一种一体化结构的吸波隐身防弹板及其制备方法

文档序号:903997 发布日期:2021-02-26 浏览:8次 >En<

阅读说明:本技术 一种一体化结构的吸波隐身防弹板及其制备方法 (Wave-absorbing stealth bulletproof plate with integrated structure and preparation method thereof ) 是由 黄小忠 陈解放 鲁先孝 刘鹏 于 2020-10-12 设计创作,主要内容包括:本发明公开了一种一体化结构的吸波隐身防弹板及其制备方法。述隐身防弹板从外至里依次包含玻璃钢板层、隐身防弹层、碳纤维复合材料层;所述隐身防弹层由纤维增强复合材料层与吸波材料层交替层叠获得,所述纤维增强复合材料层中的复合材料为超高分子量聚乙烯纤维增强聚乙烯基复合材料或芳纶纤维环氧树脂基复合材料,所述隐身防弹板的厚度≤23mm。制备方法是将纤维增强材料、吸波材料层交替层叠成型隐身防弹层,再将隐身防弹层、玻璃钢板层、碳纤维复合材料层进行粘合,将粘好的隐身防弹板压制,封边即得吸波隐身防弹板。本发明制备的一体化隐身防弹板不仅质量轻、厚度薄,而且能够抵御步枪射击、具有优异的吸波性能,制备方法简单。(The invention discloses a wave-absorbing stealth bulletproof plate with an integrated structure and a preparation method thereof. The stealth bulletproof plate sequentially comprises a glass fiber reinforced plastic plate layer, a stealth bulletproof layer and a carbon fiber composite material layer from outside to inside; the stealth bulletproof layer is obtained by alternately laminating fiber reinforced composite material layers and wave-absorbing material layers, the composite material in the fiber reinforced composite material layers is an ultrahigh molecular weight polyethylene fiber reinforced polyethylene-based composite material or an aramid fiber epoxy resin-based composite material, and the thickness of the stealth bulletproof layer is less than or equal to 23 mm. The preparation method comprises the steps of alternately laminating fiber reinforced materials and wave-absorbing material layers to form the stealth bulletproof layer, then bonding the stealth bulletproof layer, the glass fiber reinforced plastic plate layer and the carbon fiber composite material layer, pressing the bonded stealth bulletproof plate, and performing edge sealing to obtain the wave-absorbing stealth bulletproof plate. The integrated stealth bulletproof plate prepared by the invention is light in weight, thin in thickness, capable of resisting rifle shooting, excellent in wave absorbing performance and simple in preparation method.)

一种一体化结构的吸波隐身防弹板及其制备方法

技术领域

本发明属于隐身防弹技术领域,具体涉及一种一体化结构的宽频、高效吸波隐身防弹板及其制备方法。

背景技术

当今世界军事科技技术的迅猛发展,侦察和打击能力也得到了迅猛发展,为了提高武器装备的战场生存能力,隐身防弹材料应运而生。隐身防弹材料具有雷达隐身和防弹双重功能,但以往的隐身防弹材料主要是由功能分离的雷达吸波材料和防弹材料组合而成,所以其厚度较厚,面密度大,难以满足现今武器装备对隐身防弹材料厚度薄、重量轻的要求。

发明内容

针对现有技术中隐身防弹材料厚度厚、重量大的不足,本发明的目的在于提供一种厚度薄、重量轻、吸波频带宽兼具雷达隐身和防弹功能的一体化结构的隐身防弹板及其制备方法。

为了实现上述目的,本发明采用如下技术方案,

本发明一种一体化结构的吸波隐身防弹板,所述隐身防弹板从外至里依次包含玻璃钢板层、隐身防弹层、碳纤维复合材料层;所述隐身防弹层由纤维增强复合材料层与吸波材料层交替层叠获得,所述纤维增强复合材料层中的纤维增强复合材料为超高分子量聚乙烯纤维增强聚乙烯基复合材料或芳纶纤维环氧树脂基复合材料,所述隐身防弹板的厚度≤23mm。

在本发明中,超高分子量聚乙烯纤维增强聚乙烯基复合材料中的所述的超高分子量,是指分子量大于300万。碳纤维复合材料层中的碳纤维复合材料为碳纤维增强树脂基复合材料,其作为隐身防弹板的反射层。

优选的方案,所述纤维增强复合材料层中的复合材料为超高分子量聚乙烯纤维增强聚乙烯基复合材料。

优选的方案,所述玻璃钢板层的厚度为0.3mm~2mm、隐身防弹层的厚度为18~22mm,碳纤维复合材料层的厚度为0.1mm~1mm。

优选的方案,所述隐身防弹层中,最底层和最顶层均为纤维增强复合材料层,其包含2~6层纤维增强复合材料层,1~5层的吸波材料层,任意一层纤维增强复合材料层的厚度为1mm~8mm,任意一层吸波材料层的厚度为0.01mm~0.5mm。

优选的方案,所述隐身防弹层中,第N+1层的纤维增强复合材料层的厚度≥第N层的纤维增强复合材料层。

优选的方案,所述隐身防弹板的面密度≤23Kg/m2

优选的方案,所述吸波材料层选自电阻薄膜、铁涂层碳纤维磁性材料薄膜、超材料薄膜中的至少一种。

进一步的优选,所述吸波材料层由电阻薄膜、铁涂层碳纤维磁性材料薄膜、超材料薄膜组成。发明人发现,当吸波材料层同时设置上述三种薄膜时,最终所得吸波隐身防弹板的性能最优。

在本发明中,电阻薄膜直接采用现有技术市售的,根据不同的厂家,电阻薄膜可选自PE、PU、ITO导电膜中的一种。

超材料薄膜直接采用现有技术市售的。

进一步的优选,所述铁涂层碳纤维磁性材料薄膜的制备过程为:在离型膜喷涂一层环氧胶,再将热解羰基铁涂层碳纤维均匀分散于环氧胶上,常温固化即得;

所述热解羰基铁涂层碳纤维的制备方法为:将经预处理的碳纤维分散于二甲苯中,获得含碳纤维的溶液,然后再加入羰基铁,获得浆液,于保护气氛下进行热解反应,固液分离,所得固相清洗后,再经将固相浸泡于含偶联剂的混合液中,干燥,即得涂层碳纤维。

更进一步的优选,将碳纤维切割成30~40cm,然后于400℃~600℃,热处理40~50min,再切成2~5mm;烘干,获得预处理的碳纤维。

更进一步的优选,所述烘干的温度为75~85℃,烘干的时间为10~12h。

在实际操作过程中,将碳纤维切割成30~40cm后,先将碳纤维两头打结,再将打好结的纤维放入管式炉进行热处理。

更进一步的优选,所述碳纤维与二甲苯的质量比为0.5:9-15。

更进一步的优选,所述碳纤维在搅拌下分散于有机溶剂,搅拌转速为800~2000转/min,搅拌时间为10~30min。

通过在上述高速的搅拌下,可以将碳纤维充份分散于有机溶剂中,从而保证涂层的均匀性。

在实际操作过程中,采用分散机的高速搅拌来实现碳纤维在有机溶剂中的分散。

更进一步的优选,所述碳纤维与羰基铁的质量比为0.5:1~3。将羟基铁控制在上述范围,可以使得整根碳纤维均匀包覆上铁涂层,同时也可以使也可以保证羟基然可以分解完全。

更进一步的优选,所述热解反应的程序为:先由常温经40~80min升温至90~110℃,然后经300~420min升温至120~140℃,再经2000~3000min升温至150~160℃,并于150~160℃保温2000~3000min,再经60~180min降温至常温。

发明人发现,将热解程序控制在上述的优选范围内,可以使碳纤维均匀包覆上铁涂层,而如果不按上述程序,如早期温度过高,升温过快,都将导致羟基铁分解过快,微纳米堆积,造成涂层不均匀。

更进一步的优选,在搅拌下进行热解反应,所述搅拌方式为先以30~60r/min的转速搅拌1~2min,然后每间隔1~2h,以20~30r/min的转速搅拌1~5min。在本发明采用的间断式的搅拌方式,发明人发现,通过上述搅拌方式,可以使得最终涂层均匀,而若采用持续搅拌,或是搅拌的速度过快,均会导致碳纤维结团,造成涂层不均匀。

更进一步的优选,所得固相采用无水乙醇清洗3次以上。

更进一步的优选,所述含偶联剂的混合液中,偶联剂为KH550,偶联剂的质量分数为0.3~0.6wt%。

更进一步的优选,所述含偶联剂的混合液中,溶剂为乙醇水溶液,所述乙醇水溶液中,乙醇的质量分数为90~95wt%。

更进一步的优选,所述浸泡在搅拌下进行,浸泡的时间为30~60min

更进一步的优选,所述干燥的过程为,先于室温下摊晒10~12h,再于40~60℃干燥10~20h。

本发明一种一体化结构的隐身防弹板的制备方法:包括如下步骤:

步骤一隐身防弹层的制备

于模具中交替层叠铺设纤维增强复合材料层与吸波材料层,于100~150℃热压1-3h,获得隐身防弹层;

步骤二隐身防弹板的制备

将玻璃钢板层、隐身防弹层、碳纤维复合材料层从上往下排列,用环氧树脂进行粘合,然后在40℃~100℃下压制60min~120min,即得一体化结构的隐身防弹板。

在实际操作过程中,将所得固化后的一体化结构的隐身防弹板,按产品要求进行切割,使用美纹胶带(纸胶带)对上、下面四周边粘贴,与边角齐平。使用封边胶对凹槽进行充填抹平、封边,然后常温固化20-24h即得隐身防弹板产成品。

本发明提供了一种一体化结构的宽频、高效吸波隐身防弹板,采用功能与结构一体设计,在满足国家标准的基础上,有效提高雷达隐身和防弹性能。本发明采用碳纤维复合材料作为反射层,不但可将透过的电磁波反射到隐身防弹层内,同时还可以有效改善隐身防弹板粘接性差、容易分层的缺陷。玻璃钢板作为面板层,可以有效保护隐身防弹层,具有很好透波性的同时还可以有效保护隐身防弹层,减小外界环境对隐身防弹层的影响。除此以外,在隐身防弹板的四周进行封边,能够有效保护内部隐身防弹层,避免外界因素对其产生影响。

本发明的优选方案中,吸波材料层由超高分子量聚乙烯纤维增强聚乙烯基复合材料以及吸波材料,交替层叠而层,其中吸波材料层中引入了铁涂层碳纤维磁性材料薄膜,碳纤维本身就具有较高的比强度、比模量,且在导电、反射与吸收、电磁屏蔽、电子对抗中也具有优异的性能,是具备力学承载和减少雷达波反射截面双重功能的理想吸波材料,本发明通过对均匀引入包覆含磁性铁涂层,改性的碳纤维具备了介电损耗和磁损耗两种电磁波的损耗机制,因此在非常宽的频带范围内具备良好的吸波性能,更是大幅提升了碳纤维薄膜的吸波性能。

在本发明的优选方案中,隐身防弹板可防御7.62mm普通钢芯弹在100m距离垂直射击不击穿。频率1-2GHz雷达反射率小于-8dB、2-4GHz和4-8GHz小于-13dB,在频率8-12GHz、12-18GHz和26.5-40GHz雷达反射率均值皆小于-18dB,具有优异的吸波效果。

附图说明

图1隐身防弹板的结构示意图。

附图中,1、玻璃钢板层、2、碳纤维复合材料层,3、隐身防弹层,其中,4、6、8、10、12均为纤维增强复合材料层,5、7、9、11吸波材料层。

具体实施方式

以下实施例旨在进一步说明本发明内容,而不是限制本发明的保护范围。

在本发明的实施例中所用,电阻薄膜为采购自东莞博翔光学材料有限公司的ITO导电膜

超材料薄膜采购自深圳光启创新技术有限公司。

实施例1:

一种上述本实施例的一体化隐身防弹板的制备方法,包括以下步骤:

制备隐身防弹层:在模具中依次铺设3.0mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第一吸波材料层电阻薄膜0.02mm、4.0mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第二吸波材料层电阻薄膜0.02mm、4.9mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第三吸波材料层电阻薄膜0.02mm、5.5mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第四吸波材料层电阻薄膜0.02mm、5.9mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料,在100℃热压2h成型隐身防弹层。

制备隐身防弹板:将隐身防弹层、0.6mm玻璃钢板层、0.4mm碳纤维复合材料(碳纤维增强树脂基复合材料)层从上至下进行粘合,将粘好的一体化结构的隐身防弹板在70℃下压制,压制时间为60min,压制完成后取出一体化结构的隐身防弹板。

封边:面板固化后,切割为300*300mm,使用美纹胶带(纸胶带)对上、下面四周边粘贴,与边角齐平。使用封边胶对凹槽进行充填抹平、封边。常温固化,20h,获得一体化结构的隐身防弹板成品。

本实施方案制备的一体化隐身防弹板的面密度为23Kg/m2,可防御7.62mm普通钢芯弹在100m距离垂直射击不击穿。1-2GHz雷达反射率小于-8dB,2-4GHz、4-8GHz和8-12GHz皆小于-13dB,在频率12-18GHz和26.5-40GHz雷达反射率均值皆小于-16dB。

实施例2:

一种上述本实施例的一体化隐身防弹板的制备方法,包括以下步骤:

制备隐身防弹层:在模具中依次铺设3.2mm厚的芳纶纤维环氧树脂基复合材料、第一吸波材料层电阻薄膜0.02mm、3.4mm厚的芳纶纤维环氧树脂基复合材料、第二吸波材料层超材料薄膜0.3mm、3.6mm厚的芳纶纤维环氧树脂基复合材料,在80℃热压成型隐身防弹层。

制备隐身防弹板:将隐身防弹层、0.4mm玻璃钢板层、0.2mm碳纤维复合材料层从上至下进行粘合,将粘好的一体化结构的隐身防弹板在70℃下压制,压制时间为60min,压制完成后取出一体化结构的隐身防弹板。

封边:面板固化后,切割为300*300mm,使用美纹胶带(纸胶带)对上、下面四周边粘贴,与边角齐平。使用封边胶对凹槽进行充填抹平、封边。常温固化,20h,获得一体化结构的隐身防弹板成品。

本实施方案制备的一体化隐身防弹板的面密度为11Kg/m3,其防弹性能与5mm防弹钢板相当,吸波性能满足在2-18GHz和26.5-40GHz频段范围内使雷达反射率小于-13dB,具有良好的吸波效果。

实施例3

铁涂层碳纤维磁性材料薄膜的制备如下:

S1将碳纤维切割成30cm长,然后碳纤维两头打结,将打好结的纤维放入管式炉,500℃高温烧制40min,冷却后取出;切割成短切碳纤维;

S2碳纤维进行80℃、10h烘干处理;

S3密闭反应釜,6个洗气瓶均加入约2/3的溶剂,通氮气,用肥皂水测试反应釜盖是否漏气,无气泡,反应釜密封合格。

S4将碳纤维500g、溶剂二甲苯12kg加入桶中,用分散机高速以800转/min分散30min。

S5将分散好的二甲苯纤维浸泡液加入反应釜;称量一定量五羰基铁装入反应釜,用留存的二甲苯冲洗羰基铁容器和漏斗;迅速密闭反应釜,通入氮气,持续30min,用打火机点火在出气口观察火焰是否立即熄灭,火焰立即熄灭表明反应釜内空气已用氮气置换完成。

S6反应釜设置温度升温程序为:先由常温经60min升温至100℃,然后经360min升温至130℃,再经2400min升温至155℃,并于155℃保温2400min,再经60min降温至常温。〈共88小时〉

S7开启搅拌,开始以30r/min搅拌2min,之后每隔1h,以20r/min搅拌1min;

S8设置冷水机参数-2℃,打开冷水机出水阀,开启冷水机。

S9反应釜须冷却至室温,关闭氮气阀门,关闭冷水机及冷水机出水阀。缓慢打开下料阀,避免液体溅出,放出二甲苯,固体纤维上方取出,使用80目的筛网过滤。

S10对镀层纤维使用无水乙醇进行清洗,清洗3次;使用偶联剂混合液95%乙醇+0.4wt%KH550进行后处理,在搅拌的情况下浸泡30min后,过滤。

S11在室温下摊晒10h后,放入烘箱下低温40℃、10h烘干,制得羰基铁涂层碳纤维磁性吸波复合材料。

S12将铁涂层碳纤维制备为铁涂层碳纤维磁性材料薄膜:先在离型膜上均匀喷涂一层环氧胶,再将铁涂层碳纤维磁性材料薄膜均匀分散于喷胶上,常温固化形成薄膜。

一种一体化隐身防弹板的制备方法,包括以下步骤:

制备隐身防弹层:在模具中依次铺设3.7mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第一吸波材料层电阻薄膜0.02mm、3.7mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第二吸波材料层为电阻薄膜0.02mm、3.7mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第三吸波材料层铁涂层碳纤维磁性材料薄膜0.02mm、5.5mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料、第四吸波材料层超材料薄膜0.1mm、5.5mm厚的超高分子量聚乙烯纤维增强聚乙烯基复合材料,在120℃热压2h成型隐身防弹层。

制备隐身防弹板:将隐身防弹层、0.6mm玻璃钢板层、0.2mm碳纤维复合材料层从上至下进行粘合,将粘好的一体化结构的隐身防弹板在90℃下压制,压制时间为90min,压制完成后取出一体化结构的隐身防弹板。

封边:面板固化后,切割为300*300mm,使用美纹胶带(纸胶带)对上、下面四周边粘贴,与边角齐平。使用封边胶对凹槽进行充填抹平、封边。常温固化,24h,获得一体化结构的隐身防弹板成品。

本实施方案制备的一体化隐身防弹板的面密度为22Kg/m2,可防御7.62mm普通钢芯弹在100m距离垂直射击不击穿。1-2GHz雷达反射率小于-8dB,2-4GHz和4-8GHz皆小于-13dB,在频率8-12GHz、12-18GHz和26.5-40GHz雷达反射率均值皆小于-18dB。

对比例1

其他条件均与实施例3相同,仅是铁涂层碳纤维磁性材料薄膜制备过程中,搅拌方式不同,对比例所述搅拌方式为以30~60r/min的转速一直持续搅拌,固液分离后,发现碳纤维结团,清洗烘干后内部无镀层,造成镀层不均匀。

对比例2

其他条件均与实施例3相同,仅是仅是铁涂层碳纤维磁性材料薄膜制备过程中,温度程序设置不同,对比例2所设置温度升温程序先由常温经60min升温至100℃,然后经90min升温至130℃,再经1200min升温至155℃,并于155℃保温3600min,再经60min降温至常温。〈共88小时〉,固液分离后,发现有些碳纤维表面及容器内堆积很多铁粉,造成镀层不均匀。

最后需要说明,上述案例描述仅为本发明的较佳实施案例,本领域的技术人员在本发明的启示下,在不违背本发明原理及权利要求的前提下,可以做出多种类似的变换,这些变换均落入本发明的保护范围内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于非牛顿流体的防弹片及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!