CRISPR system for ADCY3 gene editing and application thereof in construction of obese pig nuclear transplantation donor cells

文档序号:872090 发布日期:2021-03-19 浏览:6次 中文

阅读说明:本技术 用于adcy3基因编辑的crispr系统及其在构建肥胖症猪核移植供体细胞中应用 (CRISPR system for ADCY3 gene editing and application thereof in construction of obese pig nuclear transplantation donor cells ) 是由 牛冬 汪滔 马翔 刘璐 曾为俊 王磊 程锐 陶裴裴 赵泽英 黄彩云 于 2020-11-19 设计创作,主要内容包括:本发明公开了用于ADCY3基因编辑的CRISPR系统及其在构建肥胖症猪核移植供体细胞中应用。一种用于猪ADCY3基因编辑的CRISPR/Cas9系统,包含Cas9表达载体和针对猪ADCY3基因的gRNA表达载体;所述的Cas9表达载体为质粒全序列如SEQ ID NO.2所示,所述的gRNA表达载体表达SEQ ID NO.22所示的gRNA,其靶点如SEQ ID NO.18所示。本发明针对猪ADCY3基因设计了四个gRNA,从中筛选高效gRNA后再进行预设靶点的敲除,可有效降低后期单克隆细胞鉴定筛选的工作量,并可直接用PCR产物测序来检测基因编辑效率。(The invention discloses a CRISPR system for ADCY3 gene editing and application thereof in constructing obese pig nuclear transplantation donor cells. A CRISPR/Cas9 system for porcine ADCY3 gene editing comprising a Cas9 expression vector and a gRNA expression vector for porcine ADCY3 gene; the Cas9 expression vector is a plasmid complete sequence shown in SEQ ID No.2, the gRNA expression vector expresses gRNA shown in SEQ ID No.22, and a target point is shown in SEQ ID No. 18. According to the invention, four gRNAs are designed aiming at the ADCY3 gene of the pig, and the high-efficiency gRNAs are screened from the gRNAs and then subjected to knockout of a preset target spot, so that the workload of later monoclonal cell identification and screening can be effectively reduced, and the gene editing efficiency can be directly detected by sequencing a PCR product.)

1. A CRISPR/Cas9 system for porcine ADCY3 gene editing, characterized by comprising a Cas9 expression vector and a gRNA expression vector for porcine ADCY3 gene; the Cas9 expression vector is a pU6gRNA-eEF1a-mNLS-hSpCas9-EGFP-PURO vector with the complete sequence of the plasmid shown as SEQ ID NO. 2.

2. The CRISPR/Cas9 system according to claim 1, characterized in that the vector backbone of gRNA expression vector for pig ADCY3 gene is pKG-U6gRNA, and the whole sequence of the plasmid is shown in SEQ ID No. 3.

3. The CRISPR/Cas9 system according to claim 2, characterized in that the expression vector expresses the gRNA shown in SEQ ID No.22, whose target is shown in SEQ ID No. 18.

4. The CRISPR/Cas9 system according to claim 3, characterized in that the gRNA expression vector for pig ADCY3 gene is obtained by annealing single-stranded DNA shown in SEQ ID No.26 and SEQ ID No.27 to form a double strand, and inserting the double strand into a restriction enzyme BbsI site of vector backbone pKG-U6 gRNA.

5. The CRISPR/Cas9 system according to claim 4, characterized in that the molar ratio of the gRNA expression vector to the Cas9 expression vector is 1-3: 1, further preferably 3: 1.

6. Use of the CRISPR/Cas9 system of claim 5 in the construction of porcine recombinant cells mutated at the porcine ADCY3 gene.

7. A recombinant cell characterized by being obtained by co-transfecting porcine primary fibroblasts with the CRISPR/Cas9 system of claim 6 after validation.

8. Use of the recombinant cell of claim 7 in the construction of an ADCY3 gene knockout cloned pig; preferably in construction of congenital obesity cloned pigs with ADCY3 gene knockout.

9. gRNA for pig ADCY3 gene, characterized in that the sequence is shown in SEQ ID NO. 22.

10. A gRNA expression vector aiming at pig ADCY3 gene is characterized in that the expression vector expresses gRNA shown in SEQ ID NO. 22; the vector framework of the expression vector is pKG-U6gRNA, and the complete sequence of the plasmid is shown in SEQ ID NO. 3; the gRNA expression vector is preferably obtained by inserting a double chain formed by annealing single-stranded DNAs shown in SEQ ID NO.26 and SEQ ID NO.27 into a restriction enzyme BbsI site of a vector skeleton pKG-U6 gRNA.

Technical Field

The invention belongs to the technical field of biology, and particularly relates to a CRISPR/Cas9 system for ADCY3 gene editing and application thereof.

Background

Obesity (Obesity) refers to a physical state in which body fat is accumulated excessively to have a negative effect on health, and may lead to a shortened lifespan and various health problems. Obesity is a major preventable cause of death worldwide and is one of the most important public health problems in the 21 st century. At present, the prevalence rate of obesity of adults and children is increasing, and women are more frequent than men. In 2013, several medical societies including the american medical society and the american heart association defined obesity as a disease, namely obesity. In 2015, there were 6 billion adults (13%) and 4200 million children under five years of age worldwide who had obesity problems. The world health organization is still giving warnings that overweight and obesity are the fifth leading risk of death worldwide, with at least 280 million "fattened" people worldwide each year.

Although obesity is generally influenced by both genetics and the environment, obesity is heritable in nature and is influenced by multiple genes, with differences in susceptibility among individuals. In rare cases, hereditary obesity is the direct interference of energy homeostasis or fat deposition by pathogenic mutations, such as the development of monogenic obesity in humans. Among them, mutation of the ADCY3 gene has been confirmed to be one of the most important genes responsible for congenital obesity in humans. Therefore, there is an urgent need to develop an animal model of congenital obesity based on the mutation of ADCY3 to solve the pathogenesis puzzle as soon as possible and lay the foundation for further treatment. The pig is a large animal, is a main meat food supply animal for human for a long time, is easy to breed and feed in a large scale, has low requirements on ethics, animal protection and the like, has the body size and physiological function similar to those of human, and is an ideal human disease model animal.

Gene editing is a biotechnology that has been greatly developed in recent years, and includes gene editing means from homologous recombination-based gene editing to nuclease-based ZFNs, TALENs, CRISPR/Cas9, and the like, wherein CRISPR/Cas9 technology is currently the most advanced gene editing technology. Currently, gene editing techniques are increasingly applied to the production of animal models.

Disclosure of Invention

The object of the present invention is to provide a CRISPR/Cas9 system for ADCY3 gene editing, which addresses the above-mentioned deficiencies of the prior art.

Another object of the present invention is to provide grnas for ADCY3 gene editing and expression vectors thereof.

The invention also aims to provide application of the CRISPR/Cas9 system in construction of the porcine recombinant cell with ADCY3 gene mutation.

The purpose of the invention can be realized by the following technical scheme:

a CRISPR/Cas9 system for porcine ADCY3 gene editing comprising a Cas9 expression vector and a gRNA expression vector for porcine ADCY3 gene; the Cas9 expression vector is a pU6gRNA-eEF1a-mNLS-hSpCas9-EGFP-PURO vector with the complete sequence of the plasmid shown as SEQ ID NO. 2.

In order to increase the gene editing capacity of the Cas9 Plasmid, pU6gRNA-eEF1a-mNLS-hSpCas9-EGFP-PURO (pKG-GE 3 for short) is obtained by modifying pX330-U6-Chimeric _ BB-CBh-hSpCas9 (PX 330 for short) on the basis of an addge (Plasmid #42230, from Zhang Feng lab) vector. The map of PX330 is shown in FIG. 1, and the modification mode is as follows:

1) removing redundant invalid sequences in the original vector gRNA framework;

2) modifying a promoter: the original promoter (chicken beta-actin promoter) is transformed into an EF1a promoter with higher expression activity, and the protein expression capacity of the Cas9 gene is increased;

3) increase of nuclear localization signal: a nuclear localization signal coding sequence (NLS) is added at the N end and the C end of the Cas9, and the nuclear localization capability of the Cas9 is increased;

4) adding double screening marks: the original vector does not have any screening marker, is not beneficial to screening and enriching of positive transformed cells, and is inserted with P2A-EGFP-T2A-PURO at the C end of Cas9 to endow the vector with fluorescence and resistance screening capability;

5) inserting WPRE and 3' LTR and other sequences for regulating gene expression: the protein translation capability of the Cas9 gene can be enhanced by inserting WPRE, 3' LTR and other sequences in the reading frame of the gene.

The modified vector pU6gRNA-eEF1a-mNLS-hSpCas9-EGFP-PURO (pKG-GE 3 for short) and the modified site are shown in figure 2, and the whole sequence of the plasmid is shown in SEQ ID NO: 2 is shown in the specification; the main elements of pKG-GE3 are:

1) gRNA expression elements: u6gRNA scaffold;

2) a promoter: the EF1a promoter and CMV enhancer;

3) cas9 gene containing multiple NLS: a Cas9 gene containing N-terminal and C-terminal multinuclear localization signals (NLS);

4) screening for marker genes: the fluorescent and resistant double-selection marker element P2A-EGFP-T2A-PURO;

5) elements that enhance translation: WPRE and 3' LTR enhance the translation efficiency of Cas9 and the screening marker gene;

6) transcription termination signal: a bGH polyA signal;

7) carrier skeleton: including Amp resistance elements and ori replicons, among others.

The plasmid pKG-GE3 has a specific fusion gene; the specific fusion gene encodes a specific fusion protein;

the specific fusion protein sequentially comprises the following elements from N end to C end: two Nuclear Localization Signals (NLS), Cas9 protein, two nuclear localization signals, self-splicing polypeptide P2A, fluorescent reporter protein, self-cleavage polypeptide T2A, resistance selection marker protein;

in plasmid pKG-GE3, the expression of the specific fusion gene is driven by the EF1a promoter;

in plasmid pKG-GE3, the specific fusion gene has downstream of it a WPRE sequence element, a 3' LTR sequence element and a bGH poly (A) signal sequence element.

The plasmid pKG-GE3 has the following elements in the following order: CMV enhancer, EF1a promoter, the specific fusion gene, WPRE sequence element, 3' LTR sequence element, bGH poly (A) signal sequence element.

In the specific fusion protein, two nuclear localization signals at the upstream of the Cas9 protein are SV40 nuclear localization signals, and two nuclear localization signals at the downstream of the Cas9 protein are nucleoplasmin nuclear localization signals.

In the specific fusion protein, the fluorescent reporter protein can be EGFP protein.

In the specific fusion protein, the resistance screening marker protein can be Puromycin protein.

The amino acid sequence of self-cleaving polypeptide P2A is "ATNFSLLKQAGDVEENPGP" (the cleavage site that occurs self-cleaves is between the first and second amino acid residues from the C-terminus).

The amino acid sequence of self-cleaving polypeptide T2A is "EGRGSLLTCGDVEENPGP" (the cleavage site that occurs self-cleaves is between the first and second amino acid residues from the C-terminus).

The specific fusion gene is specifically shown as SEQ ID NO: 2, nucleotide 911-6706.

The CMV enhancer is as set forth in SEQ ID NO: 2 at nucleotide 395-680.

The EF1a promoter is shown as SEQ ID NO: 2, nucleotide 682-890.

The WPRE sequence element is shown as SEQ ID NO: 2, 6722-7310 nucleotide.

The 3' LTR sequence element is shown in SEQ ID NO: nucleotide 7382-7615 in 2.

The bGH poly (a) signal sequence element is as set forth in SEQ ID NO: 2 as shown by nucleotide 7647-7871.

As a preferred choice of the invention, the vector framework of the gRNA expression vector aiming at the pig ADCY3 gene is pKG-U6gRNA, and the whole sequence of the plasmid is shown in SEQ ID NO. 3.

As a preferred choice of the invention, the expression vector of the CRISPR/Cas9 system expresses gRNA shown in SEQ ID NO.22, and the target point of the expression vector is shown in SEQ ID NO. 18.

As a preferable mode of the invention, the gRNA expression vector aiming at the pig ADCY3 gene is obtained by inserting a double chain formed by annealing single-stranded DNA shown in SEQ ID NO.26 and SEQ ID NO.27 into a restriction enzyme BbsI site of a vector skeleton pKG-U6 gRNA.

In a further preferred embodiment of the present invention, the molar ratio of the gRNA expression vector to the Cas9 expression vector is 1-3: 1, and a further preferred molar ratio is 3: 1.

The CRISPR/Cas9 system disclosed by the invention is applied to construction of ADCY3 gene mutant porcine recombinant cells.

A recombinant cell is obtained by verifying a primary pig fibroblast cotransfected by the CRISPR/Cas9 system for pig ADCY3 gene editing.

The recombinant cell is applied to construction of ADCY3 gene knockout cloned pigs; preferably in construction of congenital obesity cloned pigs with ADCY3 gene knockout.

The sequence of gRNA aiming at the pig ADCY3 gene is shown in SEQ ID NO. 22.

A gRNA expression vector aiming at a pig ADCY3 gene, which expresses a gRNA shown in SEQ ID NO. 22; the vector framework of the expression vector is pKG-U6gRNA, and the complete sequence of the plasmid is shown in SEQ ID NO. 3; the gRNA expression vector is preferably obtained by inserting a double chain formed by annealing single-stranded DNAs shown in SEQ ID NO.26 and SEQ ID NO.27 into a restriction enzyme BbsI site of a vector skeleton pKG-U6 gRNA.

Compared with the prior art, the invention has at least the following beneficial effects:

(1) the subject of the invention (pig) has better applicability than other animals (rats, mice, primates).

Rodents such as rats and mice have great differences from humans in body types, organ sizes, physiology, pathology and the like, and cannot truly simulate normal physiological and pathological states of humans. Studies have shown that over 95% of drugs validated to be effective in large mice are not effective in human clinical trials. The large animals, primates, which are the animals most closely related to humans, are small in size, late in sexual maturity (mating starts at age 6-7), and are single-birth animals, and the population propagation rate is extremely slow, and the raising cost is high. In addition, primate cloning efficiency is low, difficulty is high, and cost is high.

However, pigs, which are animals that have a close relationship with humans except primates, do not have the above-mentioned disadvantages as model animals, and have body types, body weights, organ sizes, and the like close to those of humans, and are very similar to those of humans in terms of anatomy, physiology, nutritional metabolism, disease pathogenesis, and the like. Meanwhile, the pigs have early sexual maturity (4-6 months), high reproductive capacity and multiple piglets, and can form a large group within 2-3 years. In addition, the cloning technology of the pig is very mature, and the cloning and feeding cost is much lower than that of a primate; and the pig is taken as a carnivorous animal of human for a long time, and the pig is taken as a disease model animal, so that the requirements on animal protection, ethics and the like are low.

(2) According to the invention, four gRNAs are designed aiming at the ADCY3 gene of the pig, and the high-efficiency gRNAs are screened from the gRNAs and then subjected to knockout of a preset target spot, so that the workload of later-stage identification and screening can be effectively reduced, and the gene editing efficiency can be directly detected by sequencing a PCR product.

(3) The Cas9 high-efficiency expression vector modified by the invention is used for gene editing, and the editing efficiency is improved by more than 100% compared with that of the original vector.

(4) The Cas9 high-efficiency expression vector modified by the invention is adopted to carry out gene editing, the genotype of the obtained cell [ homozygous mutation (mutation comprising the same variation of double alleles and the different variation of double alleles), heterozygous mutation or wild type ] can be analyzed through the sequencing result of the target gene PCR product, the probability of obtaining the homozygous mutation is 30-50%, and is greatly superior to the probability (lower than 5%) of obtaining the homozygous mutation in a model preparation method (namely a fertilized egg injection gene editing material) using an embryo injection technology.

(5) The homozygous mutant monoclonal cell strain obtained by the invention is used for somatic cell nuclear transplantation animal cloning to directly obtain a cloned pig containing target gene homozygous mutation, and the homozygous mutation can be stably inherited.

The method for embryo transplantation after injecting gene editing materials into germ cells in mouse model production is not suitable for producing large animal (such as pig) models with longer gestation period because the probability of directly obtaining homozygous mutant offspring is very low (less than 5%), and offspring hybridization breeding is needed. Therefore, the method adopts the primary cell in-vitro editing and screening positive editing monoclonal cells with great technical difficulty and high challenge, and directly obtains the corresponding disease model pig by the somatic cell nuclear transfer animal cloning technology at the later stage, thereby greatly shortening the manufacturing period of the model pig and saving manpower, material resources and financial resources.

The invention lays a solid foundation for obtaining the congenital obesity pig model by a gene editing means, is helpful for researching and disclosing the pathogenesis of the congenital obesity caused by ADCY3 mutation, can be further used for the research of drug screening, drug effect detection, disease pathology, gene therapy, cell therapy and the like, can provide effective experimental data for further clinical application, and further provides a powerful experimental means for successfully treating the congenital obesity caused by ADCY3 mutation in human beings. The invention has great application value for researching and developing the congenital obesity medicament and disclosing the pathogenesis of the congenital obesity.

Drawings

FIG. 1 is a schematic diagram of the structure of plasmid pX 330.

FIG. 2 is a schematic structural diagram of plasmid pKG-GE 3.

FIG. 3 is a schematic structural diagram of the pU6gRNAcas9 vector.

FIG. 4 is a structural map of the pU6gRNA-eEF1a Cas9 vector.

FIG. 5 is a pU6gRNA-eEF1a Cas9+ nNLS vector map.

FIG. 6 is a schematic structural diagram of plasmid pKG-U6 gRNA.

FIG. 7 is a schematic diagram showing the insertion of a DNA molecule of about 20bp (a target sequence binding region for transcription to form a gRNA) into a plasmid pKG-U6 gRNA.

FIG. 8 shows the sequencing results during plasmid mapping optimization.

FIG. 9 shows the sequencing results of plasmid pX330 and plasmid pKG-GE3 when compared to each other.

FIG. 10 is an electrophoretogram obtained after PCR amplification using 18 porcine genomic DNAs as templates in example 3.

FIG. 11 is a graph of the sequencing peaks in step four of example 3.

FIG. 12 is an electrophoretogram of PCR products of the target gene of the monoclonal cells obtained in example 4.

FIG. 13 shows the alignment of the forward sequencing of monoclonal cells numbered ADCY3-6 with the wild type.

FIG. 14 shows the alignment of the forward sequencing of monoclonal cells numbered ADCY3-22 with the wild type.

FIG. 15 shows the alignment of the forward sequencing of monoclonal cells numbered ADCY3-17 with the wild type.

Detailed Description

The present invention is described in further detail below with reference to specific embodiments, which are given for the purpose of illustration only and are not intended to limit the scope of the invention. The examples provided below serve as a guide for further modifications by a person skilled in the art and do not constitute a limitation of the invention in any way.

The experimental procedures in the following examples, unless otherwise indicated, are conventional and are carried out according to the techniques or conditions described in the literature in the field or according to the instructions of the products. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified. The recombinant plasmids constructed in the examples were all sequence verified. Complete culture broth (% by volume): 15% fetal bovine serum (Gibco) + 83% DMEM medium (Gibco) + 1% Penicilin-Streptomyces (Gibco) + 1% HEPES (Solarbio). Cell culture conditions: 37 ℃ and 5% CO2、5%O2The constant temperature incubator.

The method for preparing the primary pig fibroblast comprises the following steps: taking 0.5g of pig ear tissue, removing hairs, soaking for 30-40s by using 75% alcohol, washing for 5 times by using PBS (phosphate buffer solution) containing 5% (volume ratio) Penicillin-streptomycin (Gibco), and washing for one time by using the PBS; ② the tissue is cut into pieces by scissors, 5mL of 1% collagenase solution (Sigma) is adopted to digest for 1h at 37 ℃, then 500g is centrifuged for 5min, and the supernatant is discarded; thirdly, resuspending the precipitate with 1mL of complete culture solution, then paving the precipitate into a 10-diameter cell culture dish which contains 10mL of complete culture medium and is sealed by 0.2% gelatin (VWR), and culturing until the cell grows to be about 60% of the bottom of the dish; and fourthly, after the step III is finished, digesting and collecting cells by adopting trypsin, and then suspending the cells in complete culture solution.

Example 1 preparation of plasmid

1.1 preparation of plasmid pU6gRNA eEF1a-mNLS-hSpCas9-EGFP-PURO (plasmid pKG-GE3 for short)

The original plasmid pX330-U6-Chimeric _ BB-CBh-hSpCas9 (plasmid pX330 for short) has the sequence shown in SEQ ID NO: 1 is shown. The structure of plasmid pX330 is schematically shown in FIG. 1. SEQ ID NO: 1, the 440-st-725 nucleotide constitutes the CMV enhancer, the 727-1208 th-1208 nucleotide constitutes the chicken beta-actin promoter, the 1304-st-1324 nucleotide encodes SV40 Nuclear Localization Signal (NLS), the 1325-st-5449 nucleotide encodes the Cas9 protein, and the 5450-st-5497 nucleotide encodes the nucleosplastin Nuclear Localization Signal (NLS).

The plasmid pU6gRNA eEF1a-mNLS-hSpCas9-EGFP-PURO is called plasmid pKG-GE3 for short, and the nucleotide is shown in SEQ ID NO: 2, respectively. The construction method comprises the following steps:

(1) removal of redundant null sequences in the gRNA backbone

Plasmid pX330 was digested with BbsI and XbaI, the vector fragment (about 8313 bp) was recovered, an insert 175bp (SEQ ID NO: 4) was synthesized by a multi-fragment recombination method, and the recovered vector fragment was recombined to obtain the pU6gRNAcas9 vector (FIG. 3).

(2) Engineering promoters and enhancers

For the constructed pU6gRNAcas9 vector, XbaI and AgeI endonuclease are used to remove promoter (chicken beta-actin promoter) and enhancer sequence (CMV enhancer), linear vector sequence is recovered about 7650bp, 554bp sequence containing CMV enhancer and EF1a promoter (SEQ ID NO: 5) is synthesized by multi-fragment recombination, and pU6gRNAcas9 is recombined with the vector pU6gRNAcas9 after enzyme digestion to obtain pU6 NA-eEF1a Cas9 vector (figure 4).

(3) Cas9 gene N-terminal increasing NLS sequence

The constructed vector pU6gRNA-eEF1a Cas9 is cut by AgeI and BglII, a 7786bp vector sequence is recovered, the sequence with increased NLS is supplemented to the enzyme cutting site, namely, a 447bp Cas9 coding sequence (SEQ ID NO: 6) comprising 2 nuclear localization signals and partial excision is synthesized by a multi-fragment recombination method, and the pU6gRNA-eEF1a Cas9+ nNLS vector (figure 5) is obtained by recombination.

(4) NLS, P2A-EGFP-T2A-PURO and WPRE-3' LTR-bGH polyA signals are added to the C end of Cas9 gene

The constructed vector is named as pU6gRNA-eEF1a Cas9+ nNLS, enzyme digestion is carried out by using FseI and SbfI, the 7781bp of vector sequence is recovered, 2727bp of sequence comprising NLS-P2A-EGFP-T2A-PURO-WPRE-3' LTR-bGH polyA signals (SEQ ID NO: 7) is synthesized by a multi-fragment recombination method, and the sequence and the vector fragment are recombined to obtain the pU6gRNA-eEF1a-mNLS-hSpCas9-EGFP-PURO, which is called pKG-GE3 for short, and the plasmid map is shown as figure 2 and the nucleotide sequence (SEQ ID NO: 2).

SEQ ID NO: 2, the 395-680 nucleotide constitutes a CMV enhancer, the 682-890 nucleotide constitutes an EF1a promoter, the 986-1006 nucleotide encodes a Nuclear Localization Signal (NLS), the 1016-1036 nucleotide encodes a Nuclear Localization Signal (NLS), the 1037-5161 nucleotide encodes a Cas9 protein, the 5162-5209 nucleotide encodes a Nuclear Localization Signal (NLS), the 5219-5266 nucleotide encodes a Nuclear Localization Signal (NLS), the 5276-5332 nucleotide encodes a self-splicing polypeptide P2A (the amino acid sequence of the self-splicing polypeptide P2A is "ATNFSLLKQAGDVEENPGP", the cleavage position occurring from the cleavage is between the first amino acid residue and the second amino acid residue from the C-terminal), the 5333-6046 nucleotide encodes an EGFP protein, the 526056-6109 nucleotide encodes a self-splicing polypeptide T2A (the amino acid sequence of the self-splicing polypeptide T2A is "EGRGSLLTCGDVEENPGP", between the first amino acid residue and the second amino acid residue from the C-terminal position of the cleavage site), nucleotides 6110-6703 encode Puromycin protein (Puro protein for short), nucleotides 6722-7310 constitute the WPRE sequence element, nucleotides 7382-7615 constitute the 3' LTR sequence element, and nucleotides 7647-7871 constitute the bGH poly (A) signal sequence element. SEQ ID NO: 2, 911-6706 form a fusion gene to express the fusion protein. Due to the presence of self-cleaving polypeptide P2A and self-cleaving polypeptide T2A, the fusion protein spontaneously forms the following three proteins: a protein with Cas9 protein, a protein with EGFP protein and a protein with Puro protein.

Compared with plasmid pX330, plasmid pKG-GE3 was mainly modified as follows: removing residual gRNA framework sequences (GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTTT) to reduce interference; secondly, the original chicken beta-actin promoter is transformed into an EF1a promoter with higher expression activity, so that the protein expression capacity of the Cas9 gene is improved; ③ the nuclear localization signal coding gene (NLS) is added at the upstream and the downstream of the Cas9 gene, and the nuclear localization capability of the Cas9 protein is increased; the original plasmid does not have any eukaryotic cell screening marker, is not beneficial to screening and enriching of positive transformed cells, and is sequentially inserted with a P2A-EGFP-T2A-PURO coding gene at the downstream of the Cas9 gene to endow the vector with fluorescence and eukaryotic cell resistance screening capacity; inserting WPRE element and 3' LTR sequence element to strengthen the protein translating capacity of Cas9 gene.

1.2 construction of pKG-U6gRNA vector

A pUC57 vector is derived, a pKG-U6gRNA insertion sequence (a DNA fragment containing a U6 promoter, a BbsI enzyme cutting site and a sgRNA framework sequence, the sequence is shown as SEQ ID NO: 8) is connected through an EcoRV enzyme cutting site, and is reversely inserted into a pUC57 vector to obtain a pKG-U6gRNA vector complete sequence (SEQ ID NO: 3), SEQ ID NO: 3, the 2280-position 2539 nucleotide constitutes the hU6 promoter, and the 2558-position 2637 nucleotide is used for transcription to form a gRNA framework. When the recombinant gRNA is used, a DNA molecule (a target sequence binding region for forming gRNA through transcription) of about 20bp is inserted into a plasmid pKG-U6gRNA to form a recombinant plasmid, and the recombinant plasmid is transcribed in a cell to obtain the gRNA, wherein a schematic diagram is shown in figure 4. The map of the constructed pKG-U6gRNA vector is shown in FIG. 6.

Example 2 comparison of the Effect of plasmid pX330 and plasmid pKG-GE3

Selecting a high efficiency gRNA target located in the RAG1 gene:

target of RAG1-gRNA 4: 5'-AGTTATGGCAGAACTCAGTG-3' (SEQ ID NO: 9).

The primers used to amplify and detect the fragment containing the target were as follows:

RAG1-nF126:5’-CCCCATCCAAAGTTTTTAAAGGA-3’(SEQ ID NO:10);

RAG1-nR525:5’-TGTGGCAGATGTCACAGTTTAGG-3’(SEQ ID NO:11)

porcine primary fibroblasts were prepared from Jiangxiang pigs (female, blood group AO).

Firstly, preparing recombinant plasmid

The plasmid pKG-U6gRNA was digested with the restriction enzyme BbsI, and the vector backbone (approximately 3kb linear large fragment) was recovered. RAG1-4S and RAG1-4A were synthesized separately, mixed and annealed to give double-stranded DNA molecules with sticky ends. The double-stranded DNA molecule with cohesive ends was ligated to the vector backbone to give plasmid pKG-U6gRNA (RAG1-gRNA 4).

RAG1-4S:5’-caccgAGTTATGGCAGAACTCAGTG-3’(SEQ ID NO:12);

RAG1-4A:5’-aaacCACTGAGTTCTGCCATAACTc-3’(SEQ ID NO:13)。

RAG1-4S and RAG1-4A are both single stranded DNA molecules.

Second, plasmid proportion optimization

A first group: plasmid pKG-U6gRNA (RAG1-gRNA4) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.44 μ g plasmid pKG-U6gRNA (RAG1-gRNA 4): 1.56. mu.g of plasmid pKG-GE 3. Namely, the molar ratio of the plasmid pKG-U6gRNA (RAG1-gRNA4) to the plasmid pKG-GE3 is as follows: 1: 1.

second group: plasmid pKG-U6gRNA (RAG1-gRNA4) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.72 μ g plasmid pKG-U6gRNA (RAG1-gRNA 4): 1.28. mu.g of plasmid pKG-GE 3. Namely, the molar ratio of the plasmid pKG-U6gRNA (RAG1-gRNA4) to the plasmid pKG-GE3 is as follows: 2: 1.

third group: plasmid pKG-U6gRNA (RAG1-gRNA4) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92 μ g plasmid pKG-U6gRNA (RAG1-gRNA 4): 1.08. mu.g of plasmid pKG-GE 3. Namely, the molar ratio of the plasmid pKG-U6gRNA (RAG1-gRNA4) to the plasmid pKG-GE3 is as follows: 3: 1.

and a fourth group: plasmid pKG-U6gRNA (RAG1-gRNA4) was transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: mu.g of plasmid pKG-U6gRNA (RAG1-gRNA 4).

Co-transfection was performed by electroporation using a mammalian nuclear transfection kit (Neon kit, Thermofeisher) and a Neon TM transfection system electrotransfer instrument (parameters set at 1450V, 10ms, 3 pulses).

2. After step 1, the culture is carried out for 16 to 18 hours by using the complete culture solution, and then the culture is carried out by replacing the complete culture solution with a new one. The total time of incubation was 48 hours.

3. After completion of step 2, cells were trypsinized and collected, genomic DNA was extracted, PCR amplified using a primer pair consisting of RAG1-nF126 and RAG1-nR525, and then subjected to electrophoresis.

After electrophoresis, the band of interest was recovered and sequenced, and the sequencing results are shown in FIG. 8.

The editing efficiency of different targets was obtained by analyzing the sequencing peak patterns using the syntheo ICE tool. The gene editing efficiency of the first group to the third group was 9%, 53%, and 66% in this order. The fourth group did not undergo gene editing. The result shows that the editing efficiency of the third group is highest, and the optimal dosage of the single gRNA plasmid and the Cas9 plasmid is determined to be 3:1, the actual amount of plasmid is 0.92. mu.g: 1.08. mu.g.

Thirdly, the effect comparison of plasmid pX330 and plasmid pKG-GE3

1. Cotransfection

Group RAG 1-B: plasmid pKG-U6gRNA (RAG1-gRNA4) was transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92. mu.g of plasmid pKG-U6gRNA (RAG1-gRNA 4).

RAG1-330 group: plasmid pKG-U6gRNA (RAG1-gRNA4) and plasmid pX330 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92 μ g plasmid pKG-U6gRNA (RAG1-gRNA 4): 1.08. mu.g of plasmid pX 330.

Group RAG 1-KG: plasmid pKG-U6gRNA (RAG1-gRNA4) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92 μ g plasmid pKG-U6gRNA (RAG1-gRNA 4): 1.08. mu.g of plasmid pKG-GE 3.

Co-transfection was performed by electroporation using a mammalian nuclear transfection kit (Neon kit, Thermofeisher) and a Neon TM transfection system electrotransfer instrument (parameters set at 1450V, 10ms, 3 pulses).

2. After step 1, the culture is carried out for 16 to 18 hours by using the complete culture solution, and then the culture is carried out by replacing the complete culture solution with a new one. The total time of incubation was 48 hours.

3. After completion of step 2, cells were trypsinized and harvested, genomic DNA was extracted, PCR amplified using a primer pair consisting of RAG1-nF126 and RAG1-nR525, and the products were sequenced.

The editing efficiency of different targets was obtained by analyzing the sequencing peak patterns using the syntheo ICE tool. Gene editing did not occur in the RAG1-B group. The editing efficiency of the RAG1-330 group and the RAG1-KG group is 28% and 68% in sequence. An exemplary peak pattern of the sequencing results is shown in FIG. 9. The results showed that the use of plasmid pKG-GE3 resulted in a significant improvement in gene editing efficiency compared to the use of plasmid pX 330.

Example 3 target screening for ADCY3 Gene knockout

Porcine ADCY3 gene information: encoding an adenylate cyclase 3 protein; is located on pig chromosome 3;

GeneID 100514402, Sus scrofa. The protein encoded by the porcine ADCY3 gene is shown in GENBANK ACCESSION NO. XP _020943435.1(linear CON 12-JAN-2018). In the genomic DNA, the porcine ADCY3 gene has 22 exons, wherein the 3 rd exon is shown as SEQ ID NO: 14, and the coded protein fragment is shown as SEQ ID NO: shown at 15.

First, ADCY3 gene knockout preset target and adjacent genome sequence conservation analysis

18 newborn Jiangxiang pigs, 10 females (named 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively) and 8 males (named A, B, C, D, E, F, G, H, respectively).

The genomic DNA of 18 pigs were used as templates, respectively, and PCR amplification was performed using a primer pair (the target sequence of the primer pair includes exon 12 of the porcine ADCY3 gene), followed by electrophoresis. And recovering PCR amplification products, sequencing, and comparing the sequencing result with the ADCY3 gene sequence in a public database for analysis. Based on the alignment, primers for detecting mutations were designed (the primers themselves avoid potential mutation sites). Primers designed to detect mutations were: ADCY3-E3-F/ADCY 3-E3-R. The electrophoresis chart of 18 pig genomic DNA after PCR amplification using the primer pair consisting of ADCY3-E3-F/ADCY3-E3-R is shown in FIG. 7.

ADCY3-E3-F:5’-TTGGGGTTGAATCGTGGTCA-3’(SEQ ID NO:16);

ADCY3-E3-R:5’-AGGGAGCCAGCGAAAGATAAC-3’(SEQ ID NO:17)。

Secondly, screening target spots

And primarily screening a plurality of targets by screening NGG (avoiding possible mutation sites), and further screening 4 targets from the NGG through a preliminary experiment.

The 4 targets were as follows:

sgRNAADCY3-E3-g1and (3) target point: 5'-GGAGGTGAAGATGAACCTGG-3' (SEQ ID NO: 18);

sgRNAADCY3-E3-g2and (3) target point: 5'-GCACCGCAAAGCCTTCCTGG-3' (SEQ ID NO: 19);

sgRNAADCY3-E3-g3and (3) target point: 5'-GGGCCTCCAGGAAGGCTTTG-3' (SEQ ID NO: 20);

sgRNAADCY3-E3-g4and (3) target point: 5'-GGAAGGCTTTGCGGTGCTTG-3' (SEQ ID NO: 21).

Thirdly, preparing recombinant plasmid

The plasmid pKG-U6gRNA was digested with the restriction enzyme BbsI, and the vector backbone (approximately 3kb linear large fragment) was recovered.

ADCY3-E3-gRNA1-S and ADCY3-E3-gRNA1-A are synthesized respectively, and then mixed and annealed to obtain a double-stranded DNA molecule with cohesive ends. The double-stranded DNA molecule with cohesive ends was ligated to the vector backbone to give plasmid pKG-U6gRNA (ADCY3-E3-g 1). Plasmid pKG-U6gRNA (ADCY3-E3-g1) expresses the nucleic acid sequence of SEQ ID NO: 22 of sgRNAADCY3-E3-g1

SEQ ID NO:22:

GGAGGUGAAGAUGAACCUGGguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu

Respectively synthesizing ADCY3-E3-gRNA2-S and ADCY3-E3-gRNA2-A, mixing and annealing to obtain the productDouble-stranded DNA molecules with cohesive ends. The double-stranded DNA molecule with cohesive ends was ligated to the vector backbone to give plasmid pKG-U6gRNA (ADCY3-E3-g 2). Plasmid pKG-U6gRNA (ADCY3-E3-g2) expresses the nucleic acid sequence of SEQ ID NO: 23 sgRNAADCY3-E3-g2

SEQ ID NO:23

GCACCGCAAAGCCUUCCUGGguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu

ADCY3-E3-gRNA3-S and ADCY3-E3-gRNA3-A are synthesized respectively, and then mixed and annealed to obtain a double-stranded DNA molecule with cohesive ends. The double-stranded DNA molecule with cohesive ends was ligated to the vector backbone to give plasmid pKG-U6gRNA (ADCY3-E3-g 3). Plasmid pKG-U6gRNA (ADCY3-E3-g3) expresses the nucleic acid sequence of SEQ ID NO: 24 sgRNAADCY3-E3-g3

SEQ ID NO:24:

GGGCCUCCAGGAAGGCUUUGguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu

ADCY3-E3-gRNA4-S and ADCY3-E3-gRNA4-A are synthesized respectively, and then mixed and annealed to obtain a double-stranded DNA molecule with cohesive ends. The double-stranded DNA molecule with cohesive ends was ligated to the vector backbone to give plasmid pKG-U6gRNA (ADCY3-E3-g 4). Plasmid pKG-U6gRNA (ADCY3-E3-g4) expresses the nucleic acid sequence of SEQ ID NO: 25 of sgRNAADCY3-E3-g1

SEQ ID NO:25:

GGAAGGCUUUGCGGUGCUUGguuuuagagcuagaaauagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu

ADCY3-E3-gRNA1-S:5’-caccGGAGGTGAAGATGAACCTGG-3’(SEQ ID NO:26);

ADCY3-E3-gRNA1-A:5’-aaacCCAGGTTCATCTTCACCTCC-3’(SEQ ID NO:27);

ADCY3-E3-gRNA2-S:5’-caccGCACCGCAAAGCCTTCCTGG-3’(SEQ ID NO:28);

ADCY3-E3-gRNA2-A:5’-aaacCCAGGAAGGCTTTGCGGTGC-3’(SEQ ID NO:29);

ADCY3-E3-gRNA3-S:5’-caccGGGCCTCCAGGAAGGCTTTG-3’(SEQ ID NO:30);

ADCY3-E3-gRNA3-A:5’-aaacCAAAGCCTTCCTGGAGGCCC-3’(SEQ ID NO:31);

ADCY3-E3-gRNA4-S:5’-caccGGAAGGCTTTGCGGTGCTTG-3’(SEQ ID NO:32);

ADCY3-E3-gRNA4-A:5’-aaacCAAGCACCGCAAAGCCTTCC-3’(SEQ ID NO:33)。

ADCY3-E3-gRNA1-S, ADCY3-E3-gRNA1-A, ADCY3-E3-gRNA2-S, ADCY3-E3-gRNA2-A, ADCY3-E3-gRNA3-S, ADCY3-E3-gRNA3-A, ADCY3-E3-gRNA4-S, ADCY3-E3-gRNA4-A are all single-stranded DNA molecules.

Four, comparison of editing efficiency of different target points

Porcine primary fibroblasts were prepared from ear tissue of newborn Jiangxiang pigs (female, blood group AO).

1. Cotransfection

A first group: plasmid pKG-U6gRNA (ADCY3-E3-g1) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92. mu.g plasmid pKG-U6gRNA (ADCY3-E3-g 1): 1.08. mu.g of plasmid pKG-GE 3.

Second group: plasmid pKG-U6gRNA (ADCY3-E3-g2) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92. mu.g plasmid pKG-U6gRNA (ADCY3-E3-g 2): 1.08. mu.g of plasmid pKG-GE 3.

Third group: plasmid pKG-U6gRNA (ADCY3-E3-g3) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92. mu.g plasmid pKG-U6gRNA (ADCY3-E3-g 3): 1.08. mu.g of plasmid pKG-GE 3.

And a fourth group: plasmid pKG-U6gRNA (ADCY3-E3-g4) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92. mu.g plasmid pKG-U6gRNA (ADCY3-E3-g 4): 1.08. mu.g of plasmid pKG-GE 3.

And a fifth group: porcine primary fibroblasts, without any transfection procedure.

Co-transfection was performed by electroporation using a mammalian nuclear transfection kit (Neon kit, Thermofeisher) and a Neon TM transfection system electrotransfer instrument (parameters set at 1450V, 10ms, 3 pulses).

2. After step 1, the culture is carried out for 16 to 18 hours by using the complete culture solution, and then the culture is carried out by replacing the complete culture solution with a new one. The total time of incubation was 48 hours.

3. After completion of step 2, the cells were digested with trypsin and collected, then lysed and genomic DNA was extracted, PCR-amplified using a primer pair consisting of ADCY3-E3-F and ADCY3-E3-R, and then subjected to electrophoresis. The target fragment was recovered and sequenced, and the peak pattern of the sequencing is shown in FIG. 8. Analyzing the sequencing peak map by using a syntheo ICE tool to obtain the gene editing efficiency of different targets. The gene editing efficiency of the first group to the fourth group was 43%, 17%, 2%, 3% in this order. No gene editing occurred in the fifth group. The result shows that the editing efficiency of the first group is highest, and the sgRNAADCY3-E3-g1The target point of (2) is the optimal target point.

Example 4 preparation of ADCY3 Gene editing monoclonal cells

Porcine primary fibroblasts were prepared from ear tissue of newborn Jiangxiang pigs (female, blood group AO).

1. Cotransfection

Plasmid pKG-U6gRNA (ADCY3-E3-g1) and plasmid pKG-GE3 were co-transfected into porcine primary fibroblasts. Proportioning: about 20 million porcine primary fibroblasts: 0.92. mu.g plasmid pKG-U6gRNA (ADCY3-E3-g 1): 1.08. mu.g of plasmid pKG-GE 3.

Co-transfection was performed by electroporation using a mammalian nuclear transfection kit (Neon kit, Thermofeisher) and a Neon TM transfection system electrotransfer instrument (parameters set at 1450V, 10ms, 3 pulses).

2. After step 1, the culture is carried out for 16 to 18 hours by using the complete culture solution, and then the culture is carried out by replacing the complete culture solution with a new one. The total time of incubation was 48 hours.

3. After completion of step 2, cells were trypsinized and collected, washed with complete medium, resuspended in complete medium, and then individual cells were individually picked up into different wells of a 96-well plate (1 cell per well with 100. mu.l of complete medium in each well) and cultured for 2 weeks (replacement of new complete medium every 2-3 days).

4. After completion of step 3, cells were trypsinized and harvested (cells obtained per well, about 2/3 were seeded into 6-well plates containing complete culture broth, and the remaining 1/3 were harvested in 1.5mL centrifuge tubes for subsequent genotyping assays).

5. The 6-well plate of step 4 was cultured until the cells grew to 80% confluence, trypsinized and harvested, and the cells were cryopreserved using a cell cryopreservation solution (90% complete medium + 10% DMSO by volume).

6. And (4) taking the centrifugal tube in the step (4), taking the cell, extracting genomic DNA, carrying out PCR amplification by adopting a primer pair consisting of ADCY3-E3-F and ADCY3-E3-R, and then carrying out electrophoresis. Porcine primary fibroblasts were used as wild type controls. The electrophoretogram is shown in FIG. 9. Lane numbers in fig. 9 are consistent with cell numbers in table 1.

7. After completion of step 6, the PCR amplification product was recovered and sequenced.

The sequencing result of the pig primary fibroblast is only one, and the genotype is wild type. If the sequencing result of a certain monoclonal cell has two types, one type is consistent with the sequencing result of the pig primary fibroblast, and the other type has mutation (mutation comprises deletion, insertion or substitution of one or more nucleotides) compared with the sequencing result of the pig primary fibroblast, the genotype of the monoclonal cell is a heterozygous mutant type; if the sequencing result of a certain monoclonal cell is two types, the two types of the sequencing results are both mutated (the mutation comprises deletion, insertion or substitution of one or more nucleotides) compared with the sequencing result of the pig primary fibroblast, and the genotype of the monoclonal cell is a homozygous mutant type with different variation of biallelic genes; if the sequencing result of a certain monoclonal cell is one and mutation (mutation comprises deletion, insertion or substitution of one or more nucleotides) is generated compared with the sequencing result of the pig primary fibroblast, the genotype of the monoclonal cell is a homozygous mutant with the same variation of biallelic genes; if the sequencing result of a certain monoclonal cell is one and is consistent with the sequencing result of the pig primary fibroblast, the genotype of the monoclonal cell is wild type.

The results are shown in Table 1. The genotypes of the monoclonal cells numbered 1, 3, 4, 7, 10, 11, 13, 17, 21, 26, 31, 36, 41 and 42 are homozygous mutants of biallelic different variations. The genotypes of the monoclonal cells numbered 22, 28 and 40 are heterozygous mutants. The monoclonal cells numbered 2, 5, 12, 23, 25 all showed a complex set of peaks, and thus no valid sequence could be obtained, and genotype and specific form could not be determined, but it could be judged that gene editing occurred. The ratio of the obtained gene-editing monoclonal cells was 22/41.

Exemplary sequencing alignment results are shown in fig. 10-12. FIG. 10 shows the alignment of the wild type and forward sequencing of monoclonal cell ADCY3-6, which was judged to be wild type. FIG. 11 shows the result of alignment of the wild type with forward sequencing of monoclonal cells numbered ADCY3-22, which was judged as a heterozygous mutant. FIG. 12 shows the result of forward sequencing of monoclonal cells numbered ADCY3-17, aligned with the wild type, and judged as homozygous mutant for the biallelic variant.

TABLE 1

The present invention has been described in detail above. It will be apparent to those skilled in the art that the invention can be practiced in a wide range of equivalent parameters, concentrations, and conditions without departing from the spirit and scope of the invention and without undue experimentation. While the invention has been described with reference to specific embodiments, it will be appreciated that the invention can be further modified. In general, this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains. The use of some of the essential features is possible within the scope of the claims attached below.

Sequence listing

<110> Nanjing King Gene engineering Co., Ltd

<120> CRISPR system for ADCY3 gene editing and application thereof in construction of obese pig nuclear transfer donor cells

<160> 33

<170> SIPOSequenceListing 1.0

<210> 1

<211> 8484

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 1

gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60

ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120

aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180

atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240

cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300

gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttg ttttagagct 360

agaaatagca agttaaaata aggctagtcc gtttttagcg cgtgcgccaa ttctgcagac 420

aaatggctct agaggtaccc gttacataac ttacggtaaa tggcccgcct ggctgaccgc 480

ccaacgaccc ccgcccattg acgtcaatag taacgccaat agggactttc cattgacgtc 540

aatgggtgga gtatttacgg taaactgccc acttggcagt acatcaagtg tatcatatgc 600

caagtacgcc ccctattgac gtcaatgacg gtaaatggcc cgcctggcat tgtgcccagt 660

acatgacctt atgggacttt cctacttggc agtacatcta cgtattagtc atcgctatta 720

ccatggtcga ggtgagcccc acgttctgct tcactctccc catctccccc ccctccccac 780

ccccaatttt gtatttattt attttttaat tattttgtgc agcgatgggg gcgggggggg 840

ggggggggcg gggcgagggg cggggcgggg cgaggcggag aggtgcggcg gcagccaatc 900

agagcggcgc gctccgaaag tttcctttta tggcgaggcg gcggcggcgg cggccctata 960

aaaagcgaag cgcgcggcgg gcgggagtcg ctgcgcgctg ccttcgcccc gtgccccgct 1020

ccgccgccgc ctcgcgccgc ccgccccggc tctgactgac cgcgttactc ccacaggtga 1080

gcgggcggga cggcccttct cctccgggct gtaattagct gagcaagagg taagggttta 1140

agggatggtt ggttggtggg gtattaatgt ttaattacct ggagcacctg cctgaaatca 1200

ctttttttca ggttggaccg gtgccaccat ggactataag gaccacgacg gagactacaa 1260

ggatcatgat attgattaca aagacgatga cgataagatg gccccaaaga agaagcggaa 1320

ggtcggtatc cacggagtcc cagcagccga caagaagtac agcatcggcc tggacatcgg 1380

caccaactct gtgggctggg ccgtgatcac cgacgagtac aaggtgccca gcaagaaatt 1440

caaggtgctg ggcaacaccg accggcacag catcaagaag aacctgatcg gagccctgct 1500

gttcgacagc ggcgaaacag ccgaggccac ccggctgaag agaaccgcca gaagaagata 1560

caccagacgg aagaaccgga tctgctatct gcaagagatc ttcagcaacg agatggccaa 1620

ggtggacgac agcttcttcc acagactgga agagtccttc ctggtggaag aggataagaa 1680

gcacgagcgg caccccatct tcggcaacat cgtggacgag gtggcctacc acgagaagta 1740

ccccaccatc taccacctga gaaagaaact ggtggacagc accgacaagg ccgacctgcg 1800

gctgatctat ctggccctgg cccacatgat caagttccgg ggccacttcc tgatcgaggg 1860

cgacctgaac cccgacaaca gcgacgtgga caagctgttc atccagctgg tgcagaccta 1920

caaccagctg ttcgaggaaa accccatcaa cgccagcggc gtggacgcca aggccatcct 1980

gtctgccaga ctgagcaaga gcagacggct ggaaaatctg atcgcccagc tgcccggcga 2040

gaagaagaat ggcctgttcg gaaacctgat tgccctgagc ctgggcctga cccccaactt 2100

caagagcaac ttcgacctgg ccgaggatgc caaactgcag ctgagcaagg acacctacga 2160

cgacgacctg gacaacctgc tggcccagat cggcgaccag tacgccgacc tgtttctggc 2220

cgccaagaac ctgtccgacg ccatcctgct gagcgacatc ctgagagtga acaccgagat 2280

caccaaggcc cccctgagcg cctctatgat caagagatac gacgagcacc accaggacct 2340

gaccctgctg aaagctctcg tgcggcagca gctgcctgag aagtacaaag agattttctt 2400

cgaccagagc aagaacggct acgccggcta cattgacggc ggagccagcc aggaagagtt 2460

ctacaagttc atcaagccca tcctggaaaa gatggacggc accgaggaac tgctcgtgaa 2520

gctgaacaga gaggacctgc tgcggaagca gcggaccttc gacaacggca gcatccccca 2580

ccagatccac ctgggagagc tgcacgccat tctgcggcgg caggaagatt tttacccatt 2640

cctgaaggac aaccgggaaa agatcgagaa gatcctgacc ttccgcatcc cctactacgt 2700

gggccctctg gccaggggaa acagcagatt cgcctggatg accagaaaga gcgaggaaac 2760

catcaccccc tggaacttcg aggaagtggt ggacaagggc gcttccgccc agagcttcat 2820

cgagcggatg accaacttcg ataagaacct gcccaacgag aaggtgctgc ccaagcacag 2880

cctgctgtac gagtacttca ccgtgtataa cgagctgacc aaagtgaaat acgtgaccga 2940

gggaatgaga aagcccgcct tcctgagcgg cgagcagaaa aaggccatcg tggacctgct 3000

gttcaagacc aaccggaaag tgaccgtgaa gcagctgaaa gaggactact tcaagaaaat 3060

cgagtgcttc gactccgtgg aaatctccgg cgtggaagat cggttcaacg cctccctggg 3120

cacataccac gatctgctga aaattatcaa ggacaaggac ttcctggaca atgaggaaaa 3180

cgaggacatt ctggaagata tcgtgctgac cctgacactg tttgaggaca gagagatgat 3240

cgaggaacgg ctgaaaacct atgcccacct gttcgacgac aaagtgatga agcagctgaa 3300

gcggcggaga tacaccggct ggggcaggct gagccggaag ctgatcaacg gcatccggga 3360

caagcagtcc ggcaagacaa tcctggattt cctgaagtcc gacggcttcg ccaacagaaa 3420

cttcatgcag ctgatccacg acgacagcct gacctttaaa gaggacatcc agaaagccca 3480

ggtgtccggc cagggcgata gcctgcacga gcacattgcc aatctggccg gcagccccgc 3540

cattaagaag ggcatcctgc agacagtgaa ggtggtggac gagctcgtga aagtgatggg 3600

ccggcacaag cccgagaaca tcgtgatcga aatggccaga gagaaccaga ccacccagaa 3660

gggacagaag aacagccgcg agagaatgaa gcggatcgaa gagggcatca aagagctggg 3720

cagccagatc ctgaaagaac accccgtgga aaacacccag ctgcagaacg agaagctgta 3780

cctgtactac ctgcagaatg ggcgggatat gtacgtggac caggaactgg acatcaaccg 3840

gctgtccgac tacgatgtgg accatatcgt gcctcagagc tttctgaagg acgactccat 3900

cgacaacaag gtgctgacca gaagcgacaa gaaccggggc aagagcgaca acgtgccctc 3960

cgaagaggtc gtgaagaaga tgaagaacta ctggcggcag ctgctgaacg ccaagctgat 4020

tacccagaga aagttcgaca atctgaccaa ggccgagaga ggcggcctga gcgaactgga 4080

taaggccggc ttcatcaaga gacagctggt ggaaacccgg cagatcacaa agcacgtggc 4140

acagatcctg gactcccgga tgaacactaa gtacgacgag aatgacaagc tgatccggga 4200

agtgaaagtg atcaccctga agtccaagct ggtgtccgat ttccggaagg atttccagtt 4260

ttacaaagtg cgcgagatca acaactacca ccacgcccac gacgcctacc tgaacgccgt 4320

cgtgggaacc gccctgatca aaaagtaccc taagctggaa agcgagttcg tgtacggcga 4380

ctacaaggtg tacgacgtgc ggaagatgat cgccaagagc gagcaggaaa tcggcaaggc 4440

taccgccaag tacttcttct acagcaacat catgaacttt ttcaagaccg agattaccct 4500

ggccaacggc gagatccgga agcggcctct gatcgagaca aacggcgaaa ccggggagat 4560

cgtgtgggat aagggccggg attttgccac cgtgcggaaa gtgctgagca tgccccaagt 4620

gaatatcgtg aaaaagaccg aggtgcagac aggcggcttc agcaaagagt ctatcctgcc 4680

caagaggaac agcgataagc tgatcgccag aaagaaggac tgggacccta agaagtacgg 4740

cggcttcgac agccccaccg tggcctattc tgtgctggtg gtggccaaag tggaaaaggg 4800

caagtccaag aaactgaaga gtgtgaaaga gctgctgggg atcaccatca tggaaagaag 4860

cagcttcgag aagaatccca tcgactttct ggaagccaag ggctacaaag aagtgaaaaa 4920

ggacctgatc atcaagctgc ctaagtactc cctgttcgag ctggaaaacg gccggaagag 4980

aatgctggcc tctgccggcg aactgcagaa gggaaacgaa ctggccctgc cctccaaata 5040

tgtgaacttc ctgtacctgg ccagccacta tgagaagctg aagggctccc ccgaggataa 5100

tgagcagaaa cagctgtttg tggaacagca caagcactac ctggacgaga tcatcgagca 5160

gatcagcgag ttctccaaga gagtgatcct ggccgacgct aatctggaca aagtgctgtc 5220

cgcctacaac aagcaccggg ataagcccat cagagagcag gccgagaata tcatccacct 5280

gtttaccctg accaatctgg gagcccctgc cgccttcaag tactttgaca ccaccatcga 5340

ccggaagagg tacaccagca ccaaagaggt gctggacgcc accctgatcc accagagcat 5400

caccggcctg tacgagacac ggatcgacct gtctcagctg ggaggcgaca aaaggccggc 5460

ggccacgaaa aaggccggcc aggcaaaaaa gaaaaagtaa gaattcctag agctcgctga 5520

tcagcctcga ctgtgccttc tagttgccag ccatctgttg tttgcccctc ccccgtgcct 5580

tccttgaccc tggaaggtgc cactcccact gtcctttcct aataaaatga ggaaattgca 5640

tcgcattgtc tgagtaggtg tcattctatt ctggggggtg gggtggggca ggacagcaag 5700

ggggaggatt gggaagagaa tagcaggcat gctggggagc ggccgcagga acccctagtg 5760

atggagttgg ccactccctc tctgcgcgct cgctcgctca ctgaggccgg gcgaccaaag 5820

gtcgcccgac gcccgggctt tgcccgggcg gcctcagtga gcgagcgagc gcgcagctgc 5880

ctgcaggggc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat ttcacaccgc 5940

atacgtcaaa gcaaccatag tacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6000

tggttacgcg cagcgtgacc gctacacttg ccagcgcctt agcgcccgct cctttcgctt 6060

tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc 6120

tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttgg 6180

gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6240

agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc aactctatct 6300

cgggctattc ttttgattta taagggattt tgccgatttc ggtctattgg ttaaaaaatg 6360

agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaattttat 6420

ggtgcactct cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc 6480

caacacccgc tgacgcgccc tgacgggctt gtctgctccc ggcatccgct tacagacaag 6540

ctgtgaccgt ctccgggagc tgcatgtgtc agaggttttc accgtcatca ccgaaacgcg 6600

cgagacgaaa gggcctcgtg atacgcctat ttttataggt taatgtcatg ataataatgg 6660

tttcttagac gtcaggtggc acttttcggg gaaatgtgcg cggaacccct atttgtttat 6720

ttttctaaat acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc 6780

aataatattg aaaaaggaag agtatgagta ttcaacattt ccgtgtcgcc cttattccct 6840

tttttgcggc attttgcctt cctgtttttg ctcacccaga aacgctggtg aaagtaaaag 6900

atgctgaaga tcagttgggt gcacgagtgg gttacatcga actggatctc aacagcggta 6960

agatccttga gagttttcgc cccgaagaac gttttccaat gatgagcact tttaaagttc 7020

tgctatgtgg cgcggtatta tcccgtattg acgccgggca agagcaactc ggtcgccgca 7080

tacactattc tcagaatgac ttggttgagt actcaccagt cacagaaaag catcttacgg 7140

atggcatgac agtaagagaa ttatgcagtg ctgccataac catgagtgat aacactgcgg 7200

ccaacttact tctgacaacg atcggaggac cgaaggagct aaccgctttt ttgcacaaca 7260

tgggggatca tgtaactcgc cttgatcgtt gggaaccgga gctgaatgaa gccataccaa 7320

acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc aaactattaa 7380

ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg gaggcggata 7440

aagttgcagg accacttctg cgctcggccc ttccggctgg ctggtttatt gctgataaat 7500

ctggagccgg tgagcgtgga agccgcggta tcattgcagc actggggcca gatggtaagc 7560

cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat gaacgaaata 7620

gacagatcgc tgagataggt gcctcactga ttaagcattg gtaactgtca gaccaagttt 7680

actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg atctaggtga 7740

agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg ttccactgag 7800

cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa 7860

tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg ccggatcaag 7920

agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata ccaaatactg 7980

ttcttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca ccgcctacat 8040

acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag tcgtgtctta 8100

ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc tgaacggggg 8160

gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga tacctacagc 8220

gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg tatccggtaa 8280

gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac gcctggtatc 8340

tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg tgatgctcgt 8400

caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct 8460

tttgctggcc ttttgctcac atgt 8484

<210> 2

<211> 10476

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 2

gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60

ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120

aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180

atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240

cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag ttaaaataag 300

gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttc tagcgcgtgc 360

gccaattctg cagacaaatg gctctagagg tacccgttac ataacttacg gtaaatggcc 420

cgcctggctg accgcccaac gacccccgcc cattgacgtc aatagtaacg ccaataggga 480

ctttccattg acgtcaatgg gtggagtatt tacggtaaac tgcccacttg gcagtacatc 540

aagtgtatca tatgccaagt acgcccccta ttgacgtcaa tgacggtaaa tggcccgcct 600

ggcattgtgc ccagtacatg accttatggg actttcctac ttggcagtac atctacgtat 660

tagtcatcgc tattaccatg ggggcagagc gcacatcgcc cacagtcccc gagaagttgg 720

ggggaggggt cggcaattga tccggtgcct agagaaggtg gcgcggggta aactgggaaa 780

gtgatgtcgt gtactggctc cgcctttttc ccgagggtgg gggagaaccg tatataagtg 840

cagtagtcgc cgtgaacgtt ctttttcgca acgggtttgc cgccagaaca caggttggac 900

cggtgccacc atggactata aggaccacga cggagactac aaggatcatg atattgatta 960

caaagacgat gacgataaga tggcccccaa aaagaaacga aaggtgggtg ggtccccaaa 1020

gaagaagcgg aaggtcggta tccacggagt cccagcagcc gacaagaagt acagcatcgg 1080

cctggacatc ggcaccaact ctgtgggctg ggccgtgatc accgacgagt acaaggtgcc 1140

cagcaagaaa ttcaaggtgc tgggcaacac cgaccggcac agcatcaaga agaacctgat 1200

cggagccctg ctgttcgaca gcggcgaaac agccgaggcc acccggctga agagaaccgc 1260

cagaagaaga tacaccagac ggaagaaccg gatctgctat ctgcaagaga tcttcagcaa 1320

cgagatggcc aaggtggacg acagcttctt ccacagactg gaagagtcct tcctggtgga 1380

agaggataag aagcacgagc ggcaccccat cttcggcaac atcgtggacg aggtggccta 1440

ccacgagaag taccccacca tctaccacct gagaaagaaa ctggtggaca gcaccgacaa 1500

ggccgacctg cggctgatct atctggccct ggcccacatg atcaagttcc ggggccactt 1560

cctgatcgag ggcgacctga accccgacaa cagcgacgtg gacaagctgt tcatccagct 1620

ggtgcagacc tacaaccagc tgttcgagga aaaccccatc aacgccagcg gcgtggacgc 1680

caaggccatc ctgtctgcca gactgagcaa gagcagacgg ctggaaaatc tgatcgccca 1740

gctgcccggc gagaagaaga atggcctgtt cggaaacctg attgccctga gcctgggcct 1800

gacccccaac ttcaagagca acttcgacct ggccgaggat gccaaactgc agctgagcaa 1860

ggacacctac gacgacgacc tggacaacct gctggcccag atcggcgacc agtacgccga 1920

cctgtttctg gccgccaaga acctgtccga cgccatcctg ctgagcgaca tcctgagagt 1980

gaacaccgag atcaccaagg cccccctgag cgcctctatg atcaagagat acgacgagca 2040

ccaccaggac ctgaccctgc tgaaagctct cgtgcggcag cagctgcctg agaagtacaa 2100

agagattttc ttcgaccaga gcaagaacgg ctacgccggc tacattgacg gcggagccag 2160

ccaggaagag ttctacaagt tcatcaagcc catcctggaa aagatggacg gcaccgagga 2220

actgctcgtg aagctgaaca gagaggacct gctgcggaag cagcggacct tcgacaacgg 2280

cagcatcccc caccagatcc acctgggaga gctgcacgcc attctgcggc ggcaggaaga 2340

tttttaccca ttcctgaagg acaaccggga aaagatcgag aagatcctga ccttccgcat 2400

cccctactac gtgggccctc tggccagggg aaacagcaga ttcgcctgga tgaccagaaa 2460

gagcgaggaa accatcaccc cctggaactt cgaggaagtg gtggacaagg gcgcttccgc 2520

ccagagcttc atcgagcgga tgaccaactt cgataagaac ctgcccaacg agaaggtgct 2580

gcccaagcac agcctgctgt acgagtactt caccgtgtat aacgagctga ccaaagtgaa 2640

atacgtgacc gagggaatga gaaagcccgc cttcctgagc ggcgagcaga aaaaggccat 2700

cgtggacctg ctgttcaaga ccaaccggaa agtgaccgtg aagcagctga aagaggacta 2760

cttcaagaaa atcgagtgct tcgactccgt ggaaatctcc ggcgtggaag atcggttcaa 2820

cgcctccctg ggcacatacc acgatctgct gaaaattatc aaggacaagg acttcctgga 2880

caatgaggaa aacgaggaca ttctggaaga tatcgtgctg accctgacac tgtttgagga 2940

cagagagatg atcgaggaac ggctgaaaac ctatgcccac ctgttcgacg acaaagtgat 3000

gaagcagctg aagcggcgga gatacaccgg ctggggcagg ctgagccgga agctgatcaa 3060

cggcatccgg gacaagcagt ccggcaagac aatcctggat ttcctgaagt ccgacggctt 3120

cgccaacaga aacttcatgc agctgatcca cgacgacagc ctgaccttta aagaggacat 3180

ccagaaagcc caggtgtccg gccagggcga tagcctgcac gagcacattg ccaatctggc 3240

cggcagcccc gccattaaga agggcatcct gcagacagtg aaggtggtgg acgagctcgt 3300

gaaagtgatg ggccggcaca agcccgagaa catcgtgatc gaaatggcca gagagaacca 3360

gaccacccag aagggacaga agaacagccg cgagagaatg aagcggatcg aagagggcat 3420

caaagagctg ggcagccaga tcctgaaaga acaccccgtg gaaaacaccc agctgcagaa 3480

cgagaagctg tacctgtact acctgcagaa tgggcgggat atgtacgtgg accaggaact 3540

ggacatcaac cggctgtccg actacgatgt ggaccatatc gtgcctcaga gctttctgaa 3600

ggacgactcc atcgacaaca aggtgctgac cagaagcgac aagaaccggg gcaagagcga 3660

caacgtgccc tccgaagagg tcgtgaagaa gatgaagaac tactggcggc agctgctgaa 3720

cgccaagctg attacccaga gaaagttcga caatctgacc aaggccgaga gaggcggcct 3780

gagcgaactg gataaggccg gcttcatcaa gagacagctg gtggaaaccc ggcagatcac 3840

aaagcacgtg gcacagatcc tggactcccg gatgaacact aagtacgacg agaatgacaa 3900

gctgatccgg gaagtgaaag tgatcaccct gaagtccaag ctggtgtccg atttccggaa 3960

ggatttccag ttttacaaag tgcgcgagat caacaactac caccacgccc acgacgccta 4020

cctgaacgcc gtcgtgggaa ccgccctgat caaaaagtac cctaagctgg aaagcgagtt 4080

cgtgtacggc gactacaagg tgtacgacgt gcggaagatg atcgccaaga gcgagcagga 4140

aatcggcaag gctaccgcca agtacttctt ctacagcaac atcatgaact ttttcaagac 4200

cgagattacc ctggccaacg gcgagatccg gaagcggcct ctgatcgaga caaacggcga 4260

aaccggggag atcgtgtggg ataagggccg ggattttgcc accgtgcgga aagtgctgag 4320

catgccccaa gtgaatatcg tgaaaaagac cgaggtgcag acaggcggct tcagcaaaga 4380

gtctatcctg cccaagagga acagcgataa gctgatcgcc agaaagaagg actgggaccc 4440

taagaagtac ggcggcttcg acagccccac cgtggcctat tctgtgctgg tggtggccaa 4500

agtggaaaag ggcaagtcca agaaactgaa gagtgtgaaa gagctgctgg ggatcaccat 4560

catggaaaga agcagcttcg agaagaatcc catcgacttt ctggaagcca agggctacaa 4620

agaagtgaaa aaggacctga tcatcaagct gcctaagtac tccctgttcg agctggaaaa 4680

cggccggaag agaatgctgg cctctgccgg cgaactgcag aagggaaacg aactggccct 4740

gccctccaaa tatgtgaact tcctgtacct ggccagccac tatgagaagc tgaagggctc 4800

ccccgaggat aatgagcaga aacagctgtt tgtggaacag cacaagcact acctggacga 4860

gatcatcgag cagatcagcg agttctccaa gagagtgatc ctggccgacg ctaatctgga 4920

caaagtgctg tccgcctaca acaagcaccg ggataagccc atcagagagc aggccgagaa 4980

tatcatccac ctgtttaccc tgaccaatct gggagcccct gccgccttca agtactttga 5040

caccaccatc gaccggaaga ggtacaccag caccaaagag gtgctggacg ccaccctgat 5100

ccaccagagc atcaccggcc tgtacgagac acggatcgac ctgtctcagc tgggaggcga 5160

caaaaggccg gcggccacga aaaaggccgg ccaggcaaaa aagaaaaagg gcggctccaa 5220

gcggcctgcc gcgacgaaga aagcgggaca ggccaagaaa aagaaaggat ccggcgcaac 5280

aaacttctct ctgctgaaac aagccggaga tgtcgaagag aatcctggac cggtgagcaa 5340

gggcgaggag ctgttcaccg gggtggtgcc catcctggtc gagctggacg gcgacgtaaa 5400

cggccacaag ttcagcgtgt ccggcgaggg cgagggcgat gccacctacg gcaagctgac 5460

cctgaagttc atctgcacca ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac 5520

cctgacctac ggcgtgcagt gcttcagccg ctaccccgac cacatgaagc agcacgactt 5580

cttcaagtcc gccatgcccg aaggctacgt ccaggagcgc accatcttct tcaaggacga 5640

cggcaactac aagacccgcg ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat 5700

cgagctgaag ggcatcgact tcaaggagga cggcaacatc ctggggcaca agctggagta 5760

caactacaac agccacaacg tctatatcat ggccgacaag cagaagaacg gcatcaaggt 5820

gaacttcaag atccgccaca acatcgagga cggcagcgtg cagctcgccg accactacca 5880

gcagaacacc cccatcggcg acggccccgt gctgctgccc gacaaccact acctgagcac 5940

ccagtccgcc ctgagcaaag accccaacga gaagcgcgat cacatggtcc tgctggagtt 6000

cgtgaccgcc gccgggatca ctctcggcat ggacgagctg tacaagggct ccggcgaggg 6060

caggggaagt cttctaacat gcggggacgt ggaggaaaat cccggcccaa ccgagtacaa 6120

gcccacggtg cgcctcgcca cccgcgacga cgtccccagg gccgtacgca ccctcgccgc 6180

cgcgttcgcc gactaccccg ccacgcgcca caccgtcgat ccggaccgcc acatcgagcg 6240

ggtcaccgag ctgcaagaac tcttcctcac gcgcgtcggg ctcgacatcg gcaaggtgtg 6300

ggtcgcggac gacggcgccg cggtggcggt ctggaccacg ccggagagcg tcgaagcggg 6360

ggcggtgttc gccgagatcg gcccgcgcat ggccgagttg agcggttccc ggctggccgc 6420

gcagcaacag atggaaggcc tcctggcgcc gcaccggccc aaggagcccg cgtggttcct 6480

ggccaccgtc ggagtctcgc ccgaccacca gggcaagggt ctgggcagcg ccgtcgtgct 6540

ccccggagtg gaggcggccg agcgcgccgg ggtgcccgcc ttcctggaga cctccgcgcc 6600

ccgcaacctc cccttctacg agcggctcgg cttcaccgtc accgccgacg tcgaggtgcc 6660

cgaaggaccg cgcacctggt gcatgacccg caagcccggt gcctgaacgc gttaagtcga 6720

caatcaacct ctggattaca aaatttgtga aagattgact ggtattctta actatgttgc 6780

tccttttacg ctatgtggat acgctgcttt aatgcctttg tatcatgcta ttgcttcccg 6840

tatggctttc attttctcct ccttgtataa atcctggttg ctgtctcttt atgaggagtt 6900

gtggcccgtt gtcaggcaac gtggcgtggt gtgcactgtg tttgctgacg caacccccac 6960

tggttggggc attgccacca cctgtcagct cctttccggg actttcgctt tccccctccc 7020

tattgccacg gcggaactca tcgccgcctg ccttgcccgc tgctggacag gggctcggct 7080

gttgggcact gacaattccg tggtgttgtc ggggaaatca tcgtcctttc cttggctgct 7140

cgcctgtgtt gccacctgga ttctgcgcgg gacgtccttc tgctacgtcc cttcggccct 7200

caatccagcg gaccttcctt cccgcggcct gctgccggct ctgcggcctc ttccgcgtct 7260

tcgccttcgc cctcagacga gtcggatctc cctttgggcc gcctccccgc gtcgacttta 7320

agaccaatga cttacaaggc agctgtagat cttagccact ttttaaaaga aaagggggga 7380

ctggaagggc taattcactc ccaacgaaga caagatctgc tttttgcttg tactgggtct 7440

ctctggttag accagatctg agcctgggag ctctctggct aactagggaa cccactgctt 7500

aagcctcaat aaagcttgcc ttgagtgctt caagtagtgt gtgcccgtct gttgtgtgac 7560

tctggtaact agagatccct cagacccttt tagtcagtgt ggaaaatctc tagcagggcc 7620

cgtttaaacc cgctgatcag cctcgactgt gccttctagt tgccagccat ctgttgtttg 7680

cccctccccc gtgccttcct tgaccctgga aggtgccact cccactgtcc tttcctaata 7740

aaatgaggaa attgcatcgc attgtctgag taggtgtcat tctattctgg ggggtggggt 7800

ggggcaggac agcaaggggg aggattggga agacaatagc aggcatgctg gggatgcggt 7860

gggctctatg gcctgcaggg gcgcctgatg cggtattttc tccttacgca tctgtgcggt 7920

atttcacacc gcatacgtca aagcaaccat agtacgcgcc ctgtagcggc gcattaagcg 7980

cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc ttagcgcccg 8040

ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc cgtcaagctc 8100

taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa 8160

aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc 8220

ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac 8280

tcaactctat ctcgggctat tcttttgatt tataagggat tttgccgatt tcggtctatt 8340

ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa atattaacgt 8400

ttacaatttt atggtgcact ctcagtacaa tctgctctga tgccgcatag ttaagccagc 8460

cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc ccggcatccg 8520

cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt tcaccgtcat 8580

caccgaaacg cgcgagacga aagggcctcg tgatacgcct atttttatag gttaatgtca 8640

tgataataat ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg cgcggaaccc 8700

ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct 8760

gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg 8820

cccttattcc cttttttgcg gcattttgcc ttcctgtttt tgctcaccca gaaacgctgg 8880

tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc gaactggatc 8940

tcaacagcgg taagatcctt gagagttttc gccccgaaga acgttttcca atgatgagca 9000

cttttaaagt tctgctatgt ggcgcggtat tatcccgtat tgacgccggg caagagcaac 9060

tcggtcgccg catacactat tctcagaatg acttggttga gtactcacca gtcacagaaa 9120

agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg 9180

ataacactgc ggccaactta cttctgacaa cgatcggagg accgaaggag ctaaccgctt 9240

ttttgcacaa catgggggat catgtaactc gccttgatcg ttgggaaccg gagctgaatg 9300

aagccatacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc 9360

gcaaactatt aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga 9420

tggaggcgga taaagttgca ggaccacttc tgcgctcggc ccttccggct ggctggttta 9480

ttgctgataa atctggagcc ggtgagcgtg gaagccgcgg tatcattgca gcactggggc 9540

cagatggtaa gccctcccgt atcgtagtta tctacacgac ggggagtcag gcaactatgg 9600

atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt 9660

cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa 9720

ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa cgtgagtttt 9780

cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga gatccttttt 9840

ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg gtggtttgtt 9900

tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc agagcgcaga 9960

taccaaatac tgttcttcta gtgtagccgt agttaggcca ccacttcaag aactctgtag 10020

caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc agtggcgata 10080

agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg cagcggtcgg 10140

gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac accgaactga 10200

gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca 10260

ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt ccagggggaa 10320

acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag cgtcgatttt 10380

tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg gcctttttac 10440

ggttcctggc cttttgctgg ccttttgctc acatgt 10476

<210> 3

<211> 3120

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 3

gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 60

cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 120

tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 180

aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 240

ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 300

ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 360

tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 420

tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 480

actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 540

gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 600

acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 660

gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 720

acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 780

gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 840

ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 900

gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 960

cccgtatcgt agttatctac acgacgggga gtcaggcaac tatggatgaa cgaaatagac 1020

agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 1080

catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 1140

tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 1200

cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 1260

gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 1320

taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 1380

ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 1440

tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 1500

ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 1560

cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 1620

agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 1680

gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 1740

atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 1800

gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 1860

gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 1920

ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 1980

cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 2040

cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 2100

acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc 2160

cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg 2220

accatgatta cgccaagctt gcatgcaggc ctctgcagtc gacgggcccg ggatccgatg 2280

ataaacatgt gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc 2340

tgttagagag ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac 2400

gtgacgtaga aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat 2460

ggactatcat atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt 2520

gtggaaagga cgaaacaccg ggtcttcgag aagacctgtt ttagagctag aaatagcaag 2580

ttaaaataag gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttc 2640

tagcgcgtgc gccaattctg cagacaaatg gctctagagg tacccataga tctagatgca 2700

ttcgcgaggt accgagctcg aattcactgg ccgtcgtttt acaacgtcgt gactgggaaa 2760

accctggcgt tacccaactt aatcgccttg cagcacatcc ccctttcgcc agctggcgta 2820

atagcgaaga ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg aatggcgaat 2880

ggcgcctgat gcggtatttt ctccttacgc atctgtgcgg tatttcacac cgcatatggt 2940

gcactctcag tacaatctgc tctgatgccg catagttaag ccagccccga cacccgccaa 3000

cacccgctga cgcgccctga cgggcttgtc tgctcccggc atccgcttac agacaagctg 3060

tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 3120

<210> 4

<211> 175

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 4

tgtggaaagg acgaaacacc gggtcttcga gaagacctgt tttagagcta gaaatagcaa 60

gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg gtgctttttt 120

ctagcgcgtg cgccaattct gcagacaaat ggctctagag gtacccgtta cataa 175

<210> 5

<211> 554

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 5

tctgcagaca aatggctcta gaggtacccg ttacataact tacggtaaat ggcccgcctg 60

gctgaccgcc caacgacccc cgcccattga cgtcaatagt aacgccaata gggactttcc 120

attgacgtca atgggtggag tatttacggt aaactgccca cttggcagta catcaagtgt 180

atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt 240

gtgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca 300

tcgctattac catgggggca gagcgcacat cgcccacagt ccccgagaag ttggggggag 360

gggtcggcaa ttgatccggt gcctagagaa ggtggcgcgg ggtaaactgg gaaagtgatg 420

tcgtgtactg gctccgcctt tttcccgagg gtgggggaga accgtatata agtgcagtag 480

tcgccgtgaa cgttcttttt cgcaacgggt ttgccgccag aacacaggtt ggaccggtgc 540

caccatggac tata 554

<210> 6

<211> 447

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 6

ccagaacaca ggttggaccg gtgccaccat ggactataag gaccacgacg gagactacaa 60

ggatcatgat attgattaca aagacgatga cgataagatg gcccccaaaa agaaacgaaa 120

ggtgggtggg tccccaaaga agaagcggaa ggtcggtatc cacggagtcc cagcagccga 180

caagaagtac agcatcggcc tggacatcgg caccaactct gtgggctggg ccgtgatcac 240

cgacgagtac aaggtgccca gcaagaaatt caaggtgctg ggcaacaccg accggcacag 300

catcaagaag aacctgatcg gagccctgct gttcgacagc ggcgaaacag ccgaggccac 360

ccggctgaag agaaccgcca gaagaagata caccagacgg aagaaccgga tctgctatct 420

gcaagagatc ttcagcaacg agatggc 447

<210> 7

<211> 2727

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 7

cggcggccac gaaaaaggcc ggccaggcaa aaaagaaaaa gggcggctcc aagcggcctg 60

ccgcgacgaa gaaagcggga caggccaaga aaaagaaagg atccggcgca acaaacttct 120

ctctgctgaa acaagccgga gatgtcgaag agaatcctgg accggtgagc aagggcgagg 180

agctgttcac cggggtggtg cccatcctgg tcgagctgga cggcgacgta aacggccaca 240

agttcagcgt gtccggcgag ggcgagggcg atgccaccta cggcaagctg accctgaagt 300

tcatctgcac caccggcaag ctgcccgtgc cctggcccac cctcgtgacc accctgacct 360

acggcgtgca gtgcttcagc cgctaccccg accacatgaa gcagcacgac ttcttcaagt 420

ccgccatgcc cgaaggctac gtccaggagc gcaccatctt cttcaaggac gacggcaact 480

acaagacccg cgccgaggtg aagttcgagg gcgacaccct ggtgaaccgc atcgagctga 540

agggcatcga cttcaaggag gacggcaaca tcctggggca caagctggag tacaactaca 600

acagccacaa cgtctatatc atggccgaca agcagaagaa cggcatcaag gtgaacttca 660

agatccgcca caacatcgag gacggcagcg tgcagctcgc cgaccactac cagcagaaca 720

cccccatcgg cgacggcccc gtgctgctgc ccgacaacca ctacctgagc acccagtccg 780

ccctgagcaa agaccccaac gagaagcgcg atcacatggt cctgctggag ttcgtgaccg 840

ccgccgggat cactctcggc atggacgagc tgtacaaggg ctccggcgag ggcaggggaa 900

gtcttctaac atgcggggac gtggaggaaa atcccggccc aaccgagtac aagcccacgg 960

tgcgcctcgc cacccgcgac gacgtcccca gggccgtacg caccctcgcc gccgcgttcg 1020

ccgactaccc cgccacgcgc cacaccgtcg atccggaccg ccacatcgag cgggtcaccg 1080

agctgcaaga actcttcctc acgcgcgtcg ggctcgacat cggcaaggtg tgggtcgcgg 1140

acgacggcgc cgcggtggcg gtctggacca cgccggagag cgtcgaagcg ggggcggtgt 1200

tcgccgagat cggcccgcgc atggccgagt tgagcggttc ccggctggcc gcgcagcaac 1260

agatggaagg cctcctggcg ccgcaccggc ccaaggagcc cgcgtggttc ctggccaccg 1320

tcggagtctc gcccgaccac cagggcaagg gtctgggcag cgccgtcgtg ctccccggag 1380

tggaggcggc cgagcgcgcc ggggtgcccg ccttcctgga gacctccgcg ccccgcaacc 1440

tccccttcta cgagcggctc ggcttcaccg tcaccgccga cgtcgaggtg cccgaaggac 1500

cgcgcacctg gtgcatgacc cgcaagcccg gtgcctgaac gcgttaagtc gacaatcaac 1560

ctctggatta caaaatttgt gaaagattga ctggtattct taactatgtt gctcctttta 1620

cgctatgtgg atacgctgct ttaatgcctt tgtatcatgc tattgcttcc cgtatggctt 1680

tcattttctc ctccttgtat aaatcctggt tgctgtctct ttatgaggag ttgtggcccg 1740

ttgtcaggca acgtggcgtg gtgtgcactg tgtttgctga cgcaaccccc actggttggg 1800

gcattgccac cacctgtcag ctcctttccg ggactttcgc tttccccctc cctattgcca 1860

cggcggaact catcgccgcc tgccttgccc gctgctggac aggggctcgg ctgttgggca 1920

ctgacaattc cgtggtgttg tcggggaaat catcgtcctt tccttggctg ctcgcctgtg 1980

ttgccacctg gattctgcgc gggacgtcct tctgctacgt cccttcggcc ctcaatccag 2040

cggaccttcc ttcccgcggc ctgctgccgg ctctgcggcc tcttccgcgt cttcgccttc 2100

gccctcagac gagtcggatc tccctttggg ccgcctcccc gcgtcgactt taagaccaat 2160

gacttacaag gcagctgtag atcttagcca ctttttaaaa gaaaaggggg gactggaagg 2220

gctaattcac tcccaacgaa gacaagatct gctttttgct tgtactgggt ctctctggtt 2280

agaccagatc tgagcctggg agctctctgg ctaactaggg aacccactgc ttaagcctca 2340

ataaagcttg ccttgagtgc ttcaagtagt gtgtgcccgt ctgttgtgtg actctggtaa 2400

ctagagatcc ctcagaccct tttagtcagt gtggaaaatc tctagcaggg cccgtttaaa 2460

cccgctgatc agcctcgact gtgccttcta gttgccagcc atctgttgtt tgcccctccc 2520

ccgtgccttc cttgaccctg gaaggtgcca ctcccactgt cctttcctaa taaaatgagg 2580

aaattgcatc gcattgtctg agtaggtgtc attctattct ggggggtggg gtggggcagg 2640

acagcaaggg ggaggattgg gaagacaata gcaggcatgc tggggatgcg gtgggctcta 2700

tggcctgcag gggcgcctga tgcggta 2727

<210> 8

<211> 410

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 8

gataaacatg tgagggccta tttcccatga ttccttcata tttgcatata cgatacaagg 60

ctgttagaga gataattgga attaatttga ctgtaaacac aaagatatta gtacaaaata 120

cgtgacgtag aaagtaataa tttcttgggt agtttgcagt tttaaaatta tgttttaaaa 180

tggactatca tatgcttacc gtaacttgaa agtatttcga tttcttggct ttatatatct 240

tgtggaaagg acgaaacacc gggtcttcga gaagacctgt tttagagcta gaaatagcaa 300

gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg gtgctttttt 360

ctagcgcgtg cgccaattct gcagacaaat ggctctagag gtacccatag 410

<210> 9

<211> 20

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 9

agttatggca gaactcagtg 20

<210> 10

<211> 23

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 10

ccccatccaa agtttttaaa gga 23

<210> 11

<211> 23

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 11

tgtggcagat gtcacagttt agg 23

<210> 12

<211> 25

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 12

caccgagtta tggcagaact cagtg 25

<210> 13

<211> 25

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 13

aaaccactga gttctgccat aactc 25

<210> 14

<211> 1150

<212> DNA

<213> pig (Sus scrofa)

<400> 14

ccctgtcata actgagtcag cctaggacct cttctggtct cctgtgacat cccattgcac 60

ctgcagctgt taggactgta cacgcctggc ccctggacgt gggcttagtt cacgttcctc 120

cccaaccagt cagcacagcg cccgcgggca tctgagaagt cagggctcca cagtggtggt 180

tgcacaggtg agcgagtgac aggatgagcg gctgagggac tgttcaggcc tcgcagctgg 240

ccggcatcag ccagctttgc tactgtggga aggggaacag cagtccccgg ccagccgtcc 300

aggtgtcacc catccatggc agtggggcag gctctactcc tgggacctcc atacccctcg 360

ggggtcagaa actgtgctgg agacgtccct ggagcctggg caacttgggg ttgaatcgtg 420

gtcactgctg gcccaccacc tccatctcgc tcccgaagac atgccttgac cctttgtcct 480

cttctccccc ttgggtacag atcctggcca acgtcttcct ctacctgtgt gccatcgtcg 540

tgggcatcat gtcctactac atggcggacc gcaagcaccg caaagccttc ctggaggccc 600

gccagtcgct ggaggtgaag atgaacctgg aggagcagag ccagcagcag gtgaggctct 660

ttgggggtgg cctgggggac aatgccagcc cggggtccag gcgcaaggcc tgttggaagg 720

agtgagccca ggtgctgcgg gggccccatg gggctcggag ttctcattct ttttctccgg 780

aggcatccct ctgtgttatc tttcgctggc tccctctgcc actcctggct gtgcaagggc 840

acatgctcac tgcgcatcta ctgggtgctc gcttggggct gctctccctg cggcagtcag 900

gggtcagcac ccacatcccc tggtctcgga ggtccttctg ggagaagtct gtccgcctct 960

cagcctcctc catgggtgct gttccctttg ccccgagggc actctcccca ccgccttctc 1020

ctgcgctgtc atttatgaag atgcaaagcc agcccccacc ccagggcccc cactctttgc 1080

ctcttccatc gaggggaggg aggcaggcgc ctgctgtccc tgctctttgt gtcctggccc 1140

tcctccagcc 1150

<210> 15

<211> 1145

<212> PRT

<213> pig (Sus scrofa)

<400> 15

Met Pro Arg Thr Gln Gly Phe Ser Asp Pro Glu Tyr Ser Ala Glu Tyr

1 5 10 15

Ser Ala Glu Tyr Ser Val Ser Leu Pro Ser Asp Pro Glu Arg Gly Val

20 25 30

Gly Arg Thr His Glu Ile Ser Val Arg Asn Ser Gly Ser Cys Leu Cys

35 40 45

Leu Pro Arg Phe Met Arg Leu Thr Phe Val Pro Glu Ser Leu Glu Asn

50 55 60

Leu Tyr Gln Thr Tyr Phe Lys Arg Gln Arg His Glu Thr Leu Leu Val

65 70 75 80

Leu Val Val Phe Ala Ala Leu Phe Asp Cys Tyr Val Val Val Met Cys

85 90 95

Ala Val Val Phe Ser Ser Asp Lys Leu Ala Pro Leu Ala Val Ala Gly

100 105 110

Val Gly Leu Val Leu Asp Leu Ile Leu Phe Val Leu Cys Arg Lys Gly

115 120 125

Leu Leu Pro Ser Arg Val Thr Arg Lys Gly Val Pro Tyr Leu Leu Trp

130 135 140

Leu Leu Ile Thr Ala Gln Val Leu Ser Tyr Leu Gly Leu Asn Phe Ser

145 150 155 160

Gly Ala His Ala Ala Ser Asp Thr Val Gly Trp Gln Ala Phe Phe Val

165 170 175

Phe Ser Phe Phe Ile Thr Leu Pro Leu Ser Leu Ser Pro Ile Val Leu

180 185 190

Ile Ser Val Leu Ser Cys Val Val His Thr Leu Val Leu Gly Val Thr

195 200 205

Val Ala Gln Gln Gln Gln Asp Gly Leu Arg Gly Met Gln Leu Leu Arg

210 215 220

Glu Ile Leu Ala Asn Val Phe Leu Tyr Leu Cys Ala Ile Val Val Gly

225 230 235 240

Ile Met Ser Tyr Tyr Met Ala Asp Arg Lys His Arg Lys Ala Phe Leu

245 250 255

Glu Ala Arg Gln Ser Leu Glu Val Lys Met Asn Leu Glu Glu Gln Ser

260 265 270

Gln Gln Gln Glu Asn Leu Met Leu Ser Ile Leu Pro Lys His Val Ala

275 280 285

Asp Glu Met Leu Lys Asp Met Lys Lys Asp Glu Ser Gln Lys Asp Gln

290 295 300

Gln Gln Phe Asn Thr Met Tyr Met Tyr Arg His Glu Asn Val Ser Ile

305 310 315 320

Leu Phe Ala Asp Ile Val Gly Phe Thr Gln Leu Ser Ser Ala Cys Ser

325 330 335

Ala Gln Glu Leu Val Lys Leu Leu Asn Glu Leu Phe Ala Arg Phe Asp

340 345 350

Lys Leu Ala Ala Lys Tyr His Gln Leu Arg Ile Lys Ile Leu Gly Asp

355 360 365

Cys Tyr Tyr Cys Ile Cys Gly Leu Pro Asp Tyr Arg Glu Asp His Ala

370 375 380

Val Cys Ser Ile Leu Met Gly Leu Ala Met Val Glu Ala Ile Ser Tyr

385 390 395 400

Val Arg Glu Lys Thr Lys Thr Gly Val Asp Met Arg Val Gly Val His

405 410 415

Thr Gly Thr Val Leu Gly Gly Val Leu Gly Gln Lys Arg Trp Gln Tyr

420 425 430

Asp Val Trp Ser Thr Asp Val Thr Val Ala Asn Lys Met Glu Ala Gly

435 440 445

Gly Ile Pro Gly Arg Val His Ile Ser Gln Ser Thr Met Asp Cys Leu

450 455 460

Lys Gly Glu Phe Asp Val Glu Pro Gly Asp Gly Gly Ser Arg Cys Asp

465 470 475 480

Tyr Leu Asp Glu Lys Gly Ile Glu Thr Tyr Leu Ile Ile Ala Ser Arg

485 490 495

Pro Glu Val Lys Lys Thr Ala Ala Gln Asn Gly Leu Asn Gly Ser Ala

500 505 510

Leu Pro Asn Gly Ala Leu Pro Ser Ser Lys Pro Ser Ser Pro Ala Leu

515 520 525

Ile Glu Thr Lys Glu Pro Asn Gly Ser Val His Thr Ser Gly Ser Thr

530 535 540

Ser Glu Glu Ala Glu Glu Gln Asp Ala Gln Ala Asp Asn Pro Ser Phe

545 550 555 560

Pro Asn Pro Arg Arg Arg Leu Arg Leu Gln Asp Leu Ala Asp Arg Val

565 570 575

Val Asp Ala Ser Glu Asp Glu His Glu Leu Asn Gln Leu Leu Asn Glu

580 585 590

Ala Leu Leu Glu Arg Glu Ser Ala Gln Val Val Lys Lys Arg Asn Thr

595 600 605

Phe Leu Leu Ser Met Arg Phe Met Asp Pro Glu Met Glu Thr Arg Tyr

610 615 620

Ser Val Glu Lys Glu Lys Gln Ser Gly Ala Ala Phe Ser Cys Ser Cys

625 630 635 640

Val Val Leu Leu Cys Thr Ala Leu Val Glu Ala Leu Ile Asp Pro Trp

645 650 655

Leu Met Thr Asn Tyr Val Thr Phe Val Val Gly Glu Val Leu Leu Leu

660 665 670

Ile Leu Thr Ile Cys Ser Leu Ala Ala Ile Phe Pro Arg Ala Phe Pro

675 680 685

Lys Lys Leu Val Ala Phe Ser Thr Trp Ile Asp Arg Thr Arg Trp Ala

690 695 700

Arg Asn Thr Trp Ala Met Leu Ala Ile Phe Val Leu Val Met Ala Asn

705 710 715 720

Val Val Asp Met Leu Ser Cys Leu Gln Ser Asp Ala Gly Pro Gly Asn

725 730 735

Ser Thr Ala Gly Ala Arg Leu Glu Asp Gly Cys Val Glu Asn Pro Lys

740 745 750

Tyr Tyr Ser Tyr Val Ala Val Leu Ser Leu Ile Ala Thr Ile Met Leu

755 760 765

Val Gln Val Ser His Met Val Lys Leu Thr Leu Met Leu Leu Ile Ala

770 775 780

Gly Ala Val Gly Thr Ile Asn Ile Tyr Ala Trp Arg Pro Ile Phe Asp

785 790 795 800

Glu Tyr Asp Arg Arg Arg Phe Gln Glu His Asp Phe Pro Met Val Ala

805 810 815

Leu Glu Lys Met Gln Val Phe Ser Ser Pro Gly Leu Asn Gly Thr Asp

820 825 830

Arg Pro Pro Leu Val Pro Ser Lys Tyr Ser Met Thr Ala Met Val Phe

835 840 845

Val Met Met Leu Ser Phe Tyr Tyr Phe Ser Arg His Val Glu Lys Leu

850 855 860

Ala Arg Thr Leu Phe Leu Trp Lys Ile Glu Val His Asp Gln Lys Glu

865 870 875 880

Arg Val Tyr Glu Met Arg Arg Trp Asn Glu Ala Leu Val Thr Asn Met

885 890 895

Leu Pro Glu His Val Ala Arg His Phe Leu Gly Ser Lys Lys Arg Asp

900 905 910

Glu Glu Leu Tyr Ser Gln Ser Tyr Asp Glu Ile Gly Val Met Phe Ala

915 920 925

Ser Leu Pro Asn Phe Ala Asp Phe Tyr Thr Glu Glu Ser Ile Asn Asn

930 935 940

Gly Gly Ile Glu Cys Leu Arg Phe Leu Asn Glu Ile Ile Ser Asp Phe

945 950 955 960

Asp Ser Leu Leu Asp Asn Pro Lys Phe Arg Val Ile Thr Lys Ile Lys

965 970 975

Thr Ile Gly Ser Thr Tyr Met Ala Ala Ser Gly Val Thr Pro Asp Val

980 985 990

Asn Thr Asn Gly Phe Thr Ser Ser Ala Lys Glu Glu Lys Ser Asp Arg

995 1000 1005

Glu Arg Trp Gln His Leu Ala Asp Leu Ala Asp Phe Ala Leu Ala Met

1010 1015 1020

Lys Asp Thr Leu Thr Asn Ile Asn Asn Gln Ser Phe Asn Asn Phe Met

1025 1030 1035 1040

Leu Arg Ile Gly Met Asn Lys Gly Gly Val Leu Ala Gly Val Ile Gly

1045 1050 1055

Ala Arg Lys Pro His Tyr Asp Ile Trp Gly Asn Thr Val Asn Val Ala

1060 1065 1070

Ser Arg Met Glu Ser Thr Gly Val Met Gly Asn Ile Gln Val Val Glu

1075 1080 1085

Glu Thr Gln Leu Ile Leu Arg Gln Tyr Ala Ser Arg Cys Val Arg Arg

1090 1095 1100

Gly Pro Ile Phe Val Lys Gly Lys Gly Glu Leu Leu Thr Phe Phe Leu

1105 1110 1115 1120

Lys Gly Arg Asp Lys Pro Ala Ala Phe Pro Asn Gly Ala Ser Val Thr

1125 1130 1135

Leu Pro His Gln Val Val Asp Ser Ser

1140 1145

<210> 16

<211> 20

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 16

ttggggttga atcgtggtca 20

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 17

agggagccag cgaaagataa c 21

<210> 18

<211> 20

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 18

ggaggtgaag atgaacctgg 20

<210> 19

<211> 20

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 19

gcaccgcaaa gccttcctgg 20

<210> 20

<211> 20

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 20

gggcctccag gaaggctttg 20

<210> 21

<211> 20

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 21

ggaaggcttt gcggtgcttg 20

<210> 22

<211> 100

<212> RNA

<213> Artificial Sequence (Artificial Sequence)

<400> 22

ggaggugaag augaaccugg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60

cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 23

<211> 100

<212> RNA

<213> Artificial Sequence (Artificial Sequence)

<400> 23

gcaccgcaaa gccuuccugg guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60

cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 24

<211> 100

<212> RNA

<213> Artificial Sequence (Artificial Sequence)

<400> 24

gggccuccag gaaggcuuug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60

cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 25

<211> 100

<212> RNA

<213> Artificial Sequence (Artificial Sequence)

<400> 25

ggaaggcuuu gcggugcuug guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60

cguuaucaac uugaaaaagu ggcaccgagu cggugcuuuu 100

<210> 26

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 26

caccggaggt gaagatgaac ctgg 24

<210> 27

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 27

aaacccaggt tcatcttcac ctcc 24

<210> 28

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 28

caccgcaccg caaagccttc ctgg 24

<210> 29

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 29

aaacccagga aggctttgcg gtgc 24

<210> 30

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 30

caccgggcct ccaggaaggc tttg 24

<210> 31

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 31

aaaccaaagc cttcctggag gccc 24

<210> 32

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 32

caccggaagg ctttgcggtg cttg 24

<210> 33

<211> 24

<212> DNA

<213> Artificial Sequence (Artificial Sequence)

<400> 33

aaaccaagca ccgcaaagcc ttcc 24

45页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:WKH大鼠模型构建方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!