具有1.02-1.06μm包层泵浦方案的大功率镱:铒(Yb:Er)光纤激光器系统

文档序号:890039 发布日期:2021-02-23 浏览:7次 >En<

阅读说明:本技术 具有1.02-1.06μm包层泵浦方案的大功率镱:铒(Yb:Er)光纤激光器系统 (High power ytterbium with 1.02-1.06 μm cladding pumping scheme: erbium (Yb: Er) fiber laser system ) 是由 艾廉·扎特斯蒂夫 费多尔·谢尔比纳 安德瑞·马史金 于 2019-06-28 设计创作,主要内容包括:一种光纤激光器,配置有:双包层光纤,其具有掺杂铒(Er~(+3))和镱(Yb~(+3))的离子的纤芯。至少两个间隔开的高反射镜和低反射镜,位于纤芯的侧面并在它们之间限定谐振腔。光纤激光器还包括泵浦激光器,该泵浦激光器输出波长范围在1.02-1.06μm内的光并耦合到掺Yb:Er的双包层光纤中。一种光纤放大器包括:双包层光纤,其纤芯掺杂有铒(Er~(+3))和镱(Yb~(+3))的离子;以及泵浦激光器,生成在1.02-1.06μm波长范围内的泵浦波长的辐射;泵浦激光器,输出在1.02-1.06μm波长范围内的光且所述光被耦合到掺Yb:Er的双包层光纤中。所公开的光纤激光器和光纤放大器在1μm波长范围内的激光阈值均比在9xxnm泵浦波长进行操作的已知原理的阈值高得多。(A fiber laser configured with: double-clad optical fiber having erbium (Er) doping &#43;3 ) And ytterbium (Yb) &#43;3 ) Of ions of (a). At least two spaced apart high and low mirrors flanking the core and defining a resonant cavity therebetween. The fiber laser also includes a pump laser that outputs light in the wavelength range of 1.02-1.06 μm and is coupled into a Yb: Er doped double clad fiber. An optical fiber amplifier comprising: double-clad optical fiber having core doped with erbium (Er) &#43;3 ) And ytterbium (Yb) &#43;3 ) The ion of (2); and a pump laser generating radiation at a pump wavelength in the wavelength range 1.02-1.06 μm; a pump laser outputting light in a wavelength range of 1.02-1.06 μm and coupled to the Yb: Er dopedIn the double clad optical fiber of (1). The laser threshold of the disclosed fiber laser and fiber amplifier in the 1 μm wavelength range is much higher than the threshold of the known principle of operation at a pump wavelength of 9 xxnm.)

具有1.02-1.06μm包层泵浦方案的大功率镱:铒(Yb:Er)光纤 激光器系统

技术领域

本公开涉及一种大功率Yb:Er光纤激光器系统,其抑制在1微米 (nm)的波长范围内的Yb激光的发生。特别地,本发明涉及 1020-1060nm的波长范围内的基于Yb:Er掺杂光纤的大功率光纤振荡器和放大器,其中该Yb:Er掺杂光纤被包层泵浦。

背景技术

对在1.5-1.6μm波长范围内进行操作的大功率、实用且低成本的掺铒(Er)的双包层光纤激光器系统存在需求。该波长范围内的激光操作是有吸引力的,原因如下:它非常适合用于对铥(Tm)激光器系统、中红外参数放大器和振荡器进行泵浦;此外,它具有低光纤损耗,使得大功率Er激光器在许多科学和工程应用中具有极大的优势。

Er中最常见的激光跃迁集中在1550nm附近。基于Er的激光器系统的绝大多数泵浦装置在980nm泵浦波长附近进行操作,并且在 Er光纤系统中得到了广泛利用。然而,在9xxnm波长范围进行泵浦的Er光纤器件可能没有足够的功率来满足日益增长的工业需求。限制Er光纤器件的功率缩放的主要原因是缺少大功率单模(SM)能量源。通常,已知的SM能量源是基于功率不超过2-3W的二极管激光器的。另一限制源于Er离子掺杂浓度由于如下原因而相对较低的事实。首先,在高Er浓度下,发光可能会通过由于Er离子与OH-之间的相互作用而引起的能量转移过程猝灭。其次,众所周知的“浓度猝灭”过程,在该过程中,通过静电的偶极-偶极相互作用而使Er离子去激励。这种现象导致效率降低和增益减小。此外,如果施加较大的泵浦功率,则会发生另一协作上转换过程,这会导致非常不期望的光暗化而使光纤劣化。

共掺杂的Er+3与Yb+3(其中Yb+3作为敏化剂)已被用于规避Er 光纤中的相对较低的泵浦吸收,从而增大了Er激光器和Er放大器的功率缩放。如图2中所示,对于石英光纤,Yb离子具有简单的电子结构,其仅具有高于基态的一个亚稳态、宽吸收光谱、以及较大的吸收和发射截面。与Er不同,Yb可以以高掺杂浓度使用且通常以高掺杂浓度使用,从而允许大功率MM二极管激光器利用包层泵浦方案。原则上,泵浦可以在910nm至1064nm的宽波长范围内进行。大吸收截面(特别是在976nm下的大吸收截面)可以实现高泵浦吸收,从而导致较短的光纤长度。

图3示出了配置有Er激光器10的大功率光纤系统的典型示意图, Er激光器具有Yb:Er共掺的双包层(DC)光纤12,该Yb:Er共掺的双包层光纤被置于在高反射镜与低反射镜15之间限定的光学谐振器内。基于二极管激光器的泵浦源14在9xx nm波长处对Yb:Er激光器进行双向侧向泵浦。在操作中,泵浦光被发射并被限制在内包层中,并且在空间上与光纤12的纤芯重叠。Yb+3离子在光纤12的整个长度上吸收泵浦光子,同时将其能量谐振地转移到Er+3离子。光纤12是磷硅酸盐玻璃,磷硅酸盐玻璃由于其较大的发射截面而被认为是 Yb3+Er3+共掺系统的优良基质。磷酸盐基质中的较大光子能量增加了用于期望弛豫的跃迁概率,这阻止了能量从Er+3转移回到Yb+3。而且, Yb发射光谱与Er吸收光谱之间的光谱重叠很大,在磷硅酸盐光纤中的从Yb3+到Er3+的能量转换效率可以达到95%。

存在许多限制因素阻碍了激光器12的功率缩放,图3的泵浦布置14在9xx nm波长范围内进行操作。这些限制之一是在1μm波长范围内的寄生Yb发射,该寄生Yb发射由于该波长范围内的不希望的高增益系数而可能会不可避免地损坏Yb:Er光纤激光器的光纤12。图4示出了图2的Yb:Er光纤激光器10在1μm波长范围内的寄生生成。底部曲线1示出了1570nm的Er输出脉冲。顶部曲线2示出了Yb的超发光信号,其在1μm波长范围内具有激光峰值。

解释1μm波长范围内的不希望的发射的因素之一是:光纤的纤芯中存在与Er离子隔离的有限数量的Yb离子,这些Yb离子不参与向Er离子的能量转移。通常,隔离的Yb离子不超过Yb离子的总量的百分之几。然而,隔离的Yb离子对总的不想要的粒子数反转的贡献比参与在9xx泵浦波长处的能量转移的Yb离子大得多,这可以通过比较相应的图5和图6中的增益谱而看出。Yb离子在1μm波长范围内的高增益是Yb:Er光纤激光器系统中的典型的、不想要的现象。

影响功率缩放的另一因素是1μm波长范围内的寄生生成。随着有源光纤的温度的升高,该波长范围内的吸收系数以及Er离子与Yb 离子之间的跃迁速度也会增加。但是,如果不满足后面的条件,则会加剧1μm波长范围内的更高寄生生成。

基于前述内容,需要一种对以1μm波长范围内具有低增益为特征的大功率、高效的Yb:Er激光器和放大器。

发明内容

本发明的大功率Yb:Er光纤激光器/放大器通过实现在1-1.06μm 泵浦波长范围内泵浦Yb:Er掺杂光纤的至少一个Yb光纤激光器来满足这一需求。

与在9xx nm泵浦波长下的70%粒子数反转相比,在1-1.06μm 泵浦波长范围内泵浦Yb:Er掺杂光纤将隔离的Yb离子的粒子数反转限制为约2-15%。同时,较长的泵浦波长不会显著影响参与向Er+3离子的能量转移的Yb+3离子的粒子数反转。由于隔离的Yb+3离子的粒子数反转较小,在1020至1060nm泵浦波长下的在1μm范围内的最大增益系数明显低于9xxnm泵浦波长下的最大增益系数。结果,本发明系统的在1μm波长范围内的激光阈值比9xx nm泵浦波长下运行的已知方案原理的阈值高得多。

更具体地,根据本公开的一个方面,本发明系统配置有Yb:Er光纤激光器。特别地,光纤激光器是基于Er:Yb共掺双包层(DC)配置,该Er:Yb共掺双包层(DC)配置由在1-1.06μm泵浦波长范围内进行操作的激光源泵浦。可以在向前和向后的方向(相对于信号光传播方向)之一上或双向地将泵浦光耦合到DC光纤的泵浦包层中。

输出约15xx nm波长的信号光的所公开的Yb:Er DC光纤可以配置有:单模(SM)纤芯/低模(LM)纤芯,其输出M2低于5(优选低于2)的15xx nm范围内的信号光;或者多模(MM)光纤。

根据另一方面,所公开的泵浦激光器可以是SM或MM。此外,泵浦Yb:Er光纤的技术可以是侧向泵浦或端面泵浦。具体的泵浦技术取决于手头的任务,并且可以与所公开系统的上述方面和特征中的任何或全部特征一起使用。

根据本公开的以下方面,Yb:Er系统可以配置有:Yb激光泵,在 1000-1060nm波长范围内进行操作;种子,输出期望的15xx-16xx nm 波长的信号光;以及一个或多个放大级联。种子和放大器中的至少一个或两者是基于Yb:Er光纤的。种子和放大器结合在一起构成了主振荡器功率光纤放大器(MOPFA)架构。

所有的以上方面中所公开的Yb泵浦光纤激光器可以根据所有的上面所公开的泵浦技术选择性地泵浦种子源或光纤放大器、或者种子源和放大器二者。此外,所公开的Yb光纤泵浦可以与其他泵配置结合使用。例如,种子和放大器中的一个与基于二极管激光器的泵浦结合在一起操作,而另一个使用公开的Yb光纤激光器泵浦。

上面公开的单个光纤激光器和MOPFA配置可以用作Yb:Er泵,用于各种掺杂的有源介质。Yb:Er泵浦的工业应用之一包括对工作波长比Yb:Er泵浦光的波长长的Er光纤激光器或放大器进行泵浦。Yb:Er 泵浦的另一应用包括输出耦合到掺铥(Tm)的增益介质中的泵浦光。

上面所公开的Yb:Er激光器和MOPFA配置可以在不同的操作机制下进行操作。即,它们可以以连续波(CW)、准CW(QCW)或纯脉冲机制工作。

附图说明

通过结合以下附图的具体描述,上述及其他特征和优点将变得更加清楚明白,在附图中:

图1是Yb:Er磷酸盐玻璃中的Er+3离子的已知的吸收截面和发射截面;

图2是石英玻璃中的Yb+3离子的已知的吸收截面和发射截面;

图3是在9xx nm泵浦波长下泵浦的已知Yb:Er激光器的光学示意图;

图4示出了Yb:Er QCW光纤激光器中的在1.5μm波长下的信号生成和在1μm波长下的寄生生成的示例;

图5示出了图2的在9xx nm泵浦波长处参与向Yb:Er光纤中的 Er+3的能量转移的Yb+3离子的增益;

图6示出了图2的示意图的Yb:Er光纤中的增益隔离的Yb+3离子;

图7示出了图2的示意图中的在1μm寄生波长处的寄生的所有 Yb+3离子的总增益;

图8是所公开的激光器系统的光学示意图;

图9是图8的示意图中的在1μm寄生波长处的所有Yb+3离子的总增益;

图10是示出了以主振荡器功率光纤放大器配置进行操作的图8 的本发明光纤激光器系统的光学示意图;

图11是图9的本发明光纤激光器系统的光学示意图,该光纤激光器系统泵浦掺杂有Tm离子的增益介质;

图12示出了激光阈值对温度的依赖性。

具体实施方式

图8示出了基于双包层Yb:Er掺杂光纤22的MM Er光纤激光器或放大器20的发明示意图,该双包层Yb:Er掺杂光纤22被置于在 MM波长反射器24之间限定的谐振腔中。与已知技术相反,Er光纤激光器由诸如在1020-1060nm泵浦波长处进行操作的法布里-珀罗Yb 光纤激光器或在1050-1060nm泵浦波长处的掺钕(Nd)的光纤激光器的泵浦源进行包层泵浦,以输出约15xxnm波长的信号光。可以根据侧向泵浦或端面泵浦技术来配置泵浦布置,从而允许沿相反的光传播方向之一的单向泵浦、或者如图所示的双向泵浦。

通过一个或多个MM Yb泵浦光纤激光器26在1028nm泵浦波长处对图8的示例性光纤22进行侧向泵浦,来对光纤22进行泵浦。光纤22具有掺杂有Yb:Er离子的50μm MM纤芯,并且长度约为10米。在QCW机制下已获得1570nm信号波长的1kW输出,而没有1μm 波长范围内的Yb+3离子的寄生生成。相反,用960-970nm泵浦源操作的按照图3的配置的相同示例性示意图输出1570nm信号波长的最大值为300-400W,此后理论上确定了1μm波长范围内的寄生生成。在理论上,如果通过使用图3的配置能够得到960nm泵浦波长处的 1kW输出,则所有Yb+3离子的1μm的总放大将超过80dB,如图7 中所示。相反,理论上,对于具有如上所述的上述内容的光纤22,对于相同的1kW输出,图8的本发明结构将仅具有32dB总寄生放大,如在图9中清楚地看到。

图10示出了在主振荡器功率光纤放大器(MOPFA)配置中利用 1020-1060nm泵浦波长范围的本发明QCW Yb:Er光纤激光器的光学示意图示30。在Yb:Er光纤激光器20与Yb:Er光纤放大器或增强器30 之间放置滤波器32,滤波器32被配置为一定长度的掺Yb的光纤,进一步处理光纤22的输出处的1μm波长范围内的寄生信号。包括Yb 光纤激光器34的泵浦布置被配置为泵浦激光器20和增强器30两者。通过在两个相对较弱的波长反射器36与38之间设置Yb泵34的谐振腔来实现Yb:Er光纤的泵浦,该谐振腔允许泵浦光耦合到激光器20 和增强器30中,而耦合到激光器20中的泵浦光比耦合到光纤增强器 30中的泵浦光弱得多。为了防止15xx nm波长的信号光不希望地从激光器20的腔体泄漏,沿Yb:Er光纤22的上游安装了多个MM强波长反射器40的组合。

转到图11,本发明的Yb:Er光纤配置可以用作Tm光纤激光器系统42的泵浦单元。如图所示,在MOPFA配置中,后者可以被实现为单独的Tm光纤激光器,或者单独的Tm光纤放大器。

总而言之,1020-1060nm的泵浦波长范围允许减少隔离的Yb+3离子的增益并提高在Yb:Er磷酸盐光纤中的1μm波长的寄生产生的阈值2-3倍。

当前公开的方法可以针对任何给定的任务帮助优化Yb:Er光纤的配置。通常,从一开始就设置激光器系统的最大功率和光的质量。通过这些先验已知的参数,确定了1μm波长范围内的最大可接受寄生增益。取决于Yb:Er激光器系统的具体应用,可接受的寄生增益可能会有所不同。例如,如果将Yb:Er光纤激光器用作掺Tm的光纤的泵浦源,则1μm波长范围内的最大可接受增益可以高于用于对具有反射表面的材料进行热处理的Yb:Er光纤的最大可接受增益。至于Yb:Er 光纤激光器输出的光信号的质量,主要取决于增益介质的参数,即,Yb:Er光纤,诸如纤芯直径、光纤长度、纤芯NA及光纤领域中的普通技术的其他众所周知的参数。

假设对于15xxμm波长处的Yb:Er激光器的期望输出功率,需要在1μm波长下进行操作的大功率泵浦源。通常,由于各种光损耗而假设泵浦效率为50%,例如,1550nm的1kW系统输出需要1μm波长范围处的大约2kW的泵浦光。

根据前述内容,在Yb:Er介质中存在两组Yb离子。第一组包括隔离的Yb+3离子,其构成不超过Yb+3离子的总数的5%,并且寿命在 1ms与1.4ms之间。另一组例如包括参与向Er+3离子的能量转移的95%的Yb+3离子,并且寿命为数十微秒(μs)。Yb+3离子对泵浦光的吸收被分布为5%至95%,其中Yb+3离子被第二能量转移的Yb+3离子吸收。

通过上面所公开的假设,对于给定的光纤长度,在例如1020nm 波长的2kW泵浦输出处确定Yb+3离子组中的每个Yb+3离子组中的粒子数反转的水平。然后获知两组Yb+3离子中的粒子数反转,确定并累加两组Yb+3离子的相应增益。如果最大寄生增益超过最大可接受水平,则可以采取以下步骤。

首先,可以改变掺杂光纤长度,并且按照上述步骤重新计算Yb+3离子的最终增益。然而,光纤长度不能无限制地增加,因为它会导致不可接受的光损耗和降低的激光器效率。

其次,泵浦波长增加。例如,使用1030nm波长来代替1020nm 波长。随着泵浦波长增加,隔离的Yb离子的粒子数反转并因此不希望的波长范围内的增益降低。结果,通过相同的2kW泵浦功率,隔离的Yb离子的粒子数反转减少,而能量转移的Yb+3离子的粒子数反转保持不变。因此,1μm波长范围内的不希望的总Yb增益也减小。

随着泵浦波长增加,还应重新考虑Yb:Er光纤的配置。例如,可能需要将包层直径从例如200μ减小到150μ。

图12示出了有助于使1μm的寄生生成最小化的另一重要因素。有源Er:Yb光纤的温度接近激光操作的初始阶段的室温。随着激光器继续工作,增益介质的温度升高。在所谓的冷开始期间,1μm波长范围内的寄生生成存在于相对较低的温度下。但是,随着激光器继续工作且温度升高,这种生成几乎消失了。因此,为了进一步最小化1 μm波长范围内的寄生生成,图8中所示的本发明的光纤激光器系统包括恒温器,该恒温器能够被控制为从一开始就将Yb:Er光纤的温度保持在特定温度范围内。该范围的下限显然应高于室温,并且最高温度显然不应达到有害于光纤完整性的水平。可以通过分析或实验来确定各个激光器的范围。

激光领域的普通技术人员容易地意识到,在不脱离本发明的预期范围的情况下,可以容易地实现所公开的各个光纤激光器的许多不同配置。显然,本发明结构的操作机制不限于QCW配置,并且可以成功地用在CW和脉冲机制中。所有SM或低模激光器、泵浦源和放大器都可以替代上述MM设备。尽管泵浦布置优选地包括光纤激光器,但是泵浦布置可以替代地包括任何其他合适的泵浦源。所公开的信号光功率仅仅是示例性的,并且当然可以并且将随着泵浦功率和冷却布置的优化而增加。

因此,应当理解的是,尽管已经结合本发明的详细描述对本发明进行了描述,但是上述描述旨在说明而非限制本发明的范围,本发明的范围由所附权利要求限定。其他方面、优点和修改在所附权利要求的范围内。

13页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:火花塞

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类