCTCCCGCACCGCCCCTTCCCGGCCGCTGCTCTCGGCGCGCCCCGCTGAGCAGCCGCTATTGGCCACAGCCCATCGCGGTCGGCGCGCTGCCATTGCTCCCTGGCGCTGTCCGTCTGCGAGGGTACTAGTGAGACGTGCGGCTTCCGTTTGTCACGTCCGGCACGCCGCGAACCGCAAGGAACCTTCCCGACTTAGGGGCGGAGCAGGAAGCGTCGCCGGGGGGCCCACAAGGGTAGCGGCGAAGATCCGGGTGACGCTGCGAACGGACGTGAAGAATGTGCGAGACCCAGGGTCGGCGCCGCTGCGTTTCCCGGAACCACGCCCAGAGCAGCCGCGTCCCTGCGCAAACCCAGGGCTGCCAAGGAAAAGGCGCAACCCCAACCCCGTGGTTAATTAAGGTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGAGGAATTCTGCAGTCGACGGTACCGCGGGCGCGCCCCGGGATCCAAGCTTCAATTGTGGTCACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGG

SEQ ID NO:11

>pDY-[MCS]+(IY)

AAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGGGCCCGACGTCGCATGCTTGGAAGGGCTAATTCACTCCCAAAGAAGACAAGATATCCTTGATCTGTGGATCTACCACACACAAGGCTACTTCCCTGATTAGCAGAACTACACACCAGGGCCAGGGGTCAGATATCCACTGACCTTTGGATGGTGCTACAAGCTAGTACCAGTTGAGCCAGATAAGGTAGAAGAGGCCAATAAAGGAGAGAACACCAGCTTGTTACACCCTGTGAGCCTGCATGGGATGGATGACCCGGAGAGAGAAGTGTTAGAGTGGAGGTTTGACAGCCGCCTAGCATTTCATCACGTGGCCCGAGAGCTGCATCCGGAGTACTTCAAGAACTGCTGATATCGAGCTTGCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGGCGTGGCCTGGGCGGGACTGGGGAGTGGCGAGCCCTCAGATCCTGCATATAAGCAGCTGCTTTTTGCCTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTGGCGCCCGAACAGGGACTTGAAAGCGAAAGGGAAACCAGAGGAGCTCTCTCGACGCAGGACTCGGCTTGCTGAAGCGCGCACGGCAAGAGGCGAGGGGCGGCGACTGGTGAGTACGCCAAAAATTTTGACTAGCGGAGGCTAGAAGGAGAGAGATGGGTGCGAGAGCGTCAGTATTAAGCGGGGGAGAATTAGATCGCGATGGGAAAAAATTCGGTTAAGGCCAGGGGGAAAGAAAAAATATAAATTAAAACATATAGTATGGGCAAGCAGGGAGCTAGAACGATTCGCAGTTAATCCTGGCCTGTTAGAAACATCAGAAGGCTGTAGACAAATACTGGGACAGCTACAACCATCCCTTCAGACAGGATCAGAAGAACTTAGATCATTATATAATACAGTAGCAACCCTCTATTGTGTGCATCAAAGGATAGAGATAAAAGACACCAAGGAAGCTTTAGACAAGATAGAGGAAGAGCAAAACAAAAGTAAGACCACCGCACAGCAAGCGGCCGCTGATCTTCAGACCTGGAGGAGGAGATATGAGGGACAATTGGAGAAGTGAATTATATAAATATAAAGTAGTAAAAATTGAACCATTAGGAGTAGCACCCACCAAGGCAAAGAGAAGAGTGGTGCAGAGAGAAAAAAGAGCAGTGGGAATAGGAGCTTTGTTCCTTGGGTTCTTGGGAGCAGCAGGAAGCACTATGGGCGCAGCGTCAATGACGCTGACGGTACAGGCCAGACAATTATTGTCTGGTATAGTGCAGCAGCAGAACAATTTGCTGAGGGCTATTGAGGCGCAACAGCATCTGTTGCAACTCACAGTCTGGGGCATCAAGCAGCTCCAGGCAAGAATCCTGGCTGTGGAAAGATACCTAAAGGATCAACAGCTCCTGGGGATTTGGGGTTGCTCTGGAAAACTCATTTGCACCACTGCTGTGCCTTGGAATGCTAGTTGGAGTAATAAATCTCTGGAACAGATTTGGAATCACACGACCTGGATGGAGTGGGACAGAGAAATTAACAATTACACAAGCTTAATACACTCCTTAATTGAAGAATCGCAAAACCAGCAAGAAAAGAATGAACAAGAATTATTGGAATTAGATAAATGGGCAAGTTTGTGGAATTGGTTTAACATAACAAATTGGCTGTGGTATATAAAATTATTCATAATGATAGTAGGAGGCTTGGTAGGTTTAAGAATAGTTTTTGCTGTACTTTCTATAGTGAATAGAGTTAGGCAGGGATATTCACCATTATCGTTTCAGACCCACCTCCCAACCCCGAGGGGACCCGACAGGCCCGAAGGAATAGAAGAAGAAGGTGGAGAGAGAGACAGAGACAGATCCATTCGATTAGTGAACGGATCTCGACGGGATCGATTTTAAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTATCGATAAGCTTTGCAAAGATGGATAAAGTTTTAAACAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTGACCCCGTACGCCTCGAGAGATCTGATCATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCTCCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAGGCAATAGCATCACAAATTTCACAAATAAGGCATTTTTTTCACTGCATTCTAGTTTTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTCAAATCCCTCGGAAGCTGCGCCTGTCTTAGGTTGGAGTGATACATTTTTATCACTTTTACCCGTCTTTGGATTAGGCAGTAGCTCTGACGGCCCTCCTGTCTTAGGTTAGTGAAAAATGTCACTCTCTTACCCGTCATTGGCTGTCCAGCTTAGCTCGCAGGGGAGGTGGTCTGCCTGCAGGTTAGAACAGTCTCTTTTCGTATGAGTGCAGTGAGTGGACGCCGCCTTCGACCTGGGCTGAAGAAGTTCTTTTCTCGAACTTCAGTTCGCCGGAATACATCATTGCCCGCACCTGTGTCAGGCTCTTAGCGCCGATATCCTGGCATGAATGCTGAATTCCGGCGATCAGGTAAGGCACGAATTTGTGAATACTGCCCTTATCCTGGACAGCTCCAGACACGCCCTGTGCGACTTTGATCTTGTCTGCCTCGGAAAAATACCTGTTCTGAGAGGACAGATGCTTATCCATGGCGTCCAGTGACCCCATGCCCCTATATTTCTTCAGTCTGAACCCATCACTAAAGAAGTACTCGCCGGGGGCTTCTGTGGTTGCAGCCAGCAGGCTGCCCATCATCACTGTGCTTGCCCCCAGAGCCAGGGCTTTTGCGATGTGGCCCACATTCTGAATTCCCCCGTCAGCGATCACTGGGACTCCGAATCTCCGGGCATACTCGTACACCTTGTAGACAGCAGTTGCCTGAGGTCGTCCACAGGCCAGCACTTCCTGAATGATGCAGATTGATCCACTCCCCATTCCGACCCTCAGAGCATCCACTCCTGCGTCAATCAGGTTTTTGGCCTGGGCTGCGGTCACGACATTGCCTCCGATGACCTGCAGATTTGGGTACTTGTCCTTAATGTACTTGATCATATTAATCTGGAAGATGCTGTTTCCCTGGCTTGAATCCAGCACGACCACGTCCACCCCTGCCTGAGCCAGCAGATCCAGGCGATATTTATCGTCCTCGTGTGTGCCAATAGCGGCTCCACACAGCAGCTGTTTCTTTGCGTCCTTACTAGCCAGAGGGTAATCTCGATTTTTCTTCAGGTCGGTGCGGGCAATGATTGCCACCAGCTCATCGTCTTCATTCACGATAGGCAGTTTTCCTTTCTTAGACCGCTGCAGAATCTCGTTGGCTTCCTTCAGTGTGATGCCGGCAGGTGCGACCACCAGATCTTCGCGTTTGGTCATAATCTCTTCCAGAAAACAGTCATGCTCTTCCTCCTTCAGGAAATCGATGTCTCGACTAGAAATGATTCCCACCAGTCGGCTGCCCATTCGTCCAGTATCTGTAATGGGGATGCCGCAAAATCCGTGCCTAGCTTTGGCCTCGAACACATCGCGGACCCTGTCCTTGGGGCTCAGGACCACTGGGTCGGTGATAAAGCCCTGTTCGTATTTCTTCACCTTTCTGACCTCATTGGCCTGAAATTCTGGAGTGCAGTTATGGTGAATGAACCCGATCCCGCCTGTCAGTGCCATAGCAATGGCCATGCCAGCCTCGGTGACAGTGTCCATAGGGGAGCTCACCAGGGGTGTCTTCAGGGTGATTTTCTTGGTCAGGGCAGAAGTCAGATCCACCTGGTCTGCGGTAAAATCAATATAGCCGGGCAGGATCAGGAAGTCGTTGTAAGTCAGCCCGTCTCCACAATTAAACAGCTGCTGGGCGGTCAGTCCATCATCAGGGACATAGGAAGTGCCTCCAGAAATCAGGTAGTCGGCCATGGTGGCGCTAGCCCTGGGGAGAGAGGTCGGTGATTCGGTCAACGAGGGAGCCGACTGCCGACGTGCGCTCCGGAGGCTTGCAGAATGCGGAACACCGCGCGGGCAGGAACAGGGCCCACACTACCGCCCCACACCCCGCCTCCCGCACCGCCCCTTCCCGGCCGCTGCTCTCGGCGCGCCCCGCTGAGCAGCCGCTATTGGCCACAGCCCATCGCGGTCGGCGCGCTGCCATTGCTCCCTGGCGCTGTCCGTCTGCGAGGGTACTAGTGAGACGTGCGGCTTCCGTTTGTCACGTCCGGCACGCCGCGAACCGCAAGGAACCTTCCCGACTTAGGGGCGGAGCAGGAAGCGTCGCCGGGGGGCCCACAAGGGTAGCGGCGAAGATCCGGGTGACGCTGCGAACGGACGTGAAGAATGTGCGAGACCCAGGGTCGGCGCCGCTGCGTTTCCCGGAACCACGCCCAGAGCAGCCGCGTCCCTGCGCAAACCCAGGGCTGCCAAGGAAAAGGCGCAACCCCAACCCCGTGGTTAATTAAGGTGAAAGGAGTGGGAATTGGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACCGGTGCCTAGAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGAGAACCGTATATAAGTGCAGTAGTCGCCGTGAACGTTCTTTTTCGCAACGGGTTTGCCGCCAGAACACAGGTAAGTGCCGTGTGTGGTTCCCGCGGGCCTGGCCTCTTTACGGGTTATGGCCCTTGCGTGCCTTGAATTACTTCCACCTGGCTGCAGTACGTGATTCTTGATCCCGAGCTTCGGGTTGGAAGTGGGTGGGAGAGTTCGAGGCCTTGCGCTTAAGGAGCCCCTTCGCCTCGTGCTTGAGTTGAGGCCTGGCCTGGGCGCTGGGGCCGCCGCGTGCGAATCTGGTGGCACCTTCGCGCCTGTCTCGCTGCTTTCGATAAGTCTCTAGCCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGCACACTGGTATTTCGGTTTTTGGGGCCGCGGGCGGCGACGGGGCCCGTGCGTCCCAGCGCACATGTTCGGCGAGGCGGGGCCTGCGAGCGCGGCCACCGAGAATCGGACGGGGGTAGTCTCAAGCTGGCCGGCCTGCTCTGGTGCCTGGCCTCGCGCCGCCGTGTATCGCCCCGCCCTGGGCGGCAAGGCTGGCCCGGTCGGCACCAGTTGCGTGAGCGGAAAGATGGCCGCTTCCCGGCCCTGCTGCAGGGAGCTCAAAATGGAGGACGCGGCGCTCGGGAGAGCGGGCGGGTGAGTCACCCACACAAAGGAAAAGGGCCTTTCCGTCCTCAGCCGTCGCTTCATGTGACTCCACGGAGTACCGGGCGCCGTCCAGGCACCTCGATTAGTTCTCGAGCTTTTGGAGTACGTCGTCTTTAGGTTGGGGGGAGGGGTTTTATGCGATGGAGTTTCCCCACACTGAGTGGGTGGAGACTGAAGTTAGGCCAGCTTGGCACTTGATGTAATTCTCCTTGGAATTTGCCCTTTTTGAGTTTGGATCTTGGTTCATTCTCAAGCCTCAGACAGTGGTTCAAAGTTTTTTTCTTCCATTTCAGGTGTCGTGAGGAATTCTGCAGTCGACGGTACCGCGGGCGCGCCCCGGGATCCAAGCTTCAATTGTGGTCACTCGACAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCCTGCTCGAGACCTAGAAAAACATGGAGCAATCACAAGTAGCAATACAGCAGCTACCAATGCTGATTGTGCCTGGCTAGAAGCACAAGAGGAGGAGGAGGTGGGTTTTCCAGTCACACCTCAGGTACCTTTAAGACCAATGACTTACAAGGCAGCTGTAGATCTTAGCCACTTTTTAAAAGAAAAGGGGGGACTGGAAGGGCTAATTCACTCCCAACGAAGACAAGATCTGCTTTTTGCTTGTACTGGGTCTCTCTGGTTAGACCAGATCTGAGCCTGGGAGCTCTCTGGCTAACTAGGGAACCCACTGCTTAAGCCTCAATAAAGCTTGCCTTGAGTGCTTCAAGTAGTGTGTGCCCGTCTGTTGTGTGACTCTGGTAACTAGAGATCCCTCAGACCCTTTTAGTCAGTGTGGAAAATCTCTAGCAGTAGTAGTTCATGTCATCTTATTATTCAGTATTTATAACTTGCAAAGAAATGAATATCAGAGAGTGAGAGGACGCGTTGGATGCATAGCTTGAGTATTCTATAGTGTCACCTAAATAGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGG

Sequence listing

<110> university OF medicine, Wisconsin GmbH (THE MEDICAL COLLEGE OF WISCONSIN, INC.)

J.A.Meidi (Medin, Jeffrey)

D.H.Fowler (Fowler, Daniel)

M.S.Naji (Nagree, Murtaza)

T.Felizadol (Felizardo, Tania)

<120> use of T-RAPA cells transformed with lentiviral vector for improving lysosomal storage disease

<130> 650053.00604

<150> 62/663786

<151> 2018-04-27

<160> 11

<170> PatentIn version 3.5

<210> 1

<211> 1290

<212> DNA

<213> Artificial sequence

<220>

<223> AGA transgene

<400> 1

atgcaacttc gaaacccaga gctccacctc ggatgtgccc ttgctctgag gttcctggcg 60

ctggtgtctt gggatatacc cggagcacgc gctctggaca acgggctggc ccggactcca 120

accatgggtt ggctccattg ggaaaggttt atgtgcaact tggactgcca ggaagaaccc 180

gactcctgta tttccgagaa actcttcatg gagatggccg agctgatggt tagcgaaggc 240

tggaaggatg ccggttatga atacttgtgt atcgacgatt gttggatggc tccccagcgg 300

gacagtgaag gacgactcca ggcagatccg caacggttcc ctcatggcat acggcagctc 360

gccaattacg tgcacagcaa gggtttgaag ctggggatat atgctgacgt gggcaacaaa 420

acctgtgctg gtttccccgg cagcttcggc tactatgata tagatgcaca aaccttcgct 480

gattggggcg tggacctgct taaatttgac ggctgttact gcgacagctt ggaaaacctc 540

gccgatggat ataaacacat gagccttgca ctcaatcgga ctggccggag cattgtctac 600

tcttgcgagt ggccattgta catgtggcct ttccagaagc ctaactatac ggagattaga 660

cagtattgta atcactggag aaactttgca gatatcgacg actcatggaa gtccatcaaa 720

tctattctgg actggacttc attcaatcag gagcgcatcg tcgatgttgc cggtccaggt 780

ggatggaacg accctgacat gctcgtaatt gggaatttcg gactgtcctg gaatcagcag 840

gtcacacaga tggctttgtg ggctatcatg gcagccccac tctttatgtc taacgatttg 900

cggcatattt caccacaggc caaagccctg ctgcaagata aggacgtcat agcgattaac 960

caggacccac tgggaaagca gggctaccag ctgagacagg gcgacaattt tgaggtctgg 1020

gaaagacctc ttagcgggct ggcgtgggcc gtagccatga ttaatcgcca ggaaattggc 1080

ggccctcgct cttacactat cgcggtcgcc agtctgggca agggagtcgc ttgtaacccc 1140

gcctgcttca taactcagtt gctgcccgtg aaacggaagc tgggcttcta tgaatggact 1200

agcagactcc gcagtcatat taatccgact ggtacggtgc tgctgcaact ggagaatacc 1260

atgcagatgt cacttaagga tcttctgtga 1290

<210> 2

<211> 8767

<212> DNA

<213> Artificial sequence

<220>

<223> Lentiviral vector comprising AGA transgene

<400> 2

aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 60

tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 120

tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 180

acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 240

aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 300

cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 360

cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 420

cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat tcgccattca ggctgcgcaa 480

ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg 540

atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa 600

aacgacggcc agtgaattgt aatacgactc actatagggc gaattgggcc cgacgtcgca 660

tgcttggaag ggctaattca ctcccaaaga agacaagata tccttgatct gtggatctac 720

cacacacaag gctacttccc tgattagcag aactacacac cagggccagg ggtcagatat 780

ccactgacct ttggatggtg ctacaagcta gtaccagttg agccagataa ggtagaagag 840

gccaataaag gagagaacac cagcttgtta caccctgtga gcctgcatgg gatggatgac 900

ccggagagag aagtgttaga gtggaggttt gacagccgcc tagcatttca tcacgtggcc 960

cgagagctgc atccggagta cttcaagaac tgctgatatc gagcttgcta caagggactt 1020

tccgctgggg actttccagg gaggcgtggc ctgggcggga ctggggagtg gcgagccctc 1080

agatcctgca tataagcagc tgctttttgc ctgtactggg tctctctggt tagaccagat 1140

ctgagcctgg gagctctctg gctaactagg gaacccactg cttaagcctc aataaagctt 1200

gccttgagtg cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 1260

cctcagaccc ttttagtcag tgtggaaaat ctctagcagt ggcgcccgaa cagggacttg 1320

aaagcgaaag ggaaaccaga ggagctctct cgacgcagga ctcggcttgc tgaagcgcgc 1380

acggcaagag gcgaggggcg gcgactggtg agtacgccaa aaattttgac tagcggaggc 1440

tagaaggaga gagatgggtg cgagagcgtc agtattaagc gggggagaat tagatcgcga 1500

tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat ataaattaaa acatatagta 1560

tgggcaagca gggagctaga acgattcgca gttaatcctg gcctgttaga aacatcagaa 1620

ggctgtagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt 1680

agatcattat ataatacagt agcaaccctc tattgtgtgc atcaaaggat agagataaaa 1740

gacaccaagg aagctttaga caagatagag gaagagcaaa acaaaagtaa gaccaccgca 1800

cagcaagcgg ccgctgatct tcagacctgg aggaggagat atgagggaca attggagaag 1860

tgaattatat aaatataaag tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc 1920

aaagagaaga gtggtgcaga gagaaaaaag agcagtggga ataggagctt tgttccttgg 1980

gttcttggga gcagcaggaa gcactatggg cgcagcgtca atgacgctga cggtacaggc 2040

cagacaatta ttgtctggta tagtgcagca gcagaacaat ttgctgaggg ctattgaggc 2100

gcaacagcat ctgttgcaac tcacagtctg gggcatcaag cagctccagg caagaatcct 2160

ggctgtggaa agatacctaa aggatcaaca gctcctgggg atttggggtt gctctggaaa 2220

actcatttgc accactgctg tgccttggaa tgctagttgg agtaataaat ctctggaaca 2280

gatttggaat cacacgacct ggatggagtg ggacagagaa attaacaatt acacaagctt 2340

aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa aagaatgaac aagaattatt 2400

ggaattagat aaatgggcaa gtttgtggaa ttggtttaac ataacaaatt ggctgtggta 2460

tataaaatta ttcataatga tagtaggagg cttggtaggt ttaagaatag tttttgctgt 2520

actttctata gtgaatagag ttaggcaggg atattcacca ttatcgtttc agacccacct 2580

cccaaccccg aggggacccg acaggcccga aggaatagaa gaagaaggtg gagagagaga 2640

cagagacaga tccattcgat tagtgaacgg atctcgacgg gatcgatttt aaaagaaaag 2700

gggggattgg ggggtacagt gcaggggaaa gaatagtaga cataatagca acagacatac 2760

aaactaaaga attacaaaaa caaattacaa aaattcaaaa ttttatcgat aagctttgca 2820

aagatggata aagttttaaa cagagaggaa tctttgcagc taatggacct tctaggtctt 2880

gaaaggagtg ggaattggct ccggtgcccg tcagtgggca gagcgcacat cgcccacagt 2940

ccccgagaag ttggggggag gggtcggcaa ttgaaccggt gcctagagaa ggtggcgcgg 3000

ggtaaactgg gaaagtgatg tcgtgtactg gctccgcctt tttcccgagg gtgggggaga 3060

accgtatata agtgcagtag tcgccgtgaa cgttcttttt cgcaacgggt ttgccgccag 3120

aacacaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg gttatggccc 3180

ttgcgtgcct tgaattactt ccacctggct gcagtacgtg attcttgatc ccgagcttcg 3240

ggttggaagt gggtgggaga gttcgaggcc ttgcgcttaa ggagcccctt cgcctcgtgc 3300

ttgagttgag gcctggcctg ggcgctgggg ccgccgcgtg cgaatctggt ggcaccttcg 3360

cgcctgtctc gctgctttcg ataagtctct agccatttaa aatttttgat gacctgctgc 3420

gacgcttttt ttctggcaag atagtcttgt aaatgcgggc caagatctgc acactggtat 3480

ttcggttttt ggggccgcgg gcggcgacgg ggcccgtgcg tcccagcgca catgttcggc 3540

gaggcggggc ctgcgagcgc ggccaccgag aatcggacgg gggtagtctc aagctggccg 3600

gcctgctctg gtgcctggcc tcgcgccgcc gtgtatcgcc ccgccctggg cggcaaggct 3660

ggcccggtcg gcaccagttg cgtgagcgga aagatggccg cttcccggcc ctgctgcagg 3720

gagctcaaaa tggaggacgc ggcgctcggg agagcgggcg ggtgagtcac ccacacaaag 3780

gaaaagggcc tttccgtcct cagccgtcgc ttcatgtgac tccacggagt accgggcgcc 3840

gtccaggcac ctcgattagt tctcgagctt ttggagtacg tcgtctttag gttgggggga 3900

ggggttttat gcgatggagt ttccccacac tgagtgggtg gagactgaag ttaggccagc 3960

ttggcacttg atgtaattct ccttggaatt tgcccttttt gagtttggat cttggttcat 4020

tctcaagcct cagacagtgg ttcaaagttt ttttcttcca tttcaggtgt cgtgaggaat 4080

tcgccaccat gcaacttcga aacccagagc tccacctcgg atgtgccctt gctctgaggt 4140

tcctggcgct ggtgtcttgg gatatacccg gagcacgcgc tctggacaac gggctggccc 4200

ggactccaac catgggttgg ctccattggg aaaggtttat gtgcaacttg gactgccagg 4260

aagaacccga ctcctgtatt tccgagaaac tcttcatgga gatggccgag ctgatggtta 4320

gcgaaggctg gaaggatgcc ggttatgaat acttgtgtat cgacgattgt tggatggctc 4380

cccagcggga cagtgaagga cgactccagg cagatccgca acggttccct catggcatac 4440

ggcagctcgc caattacgtg cacagcaagg gtttgaagct ggggatatat gctgacgtgg 4500

gcaacaaaac ctgtgctggt ttccccggca gcttcggcta ctatgatata gatgcacaaa 4560

ccttcgctga ttggggcgtg gacctgctta aatttgacgg ctgttactgc gacagcttgg 4620

aaaacctcgc cgatggatat aaacacatga gccttgcact caatcggact ggccggagca 4680

ttgtctactc ttgcgagtgg ccattgtaca tgtggccttt ccagaagcct aactatacgg 4740

agattagaca gtattgtaat cactggagaa actttgcaga tatcgacgac tcatggaagt 4800

ccatcaaatc tattctggac tggacttcat tcaatcagga gcgcatcgtc gatgttgccg 4860

gtccaggtgg atggaacgac cctgacatgc tcgtaattgg gaatttcgga ctgtcctgga 4920

atcagcaggt cacacagatg gctttgtggg ctatcatggc agccccactc tttatgtcta 4980

acgatttgcg gcatatttca ccacaggcca aagccctgct gcaagataag gacgtcatag 5040

cgattaacca ggacccactg ggaaagcagg gctaccagct gagacagggc gacaattttg 5100

aggtctggga aagacctctt agcgggctgg cgtgggccgt agccatgatt aatcgccagg 5160

aaattggcgg ccctcgctct tacactatcg cggtcgccag tctgggcaag ggagtcgctt 5220

gtaaccccgc ctgcttcata actcagttgc tgcccgtgaa acggaagctg ggcttctatg 5280

aatggactag cagactccgc agtcatatta atccgactgg tacggtgctg ctgcaactgg 5340

agaataccat gcagatgtca cttaaggatc ttctgtgaga acccgggatc caagcttcaa 5400

ttgtggtcac tcgacaatca acctctggat tacaaaattt gtgaaagatt gactggtatt 5460

cttaactatg ttgctccttt tacgctatgt ggatacgctg ctttaatgcc tttgtatcat 5520

gctattgctt cccgtatggc tttcattttc tcctccttgt ataaatcctg gttgctgtct 5580

ctttatgagg agttgtggcc cgttgtcagg caacgtggcg tggtgtgcac tgtgtttgct 5640

gacgcaaccc ccactggttg gggcattgcc accacctgtc agctcctttc cgggactttc 5700

gctttccccc tccctattgc cacggcggaa ctcatcgccg cctgccttgc ccgctgctgg 5760

acaggggctc ggctgttggg cactgacaat tccgtggtgt tgtcggggaa gctgacgtcc 5820

tttccatggc tgctcgcctg tgttgccacc tggattctgc gcgggacgtc cttctgctac 5880

gtcccttcgg ccctcaatcc agcggacctt ccttcccgcg gcctgctgcc ggctctgcgg 5940

cctcttccgc gtcttcgcct tcgccctcag acgagtcgga tctccctttg ggccgcctcc 6000

ccgcctgctc gagacctaga aaaacatgga gcaatcacaa gtagcaatac agcagctacc 6060

aatgctgatt gtgcctggct agaagcacaa gaggaggagg aggtgggttt tccagtcaca 6120

cctcaggtac ctttaagacc aatgacttac aaggcagctg tagatcttag ccacttttta 6180

aaagaaaagg ggggactgga agggctaatt cactcccaac gaagacaaga tctgcttttt 6240

gcttgtactg ggtctctctg gttagaccag atctgagcct gggagctctc tggctaacta 6300

gggaacccac tgcttaagcc tcaataaagc ttgccttgag tgcttcaagt agtgtgtgcc 6360

cgtctgttgt gtgactctgg taactagaga tccctcagac ccttttagtc agtgtggaaa 6420

atctctagca gtagtagttc atgtcatctt attattcagt atttataact tgcaaagaaa 6480

tgaatatcag agagtgagag gacgcgttgg atgcatagct tgagtattct atagtgtcac 6540

ctaaatagct tggcgtaatc atggtcatag ctgtttcctg tgtgaaattg ttatccgctc 6600

acaattccac acaacatacg agccggaagc ataaagtgta aagcctgggg tgcctaatga 6660

gtgagctaac tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg 6720

tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 6780

cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg 6840

gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga 6900

aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 6960

gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 7020

aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc 7080

gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg 7140

ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 7200

cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 7260

ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc 7320

actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 7380

tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca 7440

gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc 7500

ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 7560

cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt 7620

ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt 7680

tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc 7740

agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc 7800

gtcgtgtaga taactacgat acgggagggc ttaccatctg gccccagtgc tgcaatgata 7860

ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc agccggaagg 7920

gccgagcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat taattgttgc 7980

cgggaagcta gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgccattgct 8040

acaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc cggttcccaa 8100

cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa aagcggttag ctccttcggt 8160

cctccgatcg ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca 8220

ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac tggtgagtac 8280

tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca 8340

atacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat tggaaaacgt 8400

tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc gatgtaaccc 8460

actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc tgggtgagca 8520

aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa atgttgaata 8580

ctcatactct tcctttttca atattattga agcatttatc agggttattg tctcatgagc 8640

ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacatttccc 8700

cgaaaagtgc cacctgatgc ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg 8760

catcagg 8767

<210> 3

<211> 11298

<212> DNA

<213> Artificial sequence

<220>

<223> Dual promoter lentiviral vector comprising AGA transgene

<400> 3

aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 60

tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 120

tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 180

acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 240

aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 300

cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 360

cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 420

cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat tcgccattca ggctgcgcaa 480

ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg 540

atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa 600

aacgacggcc agtgaattgt aatacgactc actatagggc gaattgggcc cgacgtcgca 660

tgcttggaag ggctaattca ctcccaaaga agacaagata tccttgatct gtggatctac 720

cacacacaag gctacttccc tgattagcag aactacacac cagggccagg ggtcagatat 780

ccactgacct ttggatggtg ctacaagcta gtaccagttg agccagataa ggtagaagag 840

gccaataaag gagagaacac cagcttgtta caccctgtga gcctgcatgg gatggatgac 900

ccggagagag aagtgttaga gtggaggttt gacagccgcc tagcatttca tcacgtggcc 960

cgagagctgc atccggagta cttcaagaac tgctgatatc gagcttgcta caagggactt 1020

tccgctgggg actttccagg gaggcgtggc ctgggcggga ctggggagtg gcgagccctc 1080

agatcctgca tataagcagc tgctttttgc ctgtactggg tctctctggt tagaccagat 1140

ctgagcctgg gagctctctg gctaactagg gaacccactg cttaagcctc aataaagctt 1200

gccttgagtg cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 1260

cctcagaccc ttttagtcag tgtggaaaat ctctagcagt ggcgcccgaa cagggacttg 1320

aaagcgaaag ggaaaccaga ggagctctct cgacgcagga ctcggcttgc tgaagcgcgc 1380

acggcaagag gcgaggggcg gcgactggtg agtacgccaa aaattttgac tagcggaggc 1440

tagaaggaga gagatgggtg cgagagcgtc agtattaagc gggggagaat tagatcgcga 1500

tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat ataaattaaa acatatagta 1560

tgggcaagca gggagctaga acgattcgca gttaatcctg gcctgttaga aacatcagaa 1620

ggctgtagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt 1680

agatcattat ataatacagt agcaaccctc tattgtgtgc atcaaaggat agagataaaa 1740

gacaccaagg aagctttaga caagatagag gaagagcaaa acaaaagtaa gaccaccgca 1800

cagcaagcgg ccgctgatct tcagacctgg aggaggagat atgagggaca attggagaag 1860

tgaattatat aaatataaag tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc 1920

aaagagaaga gtggtgcaga gagaaaaaag agcagtggga ataggagctt tgttccttgg 1980

gttcttggga gcagcaggaa gcactatggg cgcagcgtca atgacgctga cggtacaggc 2040

cagacaatta ttgtctggta tagtgcagca gcagaacaat ttgctgaggg ctattgaggc 2100

gcaacagcat ctgttgcaac tcacagtctg gggcatcaag cagctccagg caagaatcct 2160

ggctgtggaa agatacctaa aggatcaaca gctcctgggg atttggggtt gctctggaaa 2220

actcatttgc accactgctg tgccttggaa tgctagttgg agtaataaat ctctggaaca 2280

gatttggaat cacacgacct ggatggagtg ggacagagaa attaacaatt acacaagctt 2340

aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa aagaatgaac aagaattatt 2400

ggaattagat aaatgggcaa gtttgtggaa ttggtttaac ataacaaatt ggctgtggta 2460

tataaaatta ttcataatga tagtaggagg cttggtaggt ttaagaatag tttttgctgt 2520

actttctata gtgaatagag ttaggcaggg atattcacca ttatcgtttc agacccacct 2580

cccaaccccg aggggacccg acaggcccga aggaatagaa gaagaaggtg gagagagaga 2640

cagagacaga tccattcgat tagtgaacgg atctcgacgg gatcgatttt aaaagaaaag 2700

gggggattgg ggggtacagt gcaggggaaa gaatagtaga cataatagca acagacatac 2760

aaactaaaga attacaaaaa caaattacaa aaattcaaaa ttttatcgat aagctttgca 2820

aagatggata aagttttaaa cagagaggaa tctttgcagc taatggacct tctaggtctg 2880

accccgtacg cctcgagaga tctgatcata atcagccata ccacatttgt agaggtttta 2940

cttgctttaa aaaacctccc acacctcccc ctgaacctga aacataaaat gaatgcaatt 3000

gttgttgtta acttgtttat tgcagcttat aatggttaca aataaggcaa tagcatcaca 3060

aatttcacaa ataaggcatt tttttcactg cattctagtt ttggtttgtc caaactcatc 3120

aatgtatctt atcatgtctg gatctcaaat ccctcggaag ctgcgcctgt cttaggttgg 3180

agtgatacat ttttatcact tttacccgtc tttggattag gcagtagctc tgacggccct 3240

cctgtcttag gttagtgaaa aatgtcactc tcttacccgt cattggctgt ccagcttagc 3300

tcgcagggga ggtggtctgc ctgcaggtta gaacagtctc ttttcgtatg agtgcagtga 3360

gtggacgccg ccttcgacct gggctgaaga agttcttttc tcgaacttca gttcgccgga 3420

atacatcatt gcccgcacct gtgtcaggct cttagcgccg atatcctggc atgaatgctg 3480

aattccggcg atcaggtaag gcacgaattt gtgaatactg cccttatcct ggacagctcc 3540

agacacgccc tgtgcgactt tgatcttgtc tgcctcggaa aaatacctgt tctgagagga 3600

cagatgctta tccatggcgt ccagtgaccc catgccccta tatttcttca gtctgaaccc 3660

atcactaaag aagtactcgc cgggggcttc tgtggttgca gccagcaggc tgcccatcat 3720

cactgtgctt gcccccagag ccagggcttt tgcgatgtgg cccacattct gaattccccc 3780

gtcagcgatc actgggactc cgaatctccg ggcatactcg tacaccttgt agacagcagt 3840

tgcctgaggt cgtccacagg ccagcacttc ctgaatgatg cagattgatc cactccccat 3900

tccgaccctc agagcatcca ctcctgcgtc aatcaggttt ttggcctggg ctgcggtcac 3960

gacattgcct ccgatgacct gcagatttgg gtacttgtcc ttaatgtact tgatcatatt 4020

aatctggaag atgctgtttc cctggcttga atccagcacg accacgtcca cccctgcctg 4080

agccagcaga tccaggcgat atttatcgtc ctcgtgtgtg ccaatagcgg ctccacacag 4140

cagctgtttc tttgcgtcct tactagccag agggtaatct cgatttttct tcaggtcggt 4200

gcgggcaatg attgccacca gctcatcgtc ttcattcacg ataggcagtt ttcctttctt 4260

agaccgctgc agaatctcgt tggcttcctt cagtgtgatg ccggcaggtg cgaccaccag 4320

atcttcgcgt ttggtcataa tctcttccag aaaacagtca tgctcttcct ccttcaggaa 4380

atcgatgtct cgactagaaa tgattcccac cagtcggctg cccattcgtc cagtatctgt 4440

aatggggatg ccgcaaaatc cgtgcctagc tttggcctcg aacacatcgc ggaccctgtc 4500

cttggggctc aggaccactg ggtcggtgat aaagccctgt tcgtatttct tcacctttct 4560

gacctcattg gcctgaaatt ctggagtgca gttatggtga atgaacccga tcccgcctgt 4620

cagtgccata gcaatggcca tgccagcctc ggtgacagtg tccatagggg agctcaccag 4680

gggtgtcttc agggtgattt tcttggtcag ggcagaagtc agatccacct ggtctgcggt 4740

aaaatcaata tagccgggca ggatcaggaa gtcgttgtaa gtcagcccgt ctccacaatt 4800

aaacagctgc tgggcggtca gtccatcatc agggacatag gaagtgcctc cagaaatcag 4860

gtagtcggcc atggtggcgc tagccctggg gagagaggtc ggtgattcgg tcaacgaggg 4920

agccgactgc cgacgtgcgc tccggaggct tgcagaatgc ggaacaccgc gcgggcagga 4980

acagggccca cactaccgcc ccacaccccg cctcccgcac cgccccttcc cggccgctgc 5040

tctcggcgcg ccccgctgag cagccgctat tggccacagc ccatcgcggt cggcgcgctg 5100

ccattgctcc ctggcgctgt ccgtctgcga gggtactagt gagacgtgcg gcttccgttt 5160

gtcacgtccg gcacgccgcg aaccgcaagg aaccttcccg acttaggggc ggagcaggaa 5220

gcgtcgccgg ggggcccaca agggtagcgg cgaagatccg ggtgacgctg cgaacggacg 5280

tgaagaatgt gcgagaccca gggtcggcgc cgctgcgttt cccggaacca cgcccagagc 5340

agccgcgtcc ctgcgcaaac ccagggctgc caaggaaaag gcgcaacccc aaccccgtgg 5400

ttaattaagg tgaaaggagt gggaattggc tccggtgccc gtcagtgggc agagcgcaca 5460

tcgcccacag tccccgagaa gttgggggga ggggtcggca attgaaccgg tgcctagaga 5520

aggtggcgcg gggtaaactg ggaaagtgat gtcgtgtact ggctccgcct ttttcccgag 5580

ggtgggggag aaccgtatat aagtgcagta gtcgccgtga acgttctttt tcgcaacggg 5640

tttgccgcca gaacacaggt aagtgccgtg tgtggttccc gcgggcctgg cctctttacg 5700

ggttatggcc cttgcgtgcc ttgaattact tccacctggc tgcagtacgt gattcttgat 5760

cccgagcttc gggttggaag tgggtgggag agttcgaggc cttgcgctta aggagcccct 5820

tcgcctcgtg cttgagttga ggcctggcct gggcgctggg gccgccgcgt gcgaatctgg 5880

tggcaccttc gcgcctgtct cgctgctttc gataagtctc tagccattta aaatttttga 5940

tgacctgctg cgacgctttt tttctggcaa gatagtcttg taaatgcggg ccaagatctg 6000

cacactggta tttcggtttt tggggccgcg ggcggcgacg gggcccgtgc gtcccagcgc 6060

acatgttcgg cgaggcgggg cctgcgagcg cggccaccga gaatcggacg ggggtagtct 6120

caagctggcc ggcctgctct ggtgcctggc ctcgcgccgc cgtgtatcgc cccgccctgg 6180

gcggcaaggc tggcccggtc ggcaccagtt gcgtgagcgg aaagatggcc gcttcccggc 6240

cctgctgcag ggagctcaaa atggaggacg cggcgctcgg gagagcgggc gggtgagtca 6300

cccacacaaa ggaaaagggc ctttccgtcc tcagccgtcg cttcatgtga ctccacggag 6360

taccgggcgc cgtccaggca cctcgattag ttctcgagct tttggagtac gtcgtcttta 6420

ggttgggggg aggggtttta tgcgatggag tttccccaca ctgagtgggt ggagactgaa 6480

gttaggccag cttggcactt gatgtaattc tccttggaat ttgccctttt tgagtttgga 6540

tcttggttca ttctcaagcc tcagacagtg gttcaaagtt tttttcttcc atttcaggtg 6600

tcgtgaggaa ttcgccacca tgcaacttcg aaacccagag ctccacctcg gatgtgccct 6660

tgctctgagg ttcctggcgc tggtgtcttg ggatataccc ggagcacgcg ctctggacaa 6720

cgggctggcc cggactccaa ccatgggttg gctccattgg gaaaggttta tgtgcaactt 6780

ggactgccag gaagaacccg actcctgtat ttccgagaaa ctcttcatgg agatggccga 6840

gctgatggtt agcgaaggct ggaaggatgc cggttatgaa tacttgtgta tcgacgattg 6900

ttggatggct ccccagcggg acagtgaagg acgactccag gcagatccgc aacggttccc 6960

tcatggcata cggcagctcg ccaattacgt gcacagcaag ggtttgaagc tggggatata 7020

tgctgacgtg ggcaacaaaa cctgtgctgg tttccccggc agcttcggct actatgatat 7080

agatgcacaa accttcgctg attggggcgt ggacctgctt aaatttgacg gctgttactg 7140

cgacagcttg gaaaacctcg ccgatggata taaacacatg agccttgcac tcaatcggac 7200

tggccggagc attgtctact cttgcgagtg gccattgtac atgtggcctt tccagaagcc 7260

taactatacg gagattagac agtattgtaa tcactggaga aactttgcag atatcgacga 7320

ctcatggaag tccatcaaat ctattctgga ctggacttca ttcaatcagg agcgcatcgt 7380

cgatgttgcc ggtccaggtg gatggaacga ccctgacatg ctcgtaattg ggaatttcgg 7440

actgtcctgg aatcagcagg tcacacagat ggctttgtgg gctatcatgg cagccccact 7500

ctttatgtct aacgatttgc ggcatatttc accacaggcc aaagccctgc tgcaagataa 7560

ggacgtcata gcgattaacc aggacccact gggaaagcag ggctaccagc tgagacaggg 7620

cgacaatttt gaggtctggg aaagacctct tagcgggctg gcgtgggccg tagccatgat 7680

taatcgccag gaaattggcg gccctcgctc ttacactatc gcggtcgcca gtctgggcaa 7740

gggagtcgct tgtaaccccg cctgcttcat aactcagttg ctgcccgtga aacggaagct 7800

gggcttctat gaatggacta gcagactccg cagtcatatt aatccgactg gtacggtgct 7860

gctgcaactg gagaatacca tgcagatgtc acttaaggat cttctgtgag aacccgggat 7920

ccaagcttca attgtggtca ctcgacaatc aacctctgga ttacaaaatt tgtgaaagat 7980

tgactggtat tcttaactat gttgctcctt ttacgctatg tggatacgct gctttaatgc 8040

ctttgtatca tgctattgct tcccgtatgg ctttcatttt ctcctccttg tataaatcct 8100

ggttgctgtc tctttatgag gagttgtggc ccgttgtcag gcaacgtggc gtggtgtgca 8160

ctgtgtttgc tgacgcaacc cccactggtt ggggcattgc caccacctgt cagctccttt 8220

ccgggacttt cgctttcccc ctccctattg ccacggcgga actcatcgcc gcctgccttg 8280

cccgctgctg gacaggggct cggctgttgg gcactgacaa ttccgtggtg ttgtcgggga 8340

agctgacgtc ctttccatgg ctgctcgcct gtgttgccac ctggattctg cgcgggacgt 8400

ccttctgcta cgtcccttcg gccctcaatc cagcggacct tccttcccgc ggcctgctgc 8460

cggctctgcg gcctcttccg cgtcttcgcc ttcgccctca gacgagtcgg atctcccttt 8520

gggccgcctc cccgcctgct cgagacctag aaaaacatgg agcaatcaca agtagcaata 8580

cagcagctac caatgctgat tgtgcctggc tagaagcaca agaggaggag gaggtgggtt 8640

ttccagtcac acctcaggta cctttaagac caatgactta caaggcagct gtagatctta 8700

gccacttttt aaaagaaaag gggggactgg aagggctaat tcactcccaa cgaagacaag 8760

atctgctttt tgcttgtact gggtctctct ggttagacca gatctgagcc tgggagctct 8820

ctggctaact agggaaccca ctgcttaagc ctcaataaag cttgccttga gtgcttcaag 8880

tagtgtgtgc ccgtctgttg tgtgactctg gtaactagag atccctcaga cccttttagt 8940

cagtgtggaa aatctctagc agtagtagtt catgtcatct tattattcag tatttataac 9000

ttgcaaagaa atgaatatca gagagtgaga ggacgcgttg gatgcatagc ttgagtattc 9060

tatagtgtca cctaaatagc ttggcgtaat catggtcata gctgtttcct gtgtgaaatt 9120

gttatccgct cacaattcca cacaacatac gagccggaag cataaagtgt aaagcctggg 9180

gtgcctaatg agtgagctaa ctcacattaa ttgcgttgcg ctcactgccc gctttccagt 9240

cgggaaacct gtcgtgccag ctgcattaat gaatcggcca acgcgcgggg agaggcggtt 9300

tgcgtattgg gcgctcttcc gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc 9360

tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca gaatcagggg 9420

ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg 9480

ccgcgttgct ggcgtttttc cataggctcc gcccccctga cgagcatcac aaaaatcgac 9540

gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg 9600

gaagctccct cgtgcgctct cctgttccga ccctgccgct taccggatac ctgtccgcct 9660

ttctcccttc gggaagcgtg gcgctttctc atagctcacg ctgtaggtat ctcagttcgg 9720

tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct 9780

gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac 9840

tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt 9900

tcttgaagtg gtggcctaac tacggctaca ctagaagaac agtatttggt atctgcgctc 9960

tgctgaagcc agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca 10020

ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat 10080

ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac gaaaactcac 10140

gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt 10200

aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggtct gacagttacc 10260

aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca tccatagttg 10320

cctgactccc cgtcgtgtag ataactacga tacgggaggg cttaccatct ggccccagtg 10380

ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc 10440

cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc atccagtcta 10500

ttaattgttg ccgggaagct agagtaagta gttcgccagt taatagtttg cgcaacgttg 10560

ttgccattgc tacaggcatc gtggtgtcac gctcgtcgtt tggtatggct tcattcagct 10620

ccggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa aaagcggtta 10680

gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg 10740

ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc ttttctgtga 10800

ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt 10860

gcccggcgtc aatacgggat aataccgcgc cacatagcag aactttaaaa gtgctcatca 10920

ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt 10980

cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc accagcgttt 11040

ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga 11100

aatgttgaat actcatactc ttcctttttc aatattattg aagcatttat cagggttatt 11160

gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata ggggttccgc 11220

gcacatttcc ccgaaaagtg ccacctgatg cggtgtgaaa taccgcacag atgcgtaagg 11280

agaaaatacc gcatcagg 11298

<210> 4

<211> 9095

<212> DNA

<213> Artificial sequence

<220>

<223> lentiviral vectors comprising a GBA transgene

<400> 4

aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 60

tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 120

tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 180

acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 240

aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 300

cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 360

cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 420

cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat tcgccattca ggctgcgcaa 480

ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg 540

atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa 600

aacgacggcc agtgaattgt aatacgactc actatagggc gaattgggcc cgacgtcgca 660

tgcttggaag ggctaattca ctcccaaaga agacaagata tccttgatct gtggatctac 720

cacacacaag gctacttccc tgattagcag aactacacac cagggccagg ggtcagatat 780

ccactgacct ttggatggtg ctacaagcta gtaccagttg agccagataa ggtagaagag 840

gccaataaag gagagaacac cagcttgtta caccctgtga gcctgcatgg gatggatgac 900

ccggagagag aagtgttaga gtggaggttt gacagccgcc tagcatttca tcacgtggcc 960

cgagagctgc atccggagta cttcaagaac tgctgatatc gagcttgcta caagggactt 1020

tccgctgggg actttccagg gaggcgtggc ctgggcggga ctggggagtg gcgagccctc 1080

agatcctgca tataagcagc tgctttttgc ctgtactggg tctctctggt tagaccagat 1140

ctgagcctgg gagctctctg gctaactagg gaacccactg cttaagcctc aataaagctt 1200

gccttgagtg cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 1260

cctcagaccc ttttagtcag tgtggaaaat ctctagcagt ggcgcccgaa cagggacttg 1320

aaagcgaaag ggaaaccaga ggagctctct cgacgcagga ctcggcttgc tgaagcgcgc 1380

acggcaagag gcgaggggcg gcgactggtg agtacgccaa aaattttgac tagcggaggc 1440

tagaaggaga gagatgggtg cgagagcgtc agtattaagc gggggagaat tagatcgcga 1500

tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat ataaattaaa acatatagta 1560

tgggcaagca gggagctaga acgattcgca gttaatcctg gcctgttaga aacatcagaa 1620

ggctgtagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt 1680

agatcattat ataatacagt agcaaccctc tattgtgtgc atcaaaggat agagataaaa 1740

gacaccaagg aagctttaga caagatagag gaagagcaaa acaaaagtaa gaccaccgca 1800

cagcaagcgg ccgctgatct tcagacctgg aggaggagat atgagggaca attggagaag 1860

tgaattatat aaatataaag tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc 1920

aaagagaaga gtggtgcaga gagaaaaaag agcagtggga ataggagctt tgttccttgg 1980

gttcttggga gcagcaggaa gcactatggg cgcagcgtca atgacgctga cggtacaggc 2040

cagacaatta ttgtctggta tagtgcagca gcagaacaat ttgctgaggg ctattgaggc 2100

gcaacagcat ctgttgcaac tcacagtctg gggcatcaag cagctccagg caagaatcct 2160

ggctgtggaa agatacctaa aggatcaaca gctcctgggg atttggggtt gctctggaaa 2220

actcatttgc accactgctg tgccttggaa tgctagttgg agtaataaat ctctggaaca 2280

gatttggaat cacacgacct ggatggagtg ggacagagaa attaacaatt acacaagctt 2340

aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa aagaatgaac aagaattatt 2400

ggaattagat aaatgggcaa gtttgtggaa ttggtttaac ataacaaatt ggctgtggta 2460

tataaaatta ttcataatga tagtaggagg cttggtaggt ttaagaatag tttttgctgt 2520

actttctata gtgaatagag ttaggcaggg atattcacca ttatcgtttc agacccacct 2580

cccaaccccg aggggacccg acaggcccga aggaatagaa gaagaaggtg gagagagaga 2640

cagagacaga tccattcgat tagtgaacgg atctcgacgg gatcgatttt aaaagaaaag 2700

gggggattgg ggggtacagt gcaggggaaa gaatagtaga cataatagca acagacatac 2760

aaactaaaga attacaaaaa caaattacaa aaattcaaaa ttttatcgat aagctttgca 2820

aagatggata aagttttaaa cagagaggaa tctttgcagc taatggacct tctaggtctt 2880

gaaaggagtg ggaattggct ccggtgcccg tcagtgggca gagcgcacat cgcccacagt 2940

ccccgagaag ttggggggag gggtcggcaa ttgaaccggt gcctagagaa ggtggcgcgg 3000

ggtaaactgg gaaagtgatg tcgtgtactg gctccgcctt tttcccgagg gtgggggaga 3060

accgtatata agtgcagtag tcgccgtgaa cgttcttttt cgcaacgggt ttgccgccag 3120

aacacaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg gttatggccc 3180

ttgcgtgcct tgaattactt ccacctggct gcagtacgtg attcttgatc ccgagcttcg 3240

ggttggaagt gggtgggaga gttcgaggcc ttgcgcttaa ggagcccctt cgcctcgtgc 3300

ttgagttgag gcctggcctg ggcgctgggg ccgccgcgtg cgaatctggt ggcaccttcg 3360

cgcctgtctc gctgctttcg ataagtctct agccatttaa aatttttgat gacctgctgc 3420

gacgcttttt ttctggcaag atagtcttgt aaatgcgggc caagatctgc acactggtat 3480

ttcggttttt ggggccgcgg gcggcgacgg ggcccgtgcg tcccagcgca catgttcggc 3540

gaggcggggc ctgcgagcgc ggccaccgag aatcggacgg gggtagtctc aagctggccg 3600

gcctgctctg gtgcctggcc tcgcgccgcc gtgtatcgcc ccgccctggg cggcaaggct 3660

ggcccggtcg gcaccagttg cgtgagcgga aagatggccg cttcccggcc ctgctgcagg 3720

gagctcaaaa tggaggacgc ggcgctcggg agagcgggcg ggtgagtcac ccacacaaag 3780

gaaaagggcc tttccgtcct cagccgtcgc ttcatgtgac tccacggagt accgggcgcc 3840

gtccaggcac ctcgattagt tctcgagctt ttggagtacg tcgtctttag gttgggggga 3900

ggggttttat gcgatggagt ttccccacac tgagtgggtg gagactgaag ttaggccagc 3960

ttggcacttg atgtaattct ccttggaatt tgcccttttt gagtttggat cttggttcat 4020

tctcaagcct cagacagtgg ttcaaagttt ttttcttcca tttcaggtgt cgtgaggaat 4080

tcgctagcgc caccatggag ttctcaagcc cctctcggga agaatgccca aaacctctgt 4140

cacgggtgtc tatcatggct ggatcactga ctggcctgct gctgctgcag gccgtgagct 4200

gggcctccgg agcccggcct tgcatcccaa agtctttcgg ctacagctcc gtggtgtgcg 4260

tgtgcaacgc cacctattgt gactccttcg atccccctac ctttcccgcc ctgggcacat 4320

tttctcggta cgagtctaca cgcagcggca ggagaatgga gctgagcatg ggccctatcc 4380

aggccaatca caccggaaca ggcctgctgc tgaccctgca gccagagcag aagttccaga 4440

aggtgaaggg ctttggagga gcaatgacag acgcagccgc cctgaacatc ctggccctgt 4500

ccccacccgc ccagaatctg ctgctgaagt cctacttctc tgaggagggc atcggctata 4560

acatcatcag ggtgcccatg gccagctgcg acttttccat cagaacctac acatatgccg 4620

atacccctga cgatttccag ctgcacaatt tttccctgcc agaggaggat acaaagctga 4680

agatcccact gatccacagg gccctgcagc tggcccagag gcccgtgagc ctgctggcca 4740

gcccctggac ctcccctaca tggctgaaga ccaacggcgc cgtgaatggc aagggctctc 4800

tgaagggaca gccaggcgac atctaccacc agacatgggc ccgctatttc gtgaagtttc 4860

tggatgccta cgccgagcac aagctgcagt tctgggccgt gaccgcagag aacgagcctt 4920

ctgccggcct gctgagcggc tatcccttcc agtgcctggg ctttacacct gagcaccaga 4980

gggactttat cgccagagat ctgggcccaa ccctggccaa ctccacacac cacaatgtgc 5040

ggctgctgat gctggacgat cagcgcctgc tgctgcctca ctgggccaag gtggtgctga 5100

ccgacccaga ggccgccaag tacgtgcacg gcatcgccgt gcactggtat ctggatttcc 5160

tggcaccagc aaaggccacc ctgggagaga cacacaggct gttccctaac accatgctgt 5220

ttgccagcga ggcctgcgtg ggctccaagt tttgggagca gtccgtgcgg ctgggctctt 5280

gggacagggg catgcagtac tcccactcta tcatcaccaa tctgctgtat cacgtggtgg 5340

gctggacaga ctggaacctg gccctgaatc cagagggcgg ccccaactgg gtgagaaatt 5400

tcgtggatag ccccatcatc gtggacatca ccaaggatac attctacaag cagccaatgt 5460

tttatcacct gggccacttc tctaagttta tcccagaggg cagccagagg gtgggcctgg 5520

tggccagcca gaagaacgac ctggatgcag tggccctgat gcaccctgac ggctccgccg 5580

tggtggtggt gctgaatcgc tctagcaagg acgtgcctct gaccatcaag gaccccgccg 5640

tgggctttct ggagaccatt tcacccggct attctattca tacctatctg tggaggaggc 5700

agtaacctgc aggggatcca agcttcaatt gtggtcactc gacaatcaac ctctggatta 5760

caaaatttgt gaaagattga ctggtattct taactatgtt gctcctttta cgctatgtgg 5820

atacgctgct ttaatgcctt tgtatcatgc tattgcttcc cgtatggctt tcattttctc 5880

ctccttgtat aaatcctggt tgctgtctct ttatgaggag ttgtggcccg ttgtcaggca 5940

acgtggcgtg gtgtgcactg tgtttgctga cgcaaccccc actggttggg gcattgccac 6000

cacctgtcag ctcctttccg ggactttcgc tttccccctc cctattgcca cggcggaact 6060

catcgccgcc tgccttgccc gctgctggac aggggctcgg ctgttgggca ctgacaattc 6120

cgtggtgttg tcggggaagc tgacgtcctt tccatggctg ctcgcctgtg ttgccacctg 6180

gattctgcgc gggacgtcct tctgctacgt cccttcggcc ctcaatccag cggaccttcc 6240

ttcccgcggc ctgctgccgg ctctgcggcc tcttccgcgt cttcgccttc gccctcagac 6300

gagtcggatc tccctttggg ccgcctcccc gcctgctcga gacctagaaa aacatggagc 6360

aatcacaagt agcaatacag cagctaccaa tgctgattgt gcctggctag aagcacaaga 6420

ggaggaggag gtgggttttc cagtcacacc tcaggtacct ttaagaccaa tgacttacaa 6480

ggcagctgta gatcttagcc actttttaaa agaaaagggg ggactggaag ggctaattca 6540

ctcccaacga agacaagatc tgctttttgc ttgtactggg tctctctggt tagaccagat 6600

ctgagcctgg gagctctctg gctaactagg gaacccactg cttaagcctc aataaagctt 6660

gccttgagtg cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 6720

cctcagaccc ttttagtcag tgtggaaaat ctctagcagt agtagttcat gtcatcttat 6780

tattcagtat ttataacttg caaagaaatg aatatcagag agtgagagga cgcgttggat 6840

gcatagcttg agtattctat agtgtcacct aaatagcttg gcgtaatcat ggtcatagct 6900

gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacgag ccggaagcat 6960

aaagtgtaaa gcctggggtg cctaatgagt gagctaactc acattaattg cgttgcgctc 7020

actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg 7080

cgcggggaga ggcggtttgc gtattgggcg ctcttccgct tcctcgctca ctgactcgct 7140

gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt 7200

atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc 7260

caggaaccgt aaaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga 7320

gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata 7380

ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac 7440

cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg 7500

taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc 7560

cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag 7620

acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt 7680

aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta gaagaacagt 7740

atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg gtagctcttg 7800

atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc agcagattac 7860

gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca 7920

gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac 7980

ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat atgagtaaac 8040

ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga tctgtctatt 8100

tcgttcatcc atagttgcct gactccccgt cgtgtagata actacgatac gggagggctt 8160

accatctggc cccagtgctg caatgatacc gcgagaccca cgctcaccgg ctccagattt 8220

atcagcaata aaccagccag ccggaagggc cgagcgcaga agtggtcctg caactttatc 8280

cgcctccatc cagtctatta attgttgccg ggaagctaga gtaagtagtt cgccagttaa 8340

tagtttgcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg 8400

tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat cccccatgtt 8460

gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt gtcagaagta agttggccgc 8520

agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca tgccatccgt 8580

aagatgcttt tctgtgactg gtgagtactc aaccaagtca ttctgagaat agtgtatgcg 8640

gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac atagcagaac 8700

tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa ggatcttacc 8760

gctgttgaga tccagttcga tgtaacccac tcgtgcaccc aactgatctt cagcatcttt 8820

tactttcacc agcgtttctg ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg 8880

aataagggcg acacggaaat gttgaatact catactcttc ctttttcaat attattgaag 8940

catttatcag ggttattgtc tcatgagcgg atacatattt gaatgtattt agaaaaataa 9000

acaaataggg gttccgcgca catttccccg aaaagtgcca cctgatgcgg tgtgaaatac 9060

cgcacagatg cgtaaggaga aaataccgca tcagg 9095

<210> 5

<211> 8681

<212> DNA

<213> Artificial sequence

<220>

<223> Lentiviral vector comprising the ASAH1 transgene

<400> 5

gggcgaattg ggcccgacgt cgcatgcttg gaagggctaa ttcactccca aagaagacaa 60

gatatccttg atctgtggat ctaccacaca caaggctact tccctgatta gcagaactac 120

acaccagggc caggggtcag atatccactg acctttggat ggtgctacaa gctagtacca 180

gttgagccag ataaggtaga agaggccaat aaaggagaga acaccagctt gttacaccct 240

gtgagcctgc atgggatgga tgacccggag agagaagtgt tagagtggag gtttgacagc 300

cgcctagcat ttcatcacgt ggcccgagag ctgcatccgg agtacttcaa gaactgctga 360

tatcgagctt gctacaaggg actttccgct ggggactttc cagggaggcg tggcctgggc 420

gggactgggg agtggcgagc cctcagatcc tgcatataag cagctgcttt ttgcctgtac 480

tgggtctctc tggttagacc agatctgagc ctgggagctc tctggctaac tagggaaccc 540

actgcttaag cctcaataaa gcttgccttg agtgcttcaa gtagtgtgtg cccgtctgtt 600

gtgtgactct ggtaactaga gatccctcag acccttttag tcagtgtgga aaatctctag 660

cagtggcgcc cgaacaggga cttgaaagcg aaagggaaac cagaggagct ctctcgacgc 720

aggactcggc ttgctgaagc gcgcacggca agaggcgagg ggcggcgact ggtgagtacg 780

ccaaaaattt tgactagcgg aggctagaag gagagagatg ggtgcgagag cgtcagtatt 840

aagcggggga gaattagatc gcgatgggaa aaaattcggt taaggccagg gggaaagaaa 900

aaatataaat taaaacatat agtatgggca agcagggagc tagaacgatt cgcagttaat 960

cctggcctgt tagaaacatc agaaggctgt agacaaatac tgggacagct acaaccatcc 1020

cttcagacag gatcagaaga acttagatca ttatataata cagtagcaac cctctattgt 1080

gtgcatcaaa ggatagagat aaaagacacc aaggaagctt tagacaagat agaggaagag 1140

caaaacaaaa gtaagaccac cgcacagcaa gcggccgctg atcttcagac ctggaggagg 1200

agatatgagg gacaattgga gaagtgaatt atataaatat aaagtagtaa aaattgaacc 1260

attaggagta gcacccacca aggcaaagag aagagtggtg cagagagaaa aaagagcagt 1320

gggaatagga gctttgttcc ttgggttctt gggagcagca ggaagcacta tgggcgcagc 1380

gtcaatgacg ctgacggtac aggccagaca attattgtct ggtatagtgc agcagcagaa 1440

caatttgctg agggctattg aggcgcaaca gcatctgttg caactcacag tctggggcat 1500

caagcagctc caggcaagaa tcctggctgt ggaaagatac ctaaaggatc aacagctcct 1560

ggggatttgg ggttgctctg gaaaactcat ttgcaccact gctgtgcctt ggaatgctag 1620

ttggagtaat aaatctctgg aacagatttg gaatcacacg acctggatgg agtgggacag 1680

agaaattaac aattacacaa gcttaataca ctccttaatt gaagaatcgc aaaaccagca 1740

agaaaagaat gaacaagaat tattggaatt agataaatgg gcaagtttgt ggaattggtt 1800

taacataaca aattggctgt ggtatataaa attattcata atgatagtag gaggcttggt 1860

aggtttaaga atagtttttg ctgtactttc tatagtgaat agagttaggc agggatattc 1920

accattatcg tttcagaccc acctcccaac cccgagggga cccgacaggc ccgaaggaat 1980

agaagaagaa ggtggagaga gagacagaga cagatccatt cgattagtga acggatctcg 2040

acgggatcga ttttaaaaga aaagggggga ttggggggta cagtgcaggg gaaagaatag 2100

tagacataat agcaacagac atacaaacta aagaattaca aaaacaaatt acaaaaattc 2160

aaaattttat cgataagctt tgcaaagatg gataaagttt taaacagaga ggaatctttg 2220

cagctaatgg accttctagg tcttgaaagg agtgggaatt ggctccggtg cccgtcagtg 2280

ggcagagcgc acatcgccca cagtccccga gaagttgggg ggaggggtcg gcaattgaac 2340

cggtgcctag agaaggtggc gcggggtaaa ctgggaaagt gatgtcgtgt actggctccg 2400

cctttttccc gagggtgggg gagaaccgta tataagtgca gtagtcgccg tgaacgttct 2460

ttttcgcaac gggtttgccg ccagaacaca ggtaagtgcc gtgtgtggtt cccgcgggcc 2520

tggcctcttt acgggttatg gcccttgcgt gccttgaatt acttccacct ggctgcagta 2580

cgtgattctt gatcccgagc ttcgggttgg aagtgggtgg gagagttcga ggccttgcgc 2640

ttaaggagcc ccttcgcctc gtgcttgagt tgaggcctgg cctgggcgct ggggccgccg 2700

cgtgcgaatc tggtggcacc ttcgcgcctg tctcgctgct ttcgataagt ctctagccat 2760

ttaaaatttt tgatgacctg ctgcgacgct ttttttctgg caagatagtc ttgtaaatgc 2820

gggccaagat ctgcacactg gtatttcggt ttttggggcc gcgggcggcg acggggcccg 2880

tgcgtcccag cgcacatgtt cggcgaggcg gggcctgcga gcgcggccac cgagaatcgg 2940

acgggggtag tctcaagctg gccggcctgc tctggtgcct ggcctcgcgc cgccgtgtat 3000

cgccccgccc tgggcggcaa ggctggcccg gtcggcacca gttgcgtgag cggaaagatg 3060

gccgcttccc ggccctgctg cagggagctc aaaatggagg acgcggcgct cgggagagcg 3120

ggcgggtgag tcacccacac aaaggaaaag ggcctttccg tcctcagccg tcgcttcatg 3180

tgactccacg gagtaccggg cgccgtccag gcacctcgat tagttctcga gcttttggag 3240

tacgtcgtct ttaggttggg gggaggggtt ttatgcgatg gagtttcccc acactgagtg 3300

ggtggagact gaagttaggc cagcttggca cttgatgtaa ttctccttgg aatttgccct 3360

ttttgagttt ggatcttggt tcattctcaa gcctcagaca gtggttcaaa gtttttttct 3420

tccatttcag gtgtcgtgag gaattctgca gtcgacgcca ccatgccggg ccggagttgc 3480

gtcgccttag tcctcctggc tgccgccgtc agctgtgccg tcgcgcagca cgcgccgccg 3540

tggacagagg actgcagaaa atcaacctat cctccttcag gaccaacgta cagaggtgca 3600

gttccatggt acaccataaa tcttgactta ccaccctaca aaagatggca tgaattgatg 3660

cttgacaagg caccagtgct aaaggttata gtgaattctc tgaagaatat gataaataca 3720

ttcgtgccaa gtggaaaaat tatgcaggtg gtggatgaaa aattgcctgg cctacttggc 3780

aactttcctg gcccttttga agaggaaatg aagggtattg ccgctgttac tgatatacct 3840

ttaggagaga ttatttcatt caatattttt tatgaattat ttaccatttg tacttcaata 3900

gtagcagaag acaaaaaagg tcatctaata catgggagaa acatggattt tggagtattt 3960

cttgggtgga acataaataa tgatacctgg gtcataactg agcaactaaa acctttaaca 4020

gtgaatttgg atttccaaag aaacaacaaa actgtcttca aggcttcaag ctttgctggc 4080

tatgtgggca tgttaacagg attcaaacca ggactgttca gtcttacact gaatgaacgt 4140

ttcagtataa atggtggtta tctgggtatt ctagaatgga ttctgggaaa gaaagatgtc 4200

atgtggatag ggttcctcac tagaacagtt ctggaaaata gcacaagtta tgaagaagcc 4260

aagaatttat tgaccaagac caagatattg gccccagcct actttatcct gggaggcaac 4320

cagtctgggg aaggttgtgt gattacacga gacagaaagg aatcattgga tgtatatgaa 4380

ctcgatgcta agcagggtag atggtatgtg gtacaaacaa attatgaccg ttggaaacat 4440

cccttcttcc ttgatgatcg cagaacgcct gcaaagatgt gtctgaaccg caccagccaa 4500

gagaatatct catttgaaac catgtatgat gtcctgtcaa caaaacctgt cctcaacaag 4560

ctgaccgtat acacaacctt gatagatgtt accaaaggtc aattcgaaac ttacctgcgg 4620

gactgccctg acccttgtat aggttggtga gcggccgcct cgaggatcca agcttcaatt 4680

gtggtcactc gacaatcaac ctctggatta caaaatttgt gaaagattga ctggtattct 4740

taactatgtt gctcctttta cgctatgtgg atacgctgct ttaatgcctt tgtatcatgc 4800

tattgcttcc cgtatggctt tcattttctc ctccttgtat aaatcctggt tgctgtctct 4860

ttatgaggag ttgtggcccg ttgtcaggca acgtggcgtg gtgtgcactg tgtttgctga 4920

cgcaaccccc actggttggg gcattgccac cacctgtcag ctcctttccg ggactttcgc 4980

tttccccctc cctattgcca cggcggaact catcgccgcc tgccttgccc gctgctggac 5040

aggggctcgg ctgttgggca ctgacaattc cgtggtgttg tcggggaagc tgacgtcctt 5100

tccatggctg ctcgcctgtg ttgccacctg gattctgcgc gggacgtcct tctgctacgt 5160

cccttcggcc ctcaatccag cggaccttcc ttcccgcggc ctgctgccgg ctctgcggcc 5220

tcttccgcgt cttcgccttc gccctcagac gagtcggatc tccctttggg ccgcctcccc 5280

gcctgctcga gacctagaaa aacatggagc aatcacaagt agcaatacag cagctaccaa 5340

tgctgattgt gcctggctag aagcacaaga ggaggaggag gtgggttttc cagtcacacc 5400

tcaggtacct ttaagaccaa tgacttacaa ggcagctgta gatcttagcc actttttaaa 5460

agaaaagggg ggactggaag ggctaattca ctcccaacga agacaagatc tgctttttgc 5520

ttgtactggg tctctctggt tagaccagat ctgagcctgg gagctctctg gctaactagg 5580

gaacccactg cttaagcctc aataaagctt gccttgagtg cttcaagtag tgtgtgcccg 5640

tctgttgtgt gactctggta actagagatc cctcagaccc ttttagtcag tgtggaaaat 5700

ctctagcagt agtagttcat gtcatcttat tattcagtat ttataacttg caaagaaatg 5760

aatatcagag agtgagagga cgcgttggat gcatagcttg agtattctat agtgtcacct 5820

aaatagcttg gcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt atccgctcac 5880

aattccacac aacatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt 5940

gagctaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc 6000

gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc gtattgggcg 6060

ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc ggcgagcggt 6120

atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata acgcaggaaa 6180

gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc 6240

gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct caagtcagag 6300

gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa gctccctcgt 6360

gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc tcccttcggg 6420

aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt aggtcgttcg 6480

ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg ccttatccgg 6540

taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg cagcagccac 6600

tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct tgaagtggtg 6660

gcctaactac ggctacacta gaagaacagt atttggtatc tgcgctctgc tgaagccagt 6720

taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg ctggtagcgg 6780

tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc aagaagatcc 6840

tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt 6900

ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa aatgaagttt 6960

taaatcaatc taaagtatat atgagtaaac ttggtctgac agttaccaat gcttaatcag 7020

tgaggcacct atctcagcga tctgtctatt tcgttcatcc atagttgcct gactccccgt 7080

cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg caatgatacc 7140

gcgagaccca cgctcaccgg ctccagattt atcagcaata aaccagccag ccggaagggc 7200

cgagcgcaga agtggtcctg caactttatc cgcctccatc cagtctatta attgttgccg 7260

ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg ccattgctac 7320

aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg gttcccaacg 7380

atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc 7440

tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact 7500

gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc 7560

aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaat 7620

acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc 7680

ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac 7740

tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa 7800

aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact 7860

catactcttc ctttttcaat attattgaag catttatcag ggttattgtc tcatgagcgg 7920

atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg 7980

aaaagtgcca cctgatgcgg tgtgaaatac cgcacagatg cgtaaggaga aaataccgca 8040

tcaggaaatt gtaagcgtta atattttgtt aaaattcgcg ttaaattttt gttaaatcag 8100

ctcatttttt aaccaatagg ccgaaatcgg caaaatccct tataaatcaa aagaatagac 8160

cgagataggg ttgagtgttg ttccagtttg gaacaagagt ccactattaa agaacgtgga 8220

ctccaacgtc aaagggcgaa aaaccgtcta tcagggcgat ggcccactac gtgaaccatc 8280

accctaatca agttttttgg ggtcgaggtg ccgtaaagca ctaaatcgga accctaaagg 8340

gagcccccga tttagagctt gacggggaaa gccggcgaac gtggcgagaa aggaagggaa 8400

gaaagcgaaa ggagcgggcg ctagggcgct ggcaagtgta gcggtcacgc tgcgcgtaac 8460

caccacaccc gccgcgctta atgcgccgct acagggcgcg tccattcgcc attcaggctg 8520

cgcaactgtt gggaagggcg atcggtgcgg gcctcttcgc tattacgcca gctggcgaaa 8580

gggggatgtg ctgcaaggcg attaagttgg gtaacgccag ggttttccca gtcacgacgt 8640

tgtaaaacga cggccagtga attgtaatac gactcactat a 8681

<210> 6

<211> 10336

<212> DNA

<213> Artificial sequence

<220>

<223> lentiviral vectors comprising a GAA transgene

<400> 6

aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 60

tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 120

tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 180

acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 240

aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 300

cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 360

cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 420

cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat tcgccattca ggctgcgcaa 480

ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg 540

atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa 600

aacgacggcc agtgaattgt aatacgactc actatagggc gaattgggcc cgacgtcgca 660

tgcttggaag ggctaattca ctcccaaaga agacaagata tccttgatct gtggatctac 720

cacacacaag gctacttccc tgattagcag aactacacac cagggccagg ggtcagatat 780

ccactgacct ttggatggtg ctacaagcta gtaccagttg agccagataa ggtagaagag 840

gccaataaag gagagaacac cagcttgtta caccctgtga gcctgcatgg gatggatgac 900

ccggagagag aagtgttaga gtggaggttt gacagccgcc tagcatttca tcacgtggcc 960

cgagagctgc atccggagta cttcaagaac tgctgatatc gagcttgcta caagggactt 1020

tccgctgggg actttccagg gaggcgtggc ctgggcggga ctggggagtg gcgagccctc 1080

agatcctgca tataagcagc tgctttttgc ctgtactggg tctctctggt tagaccagat 1140

ctgagcctgg gagctctctg gctaactagg gaacccactg cttaagcctc aataaagctt 1200

gccttgagtg cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 1260

cctcagaccc ttttagtcag tgtggaaaat ctctagcagt ggcgcccgaa cagggacttg 1320

aaagcgaaag ggaaaccaga ggagctctct cgacgcagga ctcggcttgc tgaagcgcgc 1380

acggcaagag gcgaggggcg gcgactggtg agtacgccaa aaattttgac tagcggaggc 1440

tagaaggaga gagatgggtg cgagagcgtc agtattaagc gggggagaat tagatcgcga 1500

tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat ataaattaaa acatatagta 1560

tgggcaagca gggagctaga acgattcgca gttaatcctg gcctgttaga aacatcagaa 1620

ggctgtagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt 1680

agatcattat ataatacagt agcaaccctc tattgtgtgc atcaaaggat agagataaaa 1740

gacaccaagg aagctttaga caagatagag gaagagcaaa acaaaagtaa gaccaccgca 1800

cagcaagcgg ccgctgatct tcagacctgg aggaggagat atgagggaca attggagaag 1860

tgaattatat aaatataaag tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc 1920

aaagagaaga gtggtgcaga gagaaaaaag agcagtggga ataggagctt tgttccttgg 1980

gttcttggga gcagcaggaa gcactatggg cgcagcgtca atgacgctga cggtacaggc 2040

cagacaatta ttgtctggta tagtgcagca gcagaacaat ttgctgaggg ctattgaggc 2100

gcaacagcat ctgttgcaac tcacagtctg gggcatcaag cagctccagg caagaatcct 2160

ggctgtggaa agatacctaa aggatcaaca gctcctgggg atttggggtt gctctggaaa 2220

actcatttgc accactgctg tgccttggaa tgctagttgg agtaataaat ctctggaaca 2280

gatttggaat cacacgacct ggatggagtg ggacagagaa attaacaatt acacaagctt 2340

aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa aagaatgaac aagaattatt 2400

ggaattagat aaatgggcaa gtttgtggaa ttggtttaac ataacaaatt ggctgtggta 2460

tataaaatta ttcataatga tagtaggagg cttggtaggt ttaagaatag tttttgctgt 2520

actttctata gtgaatagag ttaggcaggg atattcacca ttatcgtttc agacccacct 2580

cccaaccccg aggggacccg acaggcccga aggaatagaa gaagaaggtg gagagagaga 2640

cagagacaga tccattcgat tagtgaacgg atctcgacgg gatcgatttt aaaagaaaag 2700

gggggattgg ggggtacagt gcaggggaaa gaatagtaga cataatagca acagacatac 2760

aaactaaaga attacaaaaa caaattacaa aaattcaaaa ttttatcgat aagctttgca 2820

aagatggata aagttttaaa cagagaggaa tctttgcagc taatggacct tctaggtctt 2880

gaaaggagtg ggaattggct ccggtgcccg tcagtgggca gagcgcacat cgcccacagt 2940

ccccgagaag ttggggggag gggtcggcaa ttgaaccggt gcctagagaa ggtggcgcgg 3000

ggtaaactgg gaaagtgatg tcgtgtactg gctccgcctt tttcccgagg gtgggggaga 3060

accgtatata agtgcagtag tcgccgtgaa cgttcttttt cgcaacgggt ttgccgccag 3120

aacacaggta agtgccgtgt gtggttcccg cgggcctggc ctctttacgg gttatggccc 3180

ttgcgtgcct tgaattactt ccacctggct gcagtacgtg attcttgatc ccgagcttcg 3240

ggttggaagt gggtgggaga gttcgaggcc ttgcgcttaa ggagcccctt cgcctcgtgc 3300

ttgagttgag gcctggcctg ggcgctgggg ccgccgcgtg cgaatctggt ggcaccttcg 3360

cgcctgtctc gctgctttcg ataagtctct agccatttaa aatttttgat gacctgctgc 3420

gacgcttttt ttctggcaag atagtcttgt aaatgcgggc caagatctgc acactggtat 3480

ttcggttttt ggggccgcgg gcggcgacgg ggcccgtgcg tcccagcgca catgttcggc 3540

gaggcggggc ctgcgagcgc ggccaccgag aatcggacgg gggtagtctc aagctggccg 3600

gcctgctctg gtgcctggcc tcgcgccgcc gtgtatcgcc ccgccctggg cggcaaggct 3660

ggcccggtcg gcaccagttg cgtgagcgga aagatggccg cttcccggcc ctgctgcagg 3720

gagctcaaaa tggaggacgc ggcgctcggg agagcgggcg ggtgagtcac ccacacaaag 3780

gaaaagggcc tttccgtcct cagccgtcgc ttcatgtgac tccacggagt accgggcgcc 3840

gtccaggcac ctcgattagt tctcgagctt ttggagtacg tcgtctttag gttgggggga 3900

ggggttttat gcgatggagt ttccccacac tgagtgggtg gagactgaag ttaggccagc 3960

ttggcacttg atgtaattct ccttggaatt tgcccttttt gagtttggat cttggttcat 4020

tctcaagcct cagacagtgg ttcaaagttt ttttcttcca tttcaggtgt cgtgaggaat 4080

tcgccaccat gggcgtgagg cacccccctt gctctcacag gctgctggcc gtgtgcgcac 4140

tggtgagcct ggccaccgcc gccctgctgg gccacatcct gctgcacgac ttcctgctgg 4200

tgcccaggga gctgtccggc agctccccag tgctggagga gacccaccca gcacaccagc 4260

agggcgcctc tcggccaggc ccccgcgatg cacaggcaca cccaggccgg ccccgcgccg 4320

tgccaaccca gtgcgacgtg ccacccaaca gccggtttga ctgtgccccc gataaggcca 4380

tcacacagga gcagtgcgag gccaggggct gctgttatat ccctgcaaag cagggcctcc 4440

agggcgccca gatgggacag ccatggtgtt tctttcctcc atcttacccc agctataagc 4500

tggagaatct gtctagctcc gagatgggct acacagccac cctgacaaga accacaccaa 4560

cattctttcc caaggacatc ctgaccctgc ggctggacgt gatgatggag acagagaacc 4620

gcctgcactt caccatcaag gaccccgcca ataggagata tgaggtgcct ctggagaccc 4680

cacacgtgca ctctcgggcc cctagcccac tgtactccgt ggagttctct gaggagccat 4740

ttggcgtgat cgtgcggcgc cagctggatg gacgcgtgct gctgaacacc acagtggccc 4800

ccctgttctt tgccgaccag ttcctccagc tgagcacatc cctgccctcc cagtatatca 4860

ccggcctggc cgagcacctg tctcctctga tgctgtctac cagctggaca aggatcaccc 4920

tgtggaacag agacctggca ccaacccctg gcgcaaatct gtacggcagc caccctttct 4980

atctggccct ggaggatgga ggctccgccc acggcgtgtt tctgctgaac tctaatgcca 5040

tggacgtggt gctccagcca agccccgccc tgtcctggcg gtctaccggc ggcatcctgg 5100

acgtgtacat cttcctgggc cctgagccaa agtccgtggt gcagcagtac ctggacgtgg 5160

tgggctatcc tttcatgccc ccttactggg gactgggatt tcacctgtgc cgctggggct 5220

attctagcac agccatcacc cggcaggtgg tggagaacat gacccgcgcc cactttccac 5280

tggatgtgca gtggaatgac ctggattaca tggactccag gagagacttc accttcaaca 5340

aggacggctt cagggatttt cccgccatgg tgcaggagct gcaccagggc ggccggcgct 5400

acatgatgat cgtggacccc gccatctcct ctagcggacc tgccggcagc tacagaccat 5460

atgacgaggg cctgaggaga ggcgtgttca tcacaaacga gaccggccag cctctgatcg 5520

gcaaggtctg gccaggctcc accgccttcc cagacttcac caatccaacc gccctggcct 5580

ggtgggagga catggtggcc gagttccacg accaggtgcc ttttgatggc atgtggatcg 5640

acatgaacga gccatctaat ttcatcaggg gcagcgagga cggctgcccc aacaatgagc 5700

tggagaaccc accatatgtg cctggcgtgg tgggaggcac cctccaggca gcaaccatct 5760

gtgcctcctc tcaccagttt ctgtctacac actataacct gcacaatctg tacggactga 5820

ccgaggcaat cgccagccac agagccctgg tgaaggccag gggcacaaga cctttcgtga 5880

tctccaggtc tacctttgcc ggacacggca gatacgcagg acactggacc ggcgacgtgt 5940

ggagcagctg ggagcagctg gcctctagcg tgccagagat cctccagttc aacctgctgg 6000

gcgtgcccct ggtgggagca gacgtgtgcg gctttctggg caatacatcc gaggagctgt 6060

gcgtgaggtg gacccagctg ggagccttct atcccttcat gcgcaaccac aatagcctgc 6120

tgtccctgcc tcaggagcca tacagcttct ccgagcctgc acagcaggca atgaggaagg 6180

ccctgacact gcgctatgcc ctgctgccac acctgtacac cctgtttcac caggcacacg 6240

tggcaggaga gacagtggcc cggcccctgt tcctggagtt tcctaaggat tcctctacct 6300

ggacagtgga ccaccagctg ctgtggggag aggccctgct gatcaccccc gtgctccagg 6360

caggcaaggc agaggtgaca ggctatttcc ctctgggcac atggtacgac ctccagaccg 6420

tgccagtgga ggccctgggc agcctgcctc caccacctgc cgccccccgc gagcctgcca 6480

tccactccga gggacagtgg gtgacactgc cagcacctct ggacaccatc aacgtgcacc 6540

tgagggccgg ctatatcatc cccctccagg gccctggcct gaccacaacc gagtccagac 6600

agcagccaat ggccctggcc gtggccctga ccaagggagg cgaggccagg ggcgagctgt 6660

tctgggacga tggcgagtct ctggaggtgc tggagagagg cgcctacaca caggtcatct 6720

tcctggccag gaacaataca atcgtgaatg agctggtgag agtgacctct gagggagcag 6780

gactccagct ccagaaggtg acagtgctgg gagtggcaac cgcaccacag caggtgctga 6840

gcaacggcgt gcccgtgagc aatttcacat actcccctga taccaaggtg ctggacatct 6900

gcgtgagcct gctgatgggc gagcagtttc tggtgtcctg gtgttgagaa cccgggatcc 6960

aagcttcaat tgtggtcact cgacaatcaa cctctggatt acaaaatttg tgaaagattg 7020

actggtattc ttaactatgt tgctcctttt acgctatgtg gatacgctgc tttaatgcct 7080

ttgtatcatg ctattgcttc ccgtatggct ttcattttct cctccttgta taaatcctgg 7140

ttgctgtctc tttatgagga gttgtggccc gttgtcaggc aacgtggcgt ggtgtgcact 7200

gtgtttgctg acgcaacccc cactggttgg ggcattgcca ccacctgtca gctcctttcc 7260

gggactttcg ctttccccct ccctattgcc acggcggaac tcatcgccgc ctgccttgcc 7320

cgctgctgga caggggctcg gctgttgggc actgacaatt ccgtggtgtt gtcggggaag 7380

ctgacgtcct ttccatggct gctcgcctgt gttgccacct ggattctgcg cgggacgtcc 7440

ttctgctacg tcccttcggc cctcaatcca gcggaccttc cttcccgcgg cctgctgccg 7500

gctctgcggc ctcttccgcg tcttcgcctt cgccctcaga cgagtcggat ctccctttgg 7560

gccgcctccc cgcctgctcg agacctagaa aaacatggag caatcacaag tagcaataca 7620

gcagctacca atgctgattg tgcctggcta gaagcacaag aggaggagga ggtgggtttt 7680

ccagtcacac ctcaggtacc tttaagacca atgacttaca aggcagctgt agatcttagc 7740

cactttttaa aagaaaaggg gggactggaa gggctaattc actcccaacg aagacaagat 7800

ctgctttttg cttgtactgg gtctctctgg ttagaccaga tctgagcctg ggagctctct 7860

ggctaactag ggaacccact gcttaagcct caataaagct tgccttgagt gcttcaagta 7920

gtgtgtgccc gtctgttgtg tgactctggt aactagagat ccctcagacc cttttagtca 7980

gtgtggaaaa tctctagcag tagtagttca tgtcatctta ttattcagta tttataactt 8040

gcaaagaaat gaatatcaga gagtgagagg acgcgttgga tgcatagctt gagtattcta 8100

tagtgtcacc taaatagctt ggcgtaatca tggtcatagc tgtttcctgt gtgaaattgt 8160

tatccgctca caattccaca caacatacga gccggaagca taaagtgtaa agcctggggt 8220

gcctaatgag tgagctaact cacattaatt gcgttgcgct cactgcccgc tttccagtcg 8280

ggaaacctgt cgtgccagct gcattaatga atcggccaac gcgcggggag aggcggtttg 8340

cgtattgggc gctcttccgc ttcctcgctc actgactcgc tgcgctcggt cgttcggctg 8400

cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt tatccacaga atcaggggat 8460

aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg ccaggaaccg taaaaaggcc 8520

gcgttgctgg cgtttttcca taggctccgc ccccctgacg agcatcacaa aaatcgacgc 8580

tcaagtcaga ggtggcgaaa cccgacagga ctataaagat accaggcgtt tccccctgga 8640

agctccctcg tgcgctctcc tgttccgacc ctgccgctta ccggatacct gtccgccttt 8700

ctcccttcgg gaagcgtggc gctttctcat agctcacgct gtaggtatct cagttcggtg 8760

taggtcgttc gctccaagct gggctgtgtg cacgaacccc ccgttcagcc cgaccgctgc 8820

gccttatccg gtaactatcg tcttgagtcc aacccggtaa gacacgactt atcgccactg 8880

gcagcagcca ctggtaacag gattagcaga gcgaggtatg taggcggtgc tacagagttc 8940

ttgaagtggt ggcctaacta cggctacact agaagaacag tatttggtat ctgcgctctg 9000

ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt gatccggcaa acaaaccacc 9060

gctggtagcg gtggtttttt tgtttgcaag cagcagatta cgcgcagaaa aaaaggatct 9120

caagaagatc ctttgatctt ttctacgggg tctgacgctc agtggaacga aaactcacgt 9180

taagggattt tggtcatgag attatcaaaa aggatcttca cctagatcct tttaaattaa 9240

aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa cttggtctga cagttaccaa 9300

tgcttaatca gtgaggcacc tatctcagcg atctgtctat ttcgttcatc catagttgcc 9360

tgactccccg tcgtgtagat aactacgata cgggagggct taccatctgg ccccagtgct 9420

gcaatgatac cgcgagaccc acgctcaccg gctccagatt tatcagcaat aaaccagcca 9480

gccggaaggg ccgagcgcag aagtggtcct gcaactttat ccgcctccat ccagtctatt 9540

aattgttgcc gggaagctag agtaagtagt tcgccagtta atagtttgcg caacgttgtt 9600

gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg gtatggcttc attcagctcc 9660

ggttcccaac gatcaaggcg agttacatga tcccccatgt tgtgcaaaaa agcggttagc 9720

tccttcggtc ctccgatcgt tgtcagaagt aagttggccg cagtgttatc actcatggtt 9780

atggcagcac tgcataattc tcttactgtc atgccatccg taagatgctt ttctgtgact 9840

ggtgagtact caaccaagtc attctgagaa tagtgtatgc ggcgaccgag ttgctcttgc 9900

ccggcgtcaa tacgggataa taccgcgcca catagcagaa ctttaaaagt gctcatcatt 9960

ggaaaacgtt cttcggggcg aaaactctca aggatcttac cgctgttgag atccagttcg 10020

atgtaaccca ctcgtgcacc caactgatct tcagcatctt ttactttcac cagcgtttct 10080

gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg gaataagggc gacacggaaa 10140

tgttgaatac tcatactctt cctttttcaa tattattgaa gcatttatca gggttattgt 10200

ctcatgagcg gatacatatt tgaatgtatt tagaaaaata aacaaatagg ggttccgcgc 10260

acatttcccc gaaaagtgcc acctgatgcg gtgtgaaata ccgcacagat gcgtaaggag 10320

aaaataccgc atcagg 10336

<210> 7

<211> 1611

<212> DNA

<213> Artificial sequence

<220>

<223> GBA transgene

<400> 7

atggagttct caagcccctc tcgggaagaa tgcccaaaac ctctgtcacg ggtgtctatc 60

atggctggat cactgactgg cctgctgctg ctgcaggccg tgagctgggc ctccggagcc 120

cggccttgca tcccaaagtc tttcggctac agctccgtgg tgtgcgtgtg caacgccacc 180

tattgtgact ccttcgatcc ccctaccttt cccgccctgg gcacattttc tcggtacgag 240

tctacacgca gcggcaggag aatggagctg agcatgggcc ctatccaggc caatcacacc 300

ggaacaggcc tgctgctgac cctgcagcca gagcagaagt tccagaaggt gaagggcttt 360

ggaggagcaa tgacagacgc agccgccctg aacatcctgg ccctgtcccc acccgcccag 420

aatctgctgc tgaagtccta cttctctgag gagggcatcg gctataacat catcagggtg 480

cccatggcca gctgcgactt ttccatcaga acctacacat atgccgatac ccctgacgat 540

ttccagctgc acaatttttc cctgccagag gaggatacaa agctgaagat cccactgatc 600

cacagggccc tgcagctggc ccagaggccc gtgagcctgc tggccagccc ctggacctcc 660

cctacatggc tgaagaccaa cggcgccgtg aatggcaagg gctctctgaa gggacagcca 720

ggcgacatct accaccagac atgggcccgc tatttcgtga agtttctgga tgcctacgcc 780

gagcacaagc tgcagttctg ggccgtgacc gcagagaacg agccttctgc cggcctgctg 840

agcggctatc ccttccagtg cctgggcttt acacctgagc accagaggga ctttatcgcc 900

agagatctgg gcccaaccct ggccaactcc acacaccaca atgtgcggct gctgatgctg 960

gacgatcagc gcctgctgct gcctcactgg gccaaggtgg tgctgaccga cccagaggcc 1020

gccaagtacg tgcacggcat cgccgtgcac tggtatctgg atttcctggc accagcaaag 1080

gccaccctgg gagagacaca caggctgttc cctaacacca tgctgtttgc cagcgaggcc 1140

tgcgtgggct ccaagttttg ggagcagtcc gtgcggctgg gctcttggga caggggcatg 1200

cagtactccc actctatcat caccaatctg ctgtatcacg tggtgggctg gacagactgg 1260

aacctggccc tgaatccaga gggcggcccc aactgggtga gaaatttcgt ggatagcccc 1320

atcatcgtgg acatcaccaa ggatacattc tacaagcagc caatgtttta tcacctgggc 1380

cacttctcta agtttatccc agagggcagc cagagggtgg gcctggtggc cagccagaag 1440

aacgacctgg atgcagtggc cctgatgcac cctgacggct ccgccgtggt ggtggtgctg 1500

aatcgctcta gcaaggacgt gcctctgacc atcaaggacc ccgccgtggg ctttctggag 1560

accatttcac ccggctattc tattcatacc tatctgtgga ggaggcagta a 1611

<210> 8

<211> 1188

<212> DNA

<213> Artificial sequence

<220>

<223> ASAH1 transgene

<400> 8

atgccgggcc ggagttgcgt cgccttagtc ctcctggctg ccgccgtcag ctgtgccgtc 60

gcgcagcacg cgccgccgtg gacagaggac tgcagaaaat caacctatcc tccttcagga 120

ccaacgtaca gaggtgcagt tccatggtac accataaatc ttgacttacc accctacaaa 180

agatggcatg aattgatgct tgacaaggca ccagtgctaa aggttatagt gaattctctg 240

aagaatatga taaatacatt cgtgccaagt ggaaaaatta tgcaggtggt ggatgaaaaa 300

ttgcctggcc tacttggcaa ctttcctggc ccttttgaag aggaaatgaa gggtattgcc 360

gctgttactg atataccttt aggagagatt atttcattca atatttttta tgaattattt 420

accatttgta cttcaatagt agcagaagac aaaaaaggtc atctaataca tgggagaaac 480

atggattttg gagtatttct tgggtggaac ataaataatg atacctgggt cataactgag 540

caactaaaac ctttaacagt gaatttggat ttccaaagaa acaacaaaac tgtcttcaag 600

gcttcaagct ttgctggcta tgtgggcatg ttaacaggat tcaaaccagg actgttcagt 660

cttacactga atgaacgttt cagtataaat ggtggttatc tgggtattct agaatggatt 720

ctgggaaaga aagatgtcat gtggataggg ttcctcacta gaacagttct ggaaaatagc 780

acaagttatg aagaagccaa gaatttattg accaagacca agatattggc cccagcctac 840

tttatcctgg gaggcaacca gtctggggaa ggttgtgtga ttacacgaga cagaaaggaa 900

tcattggatg tatatgaact cgatgctaag cagggtagat ggtatgtggt acaaacaaat 960

tatgaccgtt ggaaacatcc cttcttcctt gatgatcgca gaacgcctgc aaagatgtgt 1020

ctgaaccgca ccagccaaga gaatatctca tttgaaacca tgtatgatgt cctgtcaaca 1080

aaacctgtcc tcaacaagct gaccgtatac acaaccttga tagatgttac caaaggtcaa 1140

ttcgaaactt acctgcggga ctgccctgac ccttgtatag gttggtga 1188

<210> 9

<211> 2859

<212> DNA

<213> Artificial sequence

<220>

<223> GAA transgene

<400> 9

atgggcgtga ggcacccccc ttgctctcac aggctgctgg ccgtgtgcgc actggtgagc 60

ctggccaccg ccgccctgct gggccacatc ctgctgcacg acttcctgct ggtgcccagg 120

gagctgtccg gcagctcccc agtgctggag gagacccacc cagcacacca gcagggcgcc 180

tctcggccag gcccccgcga tgcacaggca cacccaggcc ggccccgcgc cgtgccaacc 240

cagtgcgacg tgccacccaa cagccggttt gactgtgccc ccgataaggc catcacacag 300

gagcagtgcg aggccagggg ctgctgttat atccctgcaa agcagggcct ccagggcgcc 360

cagatgggac agccatggtg tttctttcct ccatcttacc ccagctataa gctggagaat 420

ctgtctagct ccgagatggg ctacacagcc accctgacaa gaaccacacc aacattcttt 480

cccaaggaca tcctgaccct gcggctggac gtgatgatgg agacagagaa ccgcctgcac 540

ttcaccatca aggaccccgc caataggaga tatgaggtgc ctctggagac cccacacgtg 600

cactctcggg cccctagccc actgtactcc gtggagttct ctgaggagcc atttggcgtg 660

atcgtgcggc gccagctgga tggacgcgtg ctgctgaaca ccacagtggc ccccctgttc 720

tttgccgacc agttcctcca gctgagcaca tccctgccct cccagtatat caccggcctg 780

gccgagcacc tgtctcctct gatgctgtct accagctgga caaggatcac cctgtggaac 840

agagacctgg caccaacccc tggcgcaaat ctgtacggca gccacccttt ctatctggcc 900

ctggaggatg gaggctccgc ccacggcgtg tttctgctga actctaatgc catggacgtg 960

gtgctccagc caagccccgc cctgtcctgg cggtctaccg gcggcatcct ggacgtgtac 1020

atcttcctgg gccctgagcc aaagtccgtg gtgcagcagt acctggacgt ggtgggctat 1080

cctttcatgc ccccttactg gggactggga tttcacctgt gccgctgggg ctattctagc 1140

acagccatca cccggcaggt ggtggagaac atgacccgcg cccactttcc actggatgtg 1200

cagtggaatg acctggatta catggactcc aggagagact tcaccttcaa caaggacggc 1260

ttcagggatt ttcccgccat ggtgcaggag ctgcaccagg gcggccggcg ctacatgatg 1320

atcgtggacc ccgccatctc ctctagcgga cctgccggca gctacagacc atatgacgag 1380

ggcctgagga gaggcgtgtt catcacaaac gagaccggcc agcctctgat cggcaaggtc 1440

tggccaggct ccaccgcctt cccagacttc accaatccaa ccgccctggc ctggtgggag 1500

gacatggtgg ccgagttcca cgaccaggtg ccttttgatg gcatgtggat cgacatgaac 1560

gagccatcta atttcatcag gggcagcgag gacggctgcc ccaacaatga gctggagaac 1620

ccaccatatg tgcctggcgt ggtgggaggc accctccagg cagcaaccat ctgtgcctcc 1680

tctcaccagt ttctgtctac acactataac ctgcacaatc tgtacggact gaccgaggca 1740

atcgccagcc acagagccct ggtgaaggcc aggggcacaa gacctttcgt gatctccagg 1800

tctacctttg ccggacacgg cagatacgca ggacactgga ccggcgacgt gtggagcagc 1860

tgggagcagc tggcctctag cgtgccagag atcctccagt tcaacctgct gggcgtgccc 1920

ctggtgggag cagacgtgtg cggctttctg ggcaatacat ccgaggagct gtgcgtgagg 1980

tggacccagc tgggagcctt ctatcccttc atgcgcaacc acaatagcct gctgtccctg 2040

cctcaggagc catacagctt ctccgagcct gcacagcagg caatgaggaa ggccctgaca 2100

ctgcgctatg ccctgctgcc acacctgtac accctgtttc accaggcaca cgtggcagga 2160

gagacagtgg cccggcccct gttcctggag tttcctaagg attcctctac ctggacagtg 2220

gaccaccagc tgctgtgggg agaggccctg ctgatcaccc ccgtgctcca ggcaggcaag 2280

gcagaggtga caggctattt ccctctgggc acatggtacg acctccagac cgtgccagtg 2340

gaggccctgg gcagcctgcc tccaccacct gccgcccccc gcgagcctgc catccactcc 2400

gagggacagt gggtgacact gccagcacct ctggacacca tcaacgtgca cctgagggcc 2460

ggctatatca tccccctcca gggccctggc ctgaccacaa ccgagtccag acagcagcca 2520

atggccctgg ccgtggccct gaccaaggga ggcgaggcca ggggcgagct gttctgggac 2580

gatggcgagt ctctggaggt gctggagaga ggcgcctaca cacaggtcat cttcctggcc 2640

aggaacaata caatcgtgaa tgagctggtg agagtgacct ctgagggagc aggactccag 2700

ctccagaagg tgacagtgct gggagtggca accgcaccac agcaggtgct gagcaacggc 2760

gtgcccgtga gcaatttcac atactcccct gataccaagg tgctggacat ctgcgtgagc 2820

ctgctgatgg gcgagcagtt tctggtgtcc tggtgttga 2859

<210> 10

<211> 8523

<212> DNA

<213> Artificial sequence

<220>

<223> Dual promoter Lentiviral vector

<400> 10

aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 60

tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 120

tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 180

acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 240

aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 300

cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 360

cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 420

cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat tcgccattca ggctgcgcaa 480

ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg 540

atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa 600

aacgacggcc agtgaattgt aatacgactc actatagggc gaattgggcc cgacgtcgca 660

tgcttggaag ggctaattca ctcccaaaga agacaagata tccttgatct gtggatctac 720

cacacacaag gctacttccc tgattagcag aactacacac cagggccagg ggtcagatat 780

ccactgacct ttggatggtg ctacaagcta gtaccagttg agccagataa ggtagaagag 840

gccaataaag gagagaacac cagcttgtta caccctgtga gcctgcatgg gatggatgac 900

ccggagagag aagtgttaga gtggaggttt gacagccgcc tagcatttca tcacgtggcc 960

cgagagctgc atccggagta cttcaagaac tgctgatatc gagcttgcta caagggactt 1020

tccgctgggg actttccagg gaggcgtggc ctgggcggga ctggggagtg gcgagccctc 1080

agatcctgca tataagcagc tgctttttgc ctgtactggg tctctctggt tagaccagat 1140

ctgagcctgg gagctctctg gctaactagg gaacccactg cttaagcctc aataaagctt 1200

gccttgagtg cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 1260

cctcagaccc ttttagtcag tgtggaaaat ctctagcagt ggcgcccgaa cagggacttg 1320

aaagcgaaag ggaaaccaga ggagctctct cgacgcagga ctcggcttgc tgaagcgcgc 1380

acggcaagag gcgaggggcg gcgactggtg agtacgccaa aaattttgac tagcggaggc 1440

tagaaggaga gagatgggtg cgagagcgtc agtattaagc gggggagaat tagatcgcga 1500

tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat ataaattaaa acatatagta 1560

tgggcaagca gggagctaga acgattcgca gttaatcctg gcctgttaga aacatcagaa 1620

ggctgtagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt 1680

agatcattat ataatacagt agcaaccctc tattgtgtgc atcaaaggat agagataaaa 1740

gacaccaagg aagctttaga caagatagag gaagagcaaa acaaaagtaa gaccaccgca 1800

cagcaagcgg ccgctgatct tcagacctgg aggaggagat atgagggaca attggagaag 1860

tgaattatat aaatataaag tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc 1920

aaagagaaga gtggtgcaga gagaaaaaag agcagtggga ataggagctt tgttccttgg 1980

gttcttggga gcagcaggaa gcactatggg cgcagcgtca atgacgctga cggtacaggc 2040

cagacaatta ttgtctggta tagtgcagca gcagaacaat ttgctgaggg ctattgaggc 2100

gcaacagcat ctgttgcaac tcacagtctg gggcatcaag cagctccagg caagaatcct 2160

ggctgtggaa agatacctaa aggatcaaca gctcctgggg atttggggtt gctctggaaa 2220

actcatttgc accactgctg tgccttggaa tgctagttgg agtaataaat ctctggaaca 2280

gatttggaat cacacgacct ggatggagtg ggacagagaa attaacaatt acacaagctt 2340

aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa aagaatgaac aagaattatt 2400

ggaattagat aaatgggcaa gtttgtggaa ttggtttaac ataacaaatt ggctgtggta 2460

tataaaatta ttcataatga tagtaggagg cttggtaggt ttaagaatag tttttgctgt 2520

actttctata gtgaatagag ttaggcaggg atattcacca ttatcgtttc agacccacct 2580

cccaaccccg aggggacccg acaggcccga aggaatagaa gaagaaggtg gagagagaga 2640

cagagacaga tccattcgat tagtgaacgg atctcgacgg gatcgatttt aaaagaaaag 2700

gggggattgg ggggtacagt gcaggggaaa gaatagtaga cataatagca acagacatac 2760

aaactaaaga attacaaaaa caaattacaa aaattcaaaa ttttatcgat aagctttgca 2820

aagatggata aagttttaaa cagagaggaa tctttgcagc taatggacct tctaggtctg 2880

accccgtacg cctcgagaga tctgatcata atcagccata ccacatttgt agaggtttta 2940

cttgctttaa aaaacctccc acacctcccc ctgaacctga aacataaaat gaatgcaatt 3000

gttgttgtta acttgtttat tgcagcttat aatggttaca aataaggcaa tagcatcaca 3060

aatttcacaa ataaggcatt tttttcactg cattctagtt ttggtttgtc caaactcatc 3120

aatgtatctt atcatgtctg gatctcaaat ccctcggaag ctgcgcctgt cttaggttgg 3180

agtgatacat ttttatcact tttacccgtc tttggattag gcagtagctc tgacggccct 3240

cctgtcttag gttagtgaaa aatgtcactc tcttacccgt cattggctgt ccagcttagc 3300

tcgcagggga ggtggtctgc ctgcaggcgg atggcgttaa catatgacaa ctttctcccg 3360

ggtaatctga ccgttcgcta gccctgggga gagaggtcgg tgattcggtc aacgagggag 3420

ccgactgccg acgtgcgctc cggaggcttg cagaatgcgg aacaccgcgc gggcaggaac 3480

agggcccaca ctaccgcccc acaccccgcc tcccgcaccg ccccttcccg gccgctgctc 3540

tcggcgcgcc ccgctgagca gccgctattg gccacagccc atcgcggtcg gcgcgctgcc 3600

attgctccct ggcgctgtcc gtctgcgagg gtactagtga gacgtgcggc ttccgtttgt 3660

cacgtccggc acgccgcgaa ccgcaaggaa ccttcccgac ttaggggcgg agcaggaagc 3720

gtcgccgggg ggcccacaag ggtagcggcg aagatccggg tgacgctgcg aacggacgtg 3780

aagaatgtgc gagacccagg gtcggcgccg ctgcgtttcc cggaaccacg cccagagcag 3840

ccgcgtccct gcgcaaaccc agggctgcca aggaaaaggc gcaaccccaa ccccgtggtt 3900

aattaaggtg aaaggagtgg gaattggctc cggtgcccgt cagtgggcag agcgcacatc 3960

gcccacagtc cccgagaagt tggggggagg ggtcggcaat tgaaccggtg cctagagaag 4020

gtggcgcggg gtaaactggg aaagtgatgt cgtgtactgg ctccgccttt ttcccgaggg 4080

tgggggagaa ccgtatataa gtgcagtagt cgccgtgaac gttctttttc gcaacgggtt 4140

tgccgccaga acacaggtaa gtgccgtgtg tggttcccgc gggcctggcc tctttacggg 4200

ttatggccct tgcgtgcctt gaattacttc cacctggctg cagtacgtga ttcttgatcc 4260

cgagcttcgg gttggaagtg ggtgggagag ttcgaggcct tgcgcttaag gagccccttc 4320

gcctcgtgct tgagttgagg cctggcctgg gcgctggggc cgccgcgtgc gaatctggtg 4380

gcaccttcgc gcctgtctcg ctgctttcga taagtctcta gccatttaaa atttttgatg 4440

acctgctgcg acgctttttt tctggcaaga tagtcttgta aatgcgggcc aagatctgca 4500

cactggtatt tcggtttttg gggccgcggg cggcgacggg gcccgtgcgt cccagcgcac 4560

atgttcggcg aggcggggcc tgcgagcgcg gccaccgaga atcggacggg ggtagtctca 4620

agctggccgg cctgctctgg tgcctggcct cgcgccgccg tgtatcgccc cgccctgggc 4680

ggcaaggctg gcccggtcgg caccagttgc gtgagcggaa agatggccgc ttcccggccc 4740

tgctgcaggg agctcaaaat ggaggacgcg gcgctcggga gagcgggcgg gtgagtcacc 4800

cacacaaagg aaaagggcct ttccgtcctc agccgtcgct tcatgtgact ccacggagta 4860

ccgggcgccg tccaggcacc tcgattagtt ctcgagcttt tggagtacgt cgtctttagg 4920

ttggggggag gggttttatg cgatggagtt tccccacact gagtgggtgg agactgaagt 4980

taggccagct tggcacttga tgtaattctc cttggaattt gccctttttg agtttggatc 5040

ttggttcatt ctcaagcctc agacagtggt tcaaagtttt tttcttccat ttcaggtgtc 5100

gtgaggaatt ctgcagtcga cggtaccgcg ggcgcgcccc gggatccaag cttcaattgt 5160

ggtcactcga caatcaacct ctggattaca aaatttgtga aagattgact ggtattctta 5220

actatgttgc tccttttacg ctatgtggat acgctgcttt aatgcctttg tatcatgcta 5280

ttgcttcccg tatggctttc attttctcct ccttgtataa atcctggttg ctgtctcttt 5340

atgaggagtt gtggcccgtt gtcaggcaac gtggcgtggt gtgcactgtg tttgctgacg 5400

caacccccac tggttggggc attgccacca cctgtcagct cctttccggg actttcgctt 5460

tccccctccc tattgccacg gcggaactca tcgccgcctg ccttgcccgc tgctggacag 5520

gggctcggct gttgggcact gacaattccg tggtgttgtc ggggaagctg acgtcctttc 5580

catggctgct cgcctgtgtt gccacctgga ttctgcgcgg gacgtccttc tgctacgtcc 5640

cttcggccct caatccagcg gaccttcctt cccgcggcct gctgccggct ctgcggcctc 5700

ttccgcgtct tcgccttcgc cctcagacga gtcggatctc cctttgggcc gcctccccgc 5760

ctgctcgaga cctagaaaaa catggagcaa tcacaagtag caatacagca gctaccaatg 5820

ctgattgtgc ctggctagaa gcacaagagg aggaggaggt gggttttcca gtcacacctc 5880

aggtaccttt aagaccaatg acttacaagg cagctgtaga tcttagccac tttttaaaag 5940

aaaagggggg actggaaggg ctaattcact cccaacgaag acaagatctg ctttttgctt 6000

gtactgggtc tctctggtta gaccagatct gagcctggga gctctctggc taactaggga 6060

acccactgct taagcctcaa taaagcttgc cttgagtgct tcaagtagtg tgtgcccgtc 6120

tgttgtgtga ctctggtaac tagagatccc tcagaccctt ttagtcagtg tggaaaatct 6180

ctagcagtag tagttcatgt catcttatta ttcagtattt ataacttgca aagaaatgaa 6240

tatcagagag tgagaggacg cgttggatgc atagcttgag tattctatag tgtcacctaa 6300

atagcttggc gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat ccgctcacaa 6360

ttccacacaa catacgagcc ggaagcataa agtgtaaagc ctggggtgcc taatgagtga 6420

gctaactcac attaattgcg ttgcgctcac tgcccgcttt ccagtcggga aacctgtcgt 6480

gccagctgca ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt attgggcgct 6540

cttccgcttc ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat 6600

cagctcactc aaaggcggta atacggttat ccacagaatc aggggataac gcaggaaaga 6660

acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt 6720

ttttccatag gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt 6780

ggcgaaaccc gacaggacta taaagatacc aggcgtttcc ccctggaagc tccctcgtgc 6840

gctctcctgt tccgaccctg ccgcttaccg gatacctgtc cgcctttctc ccttcgggaa 6900

gcgtggcgct ttctcatagc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct 6960

ccaagctggg ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc ttatccggta 7020

actatcgtct tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg 7080

gtaacaggat tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtggc 7140

ctaactacgg ctacactaga agaacagtat ttggtatctg cgctctgctg aagccagtta 7200

ccttcggaaa aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg 7260

gtttttttgt ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt 7320

tgatcttttc tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg 7380

tcatgagatt atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta 7440

aatcaatcta aagtatatat gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg 7500

aggcacctat ctcagcgatc tgtctatttc gttcatccat agttgcctga ctccccgtcg 7560

tgtagataac tacgatacgg gagggcttac catctggccc cagtgctgca atgataccgc 7620

gagacccacg ctcaccggct ccagatttat cagcaataaa ccagccagcc ggaagggccg 7680

agcgcagaag tggtcctgca actttatccg cctccatcca gtctattaat tgttgccggg 7740

aagctagagt aagtagttcg ccagttaata gtttgcgcaa cgttgttgcc attgctacag 7800

gcatcgtggt gtcacgctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat 7860

caaggcgagt tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc 7920

cgatcgttgt cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc 7980

ataattctct tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa 8040

ccaagtcatt ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac 8100

gggataatac cgcgccacat agcagaactt taaaagtgct catcattgga aaacgttctt 8160

cggggcgaaa actctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc 8220

gtgcacccaa ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa 8280

caggaaggca aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca 8340

tactcttcct ttttcaatat tattgaagca tttatcaggg ttattgtctc atgagcggat 8400

acatatttga atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa 8460

aagtgccacc tgatgcggtg tgaaataccg cacagatgcg taaggagaaa ataccgcatc 8520

agg 8523

<210> 11

<211> 10025

<212> DNA

<213> Artificial sequence

<220>

<223> Dual promoter lentiviral vector comprising IMPDH2(IY) resistance gene

<400> 11

aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa tttttgttaa atcagctcat 60

tttttaacca ataggccgaa atcggcaaaa tcccttataa atcaaaagaa tagaccgaga 120

tagggttgag tgttgttcca gtttggaaca agagtccact attaaagaac gtggactcca 180

acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc actacgtgaa ccatcaccct 240

aatcaagttt tttggggtcg aggtgccgta aagcactaaa tcggaaccct aaagggagcc 300

cccgatttag agcttgacgg ggaaagccgg cgaacgtggc gagaaaggaa gggaagaaag 360

cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt cacgctgcgc gtaaccacca 420

cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat tcgccattca ggctgcgcaa 480

ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg cgaaaggggg 540

atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac gacgttgtaa 600

aacgacggcc agtgaattgt aatacgactc actatagggc gaattgggcc cgacgtcgca 660

tgcttggaag ggctaattca ctcccaaaga agacaagata tccttgatct gtggatctac 720

cacacacaag gctacttccc tgattagcag aactacacac cagggccagg ggtcagatat 780

ccactgacct ttggatggtg ctacaagcta gtaccagttg agccagataa ggtagaagag 840

gccaataaag gagagaacac cagcttgtta caccctgtga gcctgcatgg gatggatgac 900

ccggagagag aagtgttaga gtggaggttt gacagccgcc tagcatttca tcacgtggcc 960

cgagagctgc atccggagta cttcaagaac tgctgatatc gagcttgcta caagggactt 1020

tccgctgggg actttccagg gaggcgtggc ctgggcggga ctggggagtg gcgagccctc 1080

agatcctgca tataagcagc tgctttttgc ctgtactggg tctctctggt tagaccagat 1140

ctgagcctgg gagctctctg gctaactagg gaacccactg cttaagcctc aataaagctt 1200

gccttgagtg cttcaagtag tgtgtgcccg tctgttgtgt gactctggta actagagatc 1260

cctcagaccc ttttagtcag tgtggaaaat ctctagcagt ggcgcccgaa cagggacttg 1320

aaagcgaaag ggaaaccaga ggagctctct cgacgcagga ctcggcttgc tgaagcgcgc 1380

acggcaagag gcgaggggcg gcgactggtg agtacgccaa aaattttgac tagcggaggc 1440

tagaaggaga gagatgggtg cgagagcgtc agtattaagc gggggagaat tagatcgcga 1500

tgggaaaaaa ttcggttaag gccaggggga aagaaaaaat ataaattaaa acatatagta 1560

tgggcaagca gggagctaga acgattcgca gttaatcctg gcctgttaga aacatcagaa 1620

ggctgtagac aaatactggg acagctacaa ccatcccttc agacaggatc agaagaactt 1680

agatcattat ataatacagt agcaaccctc tattgtgtgc atcaaaggat agagataaaa 1740

gacaccaagg aagctttaga caagatagag gaagagcaaa acaaaagtaa gaccaccgca 1800

cagcaagcgg ccgctgatct tcagacctgg aggaggagat atgagggaca attggagaag 1860

tgaattatat aaatataaag tagtaaaaat tgaaccatta ggagtagcac ccaccaaggc 1920

aaagagaaga gtggtgcaga gagaaaaaag agcagtggga ataggagctt tgttccttgg 1980

gttcttggga gcagcaggaa gcactatggg cgcagcgtca atgacgctga cggtacaggc 2040

cagacaatta ttgtctggta tagtgcagca gcagaacaat ttgctgaggg ctattgaggc 2100

gcaacagcat ctgttgcaac tcacagtctg gggcatcaag cagctccagg caagaatcct 2160

ggctgtggaa agatacctaa aggatcaaca gctcctgggg atttggggtt gctctggaaa 2220

actcatttgc accactgctg tgccttggaa tgctagttgg agtaataaat ctctggaaca 2280

gatttggaat cacacgacct ggatggagtg ggacagagaa attaacaatt acacaagctt 2340

aatacactcc ttaattgaag aatcgcaaaa ccagcaagaa aagaatgaac aagaattatt 2400

ggaattagat aaatgggcaa gtttgtggaa ttggtttaac ataacaaatt ggctgtggta 2460

tataaaatta ttcataatga tagtaggagg cttggtaggt ttaagaatag tttttgctgt 2520

actttctata gtgaatagag ttaggcaggg atattcacca ttatcgtttc agacccacct 2580

cccaaccccg aggggacccg acaggcccga aggaatagaa gaagaaggtg gagagagaga 2640

cagagacaga tccattcgat tagtgaacgg atctcgacgg gatcgatttt aaaagaaaag 2700

gggggattgg ggggtacagt gcaggggaaa gaatagtaga cataatagca acagacatac 2760

aaactaaaga attacaaaaa caaattacaa aaattcaaaa ttttatcgat aagctttgca 2820

aagatggata aagttttaaa cagagaggaa tctttgcagc taatggacct tctaggtctg 2880

accccgtacg cctcgagaga tctgatcata atcagccata ccacatttgt agaggtttta 2940

cttgctttaa aaaacctccc acacctcccc ctgaacctga aacataaaat gaatgcaatt 3000

gttgttgtta acttgtttat tgcagcttat aatggttaca aataaggcaa tagcatcaca 3060

aatttcacaa ataaggcatt tttttcactg cattctagtt ttggtttgtc caaactcatc 3120

aatgtatctt atcatgtctg gatctcaaat ccctcggaag ctgcgcctgt cttaggttgg 3180

agtgatacat ttttatcact tttacccgtc tttggattag gcagtagctc tgacggccct 3240

cctgtcttag gttagtgaaa aatgtcactc tcttacccgt cattggctgt ccagcttagc 3300

tcgcagggga ggtggtctgc ctgcaggtta gaacagtctc ttttcgtatg agtgcagtga 3360

gtggacgccg ccttcgacct gggctgaaga agttcttttc tcgaacttca gttcgccgga 3420

atacatcatt gcccgcacct gtgtcaggct cttagcgccg atatcctggc atgaatgctg 3480

aattccggcg atcaggtaag gcacgaattt gtgaatactg cccttatcct ggacagctcc 3540

agacacgccc tgtgcgactt tgatcttgtc tgcctcggaa aaatacctgt tctgagagga 3600

cagatgctta tccatggcgt ccagtgaccc catgccccta tatttcttca gtctgaaccc 3660

atcactaaag aagtactcgc cgggggcttc tgtggttgca gccagcaggc tgcccatcat 3720

cactgtgctt gcccccagag ccagggcttt tgcgatgtgg cccacattct gaattccccc 3780

gtcagcgatc actgggactc cgaatctccg ggcatactcg tacaccttgt agacagcagt 3840

tgcctgaggt cgtccacagg ccagcacttc ctgaatgatg cagattgatc cactccccat 3900

tccgaccctc agagcatcca ctcctgcgtc aatcaggttt ttggcctggg ctgcggtcac 3960

gacattgcct ccgatgacct gcagatttgg gtacttgtcc ttaatgtact tgatcatatt 4020

aatctggaag atgctgtttc cctggcttga atccagcacg accacgtcca cccctgcctg 4080

agccagcaga tccaggcgat atttatcgtc ctcgtgtgtg ccaatagcgg ctccacacag 4140

cagctgtttc tttgcgtcct tactagccag agggtaatct cgatttttct tcaggtcggt 4200

gcgggcaatg attgccacca gctcatcgtc ttcattcacg ataggcagtt ttcctttctt 4260

agaccgctgc agaatctcgt tggcttcctt cagtgtgatg ccggcaggtg cgaccaccag 4320

atcttcgcgt ttggtcataa tctcttccag aaaacagtca tgctcttcct ccttcaggaa 4380

atcgatgtct cgactagaaa tgattcccac cagtcggctg cccattcgtc cagtatctgt 4440

aatggggatg ccgcaaaatc cgtgcctagc tttggcctcg aacacatcgc ggaccctgtc 4500

cttggggctc aggaccactg ggtcggtgat aaagccctgt tcgtatttct tcacctttct 4560

gacctcattg gcctgaaatt ctggagtgca gttatggtga atgaacccga tcccgcctgt 4620

cagtgccata gcaatggcca tgccagcctc ggtgacagtg tccatagggg agctcaccag 4680

gggtgtcttc agggtgattt tcttggtcag ggcagaagtc agatccacct ggtctgcggt 4740

aaaatcaata tagccgggca ggatcaggaa gtcgttgtaa gtcagcccgt ctccacaatt 4800

aaacagctgc tgggcggtca gtccatcatc agggacatag gaagtgcctc cagaaatcag 4860

gtagtcggcc atggtggcgc tagccctggg gagagaggtc ggtgattcgg tcaacgaggg 4920

agccgactgc cgacgtgcgc tccggaggct tgcagaatgc ggaacaccgc gcgggcagga 4980

acagggccca cactaccgcc ccacaccccg cctcccgcac cgccccttcc cggccgctgc 5040

tctcggcgcg ccccgctgag cagccgctat tggccacagc ccatcgcggt cggcgcgctg 5100

ccattgctcc ctggcgctgt ccgtctgcga gggtactagt gagacgtgcg gcttccgttt 5160

gtcacgtccg gcacgccgcg aaccgcaagg aaccttcccg acttaggggc ggagcaggaa 5220

gcgtcgccgg ggggcccaca agggtagcgg cgaagatccg ggtgacgctg cgaacggacg 5280

tgaagaatgt gcgagaccca gggtcggcgc cgctgcgttt cccggaacca cgcccagagc 5340

agccgcgtcc ctgcgcaaac ccagggctgc caaggaaaag gcgcaacccc aaccccgtgg 5400

ttaattaagg tgaaaggagt gggaattggc tccggtgccc gtcagtgggc agagcgcaca 5460

tcgcccacag tccccgagaa gttgggggga ggggtcggca attgaaccgg tgcctagaga 5520

aggtggcgcg gggtaaactg ggaaagtgat gtcgtgtact ggctccgcct ttttcccgag 5580

ggtgggggag aaccgtatat aagtgcagta gtcgccgtga acgttctttt tcgcaacggg 5640

tttgccgcca gaacacaggt aagtgccgtg tgtggttccc gcgggcctgg cctctttacg 5700

ggttatggcc cttgcgtgcc ttgaattact tccacctggc tgcagtacgt gattcttgat 5760

cccgagcttc gggttggaag tgggtgggag agttcgaggc cttgcgctta aggagcccct 5820

tcgcctcgtg cttgagttga ggcctggcct gggcgctggg gccgccgcgt gcgaatctgg 5880

tggcaccttc gcgcctgtct cgctgctttc gataagtctc tagccattta aaatttttga 5940

tgacctgctg cgacgctttt tttctggcaa gatagtcttg taaatgcggg ccaagatctg 6000

cacactggta tttcggtttt tggggccgcg ggcggcgacg gggcccgtgc gtcccagcgc 6060

acatgttcgg cgaggcgggg cctgcgagcg cggccaccga gaatcggacg ggggtagtct 6120

caagctggcc ggcctgctct ggtgcctggc ctcgcgccgc cgtgtatcgc cccgccctgg 6180

gcggcaaggc tggcccggtc ggcaccagtt gcgtgagcgg aaagatggcc gcttcccggc 6240

cctgctgcag ggagctcaaa atggaggacg cggcgctcgg gagagcgggc gggtgagtca 6300

cccacacaaa ggaaaagggc ctttccgtcc tcagccgtcg cttcatgtga ctccacggag 6360

taccgggcgc cgtccaggca cctcgattag ttctcgagct tttggagtac gtcgtcttta 6420

ggttgggggg aggggtttta tgcgatggag tttccccaca ctgagtgggt ggagactgaa 6480

gttaggccag cttggcactt gatgtaattc tccttggaat ttgccctttt tgagtttgga 6540

tcttggttca ttctcaagcc tcagacagtg gttcaaagtt tttttcttcc atttcaggtg 6600

tcgtgaggaa ttctgcagtc gacggtaccg cgggcgcgcc ccgggatcca agcttcaatt 6660

gtggtcactc gacaatcaac ctctggatta caaaatttgt gaaagattga ctggtattct 6720

taactatgtt gctcctttta cgctatgtgg atacgctgct ttaatgcctt tgtatcatgc 6780

tattgcttcc cgtatggctt tcattttctc ctccttgtat aaatcctggt tgctgtctct 6840

ttatgaggag ttgtggcccg ttgtcaggca acgtggcgtg gtgtgcactg tgtttgctga 6900

cgcaaccccc actggttggg gcattgccac cacctgtcag ctcctttccg ggactttcgc 6960

tttccccctc cctattgcca cggcggaact catcgccgcc tgccttgccc gctgctggac 7020

aggggctcgg ctgttgggca ctgacaattc cgtggtgttg tcggggaagc tgacgtcctt 7080

tccatggctg ctcgcctgtg ttgccacctg gattctgcgc gggacgtcct tctgctacgt 7140

cccttcggcc ctcaatccag cggaccttcc ttcccgcggc ctgctgccgg ctctgcggcc 7200

tcttccgcgt cttcgccttc gccctcagac gagtcggatc tccctttggg ccgcctcccc 7260

gcctgctcga gacctagaaa aacatggagc aatcacaagt agcaatacag cagctaccaa 7320

tgctgattgt gcctggctag aagcacaaga ggaggaggag gtgggttttc cagtcacacc 7380

tcaggtacct ttaagaccaa tgacttacaa ggcagctgta gatcttagcc actttttaaa 7440

agaaaagggg ggactggaag ggctaattca ctcccaacga agacaagatc tgctttttgc 7500

ttgtactggg tctctctggt tagaccagat ctgagcctgg gagctctctg gctaactagg 7560

gaacccactg cttaagcctc aataaagctt gccttgagtg cttcaagtag tgtgtgcccg 7620

tctgttgtgt gactctggta actagagatc cctcagaccc ttttagtcag tgtggaaaat 7680

ctctagcagt agtagttcat gtcatcttat tattcagtat ttataacttg caaagaaatg 7740

aatatcagag agtgagagga cgcgttggat gcatagcttg agtattctat agtgtcacct 7800

aaatagcttg gcgtaatcat ggtcatagct gtttcctgtg tgaaattgtt atccgctcac 7860

aattccacac aacatacgag ccggaagcat aaagtgtaaa gcctggggtg cctaatgagt 7920

gagctaactc acattaattg cgttgcgctc actgcccgct ttccagtcgg gaaacctgtc 7980

gtgccagctg cattaatgaa tcggccaacg cgcggggaga ggcggtttgc gtattgggcg 8040

ctcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc ggcgagcggt 8100

atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata acgcaggaaa 8160

gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg cgttgctggc 8220

gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct caagtcagag 8280

gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa gctccctcgt 8340

gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc tcccttcggg 8400

aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt aggtcgttcg 8460

ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg ccttatccgg 8520

taactatcgt cttgagtcca acccggtaag acacgactta tcgccactgg cagcagccac 8580

tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct tgaagtggtg 8640

gcctaactac ggctacacta gaagaacagt atttggtatc tgcgctctgc tgaagccagt 8700

taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg ctggtagcgg 8760

tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc aagaagatcc 8820

tttgatcttt tctacggggt ctgacgctca gtggaacgaa aactcacgtt aagggatttt 8880

ggtcatgaga ttatcaaaaa ggatcttcac ctagatcctt ttaaattaaa aatgaagttt 8940

taaatcaatc taaagtatat atgagtaaac ttggtctgac agttaccaat gcttaatcag 9000

tgaggcacct atctcagcga tctgtctatt tcgttcatcc atagttgcct gactccccgt 9060

cgtgtagata actacgatac gggagggctt accatctggc cccagtgctg caatgatacc 9120

gcgagaccca cgctcaccgg ctccagattt atcagcaata aaccagccag ccggaagggc 9180

cgagcgcaga agtggtcctg caactttatc cgcctccatc cagtctatta attgttgccg 9240

ggaagctaga gtaagtagtt cgccagttaa tagtttgcgc aacgttgttg ccattgctac 9300

aggcatcgtg gtgtcacgct cgtcgtttgg tatggcttca ttcagctccg gttcccaacg 9360

atcaaggcga gttacatgat cccccatgtt gtgcaaaaaa gcggttagct ccttcggtcc 9420

tccgatcgtt gtcagaagta agttggccgc agtgttatca ctcatggtta tggcagcact 9480

gcataattct cttactgtca tgccatccgt aagatgcttt tctgtgactg gtgagtactc 9540

aaccaagtca ttctgagaat agtgtatgcg gcgaccgagt tgctcttgcc cggcgtcaat 9600

acgggataat accgcgccac atagcagaac tttaaaagtg ctcatcattg gaaaacgttc 9660

ttcggggcga aaactctcaa ggatcttacc gctgttgaga tccagttcga tgtaacccac 9720

tcgtgcaccc aactgatctt cagcatcttt tactttcacc agcgtttctg ggtgagcaaa 9780

aacaggaagg caaaatgccg caaaaaaggg aataagggcg acacggaaat gttgaatact 9840

catactcttc ctttttcaat attattgaag catttatcag ggttattgtc tcatgagcgg 9900

atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg 9960

aaaagtgcca cctgatgcgg tgtgaaatac cgcacagatg cgtaaggaga aaataccgca 10020

tcagg 10025

110页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于治疗免疫性血小板减少症的组合物和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!