一种基于力学手段检测固体比热容的方法

文档序号:904823 发布日期:2021-02-26 浏览:1次 >En<

阅读说明:本技术 一种基于力学手段检测固体比热容的方法 (Method for detecting specific heat capacity of solid based on mechanical means ) 是由 黄凯 陈若鸿 于 2020-10-14 设计创作,主要内容包括:一种基于力学手段检测固体比热容的方法,其包含以下步骤:步骤100,查阅待测固体材料的弹性极限,若无法查到则通过实验获得待测固体材料的弹性极限;步骤200,获得固体材料的密度ρ;步骤300,获得固体材料的热膨胀系数α;步骤400,取待测固体材料制成一定形状的测试试件,设计在待测固体材料的弹性极限内的高频率拉伸实验,在近绝热条件下,对待测固体材料施加周期性的不同载荷幅值的拉伸力,记录其不同荷载幅值周期循环时测试试件的温度变化;步骤500,利用形变自由能推导得到定容比热容的表达式,将上述步骤中测定的单轴应力、温度T、T_0,密度ρ和热膨胀系数α带入定容比热容的表达式中,计算并进行数据处理,得到的待测材料定容比热容。(A method for detecting specific heat capacity of a solid based on mechanical means comprises the following steps: step 100, looking up the elastic limit of the solid material to be detected, and if the elastic limit cannot be found, obtaining the elastic limit of the solid material to be detected through an experiment; step 200, obtaining the density rho of the solid material; step 300, obtaining the thermal expansion coefficient alpha of the solid material; step 400, taking a solid material to be tested to prepare a test piece with a certain shape, designing a high-frequency tensile experiment within the elastic limit of the solid material to be tested, applying periodic tensile forces with different load amplitudes to the solid material to be tested under a near-adiabatic condition, and recording the temperature change of the test piece when the different load amplitudes are in periodic circulation; step 500, deriving an expression of specific heat capacity of constant volume by using deformation free energy, and determining the uniaxial stress and the temperature T, T measured in the step 0 The density rho and the thermal expansion coefficient alpha are substituted into an expression of constant volume heat specific heat capacity, and data processing is carried out to obtainThe specific heat capacity of the material to be measured is constant.)

一种基于力学手段检测固体比热容的方法

技术领域

本发明涉及固体材料物理性质检测领域,具体涉及一种基于力学手段检测固体比热容的方法。

背景技术

随着材料研发科技的蓬勃发展,各种新型固体材料不断涌现。这些材料的各项性能参数极大地影响着其实际应用。如何准确、经济、迅速的测定材料各类参数便成了亟待解决的问题。在诸多参数中,固体材料的比热容测定对于科学研究和工程应用都有着重要的意义。

目前,已提出的测定固体材料比热容的方法主要包括混合法、冷却法、电热法等。在以上的几种常见测量比热容方法中,由于散热因素难以控制且测量结果很大程度地受到量热器热传递的影响,实验结果准确度均较低。尽管后续改进方案中提出可以通过替换量热器为传感器、改进隔热装置或设计补偿与反馈机制等方式降低误差,但由于方案整体思路仍然是通过两种物体的热传递对比热容进行测定,因此多种散热因素对结果准确度仍有不可消除的影响。为了减少环境干扰,突破设备条件的限制,拓展和开发快速测量固体材料比热容的方法具有重要的实际意义。

发明内容

本发明的目的是提供一种经济、准确、检测过程简单可靠且适用范围广泛的检测固体材料比热容的方法。

为了达到以上目的,本发明的技术方案是提供一种基于力学手段检测固体比热容的方法,其包含以下步骤:

步骤100,查阅待测固体材料的弹性极限,若无法查到则通过实验获得待测固体材料的弹性极限;

步骤200,查阅待测固体材料的密度,若无法查到则通过实验获得待测固体材料的密度ρ;

步骤300,查阅待测固体材料的热膨胀系数,若无法查到则通过实验获得待测固体材料的热膨胀系数α;

步骤400,取待测固体材料制成一定形状的测试试件,设计在待测固体材料的弹性极限内的高频率拉伸实验,在近绝热条件下,对待测固体材料施加单轴应力,记录测试试件的温度变化;

具体为,记录F——单轴应力,S——试件截面积,T0——测试试件未受到荷载时的初始温度,T——测试试件受力后的温度;

步骤500,利用形变自由能推导得到定容比热容的表达式,将上述步骤中测定的单轴应力F、温度T、T0,密度ρ和热膨胀系数α带入公式中,计算并进行数据处理,得到的待测材料定容比热容;

具体为,根据形变热力学理论,可将形变自由能f(εik)表示为:

式(1)中:K为体积模量,μ为剪切模量,δik为Kronecker-delta记号,εik、εll为应变张量分量;

当温度改变量(T-T0)相对较小时,物体的熵S表示为:

式(2)中:S(εll,T)是当温度变为T并发生εll的体应变时试件的熵;S0(T0)是未变形试件在温度T0下的熵;CV为物体在温度T0时的定容比热容;α是试件的热膨胀系数;当物体可逆绝热形变时,熵S为常量,熵变为0,即ΔS=0,由此可以确定温度变化ΔT=T-T0与体积应变改变量θ=εll-0之间的关系:

由(3)公式能够得到当物体绝热形变时,待测材料定容比热容表达式:

式(4)中:ΔT=T-T0为试件在一个循环加载周期中的温度变化值;

由于试件单轴拉伸时,其应力状态理论值为:

其中:Δσy为试件在单轴拉伸状态下所受轴向正应力,Δσz为试件在单轴拉伸状态下所受横截面内竖向正应力,Δσx为试件在单轴拉伸状态下所受横截面内水平向正应力,ΔF为外加轴向力的改变量;

又因为体应变改变量与应力之间符合关系式:

因此可知,单轴拉伸时,试件体应变改变量θ符合关系式:

综上,将公示(5)代入公式(4)得出待测材料定容比热容符合关系;

进一步地,在所述步骤400中,在绝热条件下,在弹性范围内对试件施加周期循环载荷,每个加载周期记为x,其中x=0、2、3……m,将不同加载周期分为若干组,每组选定若干连续周期,每组记为i,其中i=1、2、3……n,每组施加单轴应力为Fi=Fi-1+ΔF,每个加载周期内的温度变化值有效值为ΔTx,m个周期内的温度平均变化值即为一组实验内的温度平均变化值ΔTi

ΔTi=(ΔT1+ΔT2+ΔT3+……ΔTm)/m,

其中ΔTx=Tmax-Tmin,Tmax为施加Fi的单轴应力时试件所达到的最高温度,Tmin为未施加单轴应力时试件的温度。

进一步地,将步骤400中的ΔTi代入步骤500的公式中,以得到固体比热容的准确值:

优选地,所述步骤400中,在弹性范围内对试件加载周期循环载荷,加载方式采用力控制方式,控制波形为正弦波,采用2Hz以上的加载频率,进行等增量分级加载实验;

利用红外热像仪同步检测加载过程中试件有效区域的表面温度变化,拍摄帧率选取每秒100Hz以上。

优选地,所述步骤400中,选取30个或以上加载平稳周期内温度循环的变化值求平均值作为有效数据进行后续计算。

优选地,所述步骤400中,试件制作为狗骨型试件,并对狗骨型试件进行均匀喷漆。

进一步地,所述步骤400中,为避免狗骨型试件边缘部分与周围环境产生辐射干扰,选取试样喷漆均匀的中间部分作为有效区域进行数据采集。

本发明有益效果:本发明通过一种力学的手段,通过控制循环加载的频率实现近绝热条件,有效的解决了传统比热容测量实验测量中多种散热因素对结果准确度的影响。本发明所需试件加工简易,不受设备条件限制,方便快捷。同时,本发明的加载条件可由仪器控制操作,所需数据也采用高精度红外热成像仪进行检测,有效提高了数据的准确性。基于本发明所需试件与过程设计的特点,本发明便于进行重复实验,可取多组数据进行核验,进一步确保数据的准确性。

附图说明

图1为本发明流程图;

图2为本发明系统示意图;

图3为本发明试件结构示意图;

图4为本发明中试件所截取区域在循环加载下某一时刻红外热像图;

图5为本发明中试件在循环载荷下温度随时间变化关系图;

具体实施方式

为使本发明实施例的目的,技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述,显然所述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。

本发明的实施例,请参见图1,所述固体材料比热容的检测方法具体包括如下内容:

步骤100,查阅待测固体材料弹性极限,若无法查到则通过实验获得待测固体材料的弹性极限,通过获得固体材料的弹性极限进行拉伸,防止超出拉伸极限使破坏试件;以金属材料为例通过实验测试其弹性极限,根据ASTM E-8标准,进行室温下的金属拉伸实验:

(1)根据标准,取待测材料制成圆形截面标准拉伸试件,试件形状如图3所示,对金属进行拉伸,其中单轴应力为F,试件工工作部分圆形截面直径为d,试件均匀部分有效工作长度为L0,试件在单轴拉伸状态下的所受正应力值为σ;

(2)用游标卡尺在试件两端和中央三个位置上测量试件直径,每个位置在两个垂直的方向上分别测量一次,取平均值。取三个平均值中最小的数值作为试件工作区直径的有效值d0

(3)根据标准,采用万能试验机对试件进行室温下的拉伸实验,直至试件拉断为止。同时,打印出试件有效工作区的应力应变曲线。

(4)根据试件的应力应变曲线,得到材料的弹性极限:对于有屈服现象的钢铁材料可以考虑用材料的上屈服极限替代,对于没有屈服现象的材料可考虑Rp0.2替代。

(5)对于同一材料,取多组试件进行实验,并取每次实验结果的平均值作为材料弹性极限的有效值。

(6)有上述步骤可以计算出试件在单轴拉伸状态下的所受正应力值:

其中:

步骤200,查阅待测固体材料弹性密度,若无法查到则通过实验获得待测固体材料的密度ρ;以金属材料为例,通过实验测试其密度:

(1)对于纯净密实的固体金属材料,取待测固体材料制成边长a=100mm的立方体试样。

(2)采用精密固体密度计对试样进行密度测定,对同一固体材料取5个及以上试样进行测定,并对每个试样进行5次及以上的测定,读取每次密度计的测定结果并记录。

(3)对数据进行处理,取各次密度测定结果的平均值作为该固体材料密度的有效数据。

步骤300,查阅待测固体材料热膨胀系数,若无法查到则通过实验获得待测固体材料的热膨胀系数α;以金属材料为例,通过实验测试其热膨胀系数:

(1)对于纯净密实的固体金属材料,取待测材料制成长度L0=250mm的空心圆棒试件。

(2)取5个及以上试件进行实验,并对每个试件长度进行5次及以上的测量并记录,取平均值作为试件长度的有效数据。

(3)将试件放入金属线膨胀系数测试仪进行实验,测得试件在30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃时的长度。

(4)对数据进行处理,由逐差法测得试件每升高10℃时的伸长量ΔL,由公式可得金属线膨胀系数对各个试件实验所得的线膨胀系数求平均值,作为该材料线膨胀系数的有效数据。

步骤400,取待测固体材料制成一定形状的测试试件,优选地,将试件制成如图3所示的狗骨型试件,并在试件上均匀喷漆,以便于观察,记录试件截面积S,记录测试试件未受到荷载时初始环境温度T0

在近绝热条件下,在弹性范围内对试件施加一定载荷,所施加单轴应力为F,并记录试件受力后的温度T,优选地,记录试件受力后所达到最高温度Tmax和最低温度Tmin

进一步地,如图2、3、5,在弹性范围内对试件加载周期循环载荷,加载方式采用力控制方式,控制波形为正弦波,优选地,采用2Hz以上的加载频率,进行等增量分级加载实验。其中,将不同加载周期分为若干组,每组选定若干连续周期,每组记为i(i=1、2、3……n),每个周期记为x(x=1、2、3……m)。

在选定频率不变的条件下,根据材料的弹性极限,对每组加载周期i依次取单轴应力加载幅值Fi=Fi-1+ΔF,其中i=1、2、3……,其中F0为初始单轴应力;以此,进行周期性循环加载实验。

在F1、F2、F3……Fn的幅值条件下共进行n组实验,每个加载周期内的温度变化值有效值为ΔTx,m个周期内实验的温度平均变化值即为一组实的温度平均变化值:

ΔTi=(ΔT1+ΔT2+ΔT3+......ΔTm)/m,

其中ΔTx=Tmax-Tmin,Tmax为施加Fi的单轴应力时试件所达到的最高温度,Tmin为未施加单轴应力时试件的温度,应用时取值T0

利用红外热像仪同步检测加载过程中试件有效区域的表面温度变化,优选地,拍摄帧率选取每秒100Hz以上。

根据红外热像结果得到狗骨型试件在多个加载-卸载周期的温度变化,如图5,在该实施例这个,取30个加载平稳周期作为一组,该组内温度循环的变化值求平均值,此时:

ΔTi=(ΔT1+ΔT2+ΔT3+......ΔT30)/30

步骤500,利用形变自由能推导得到定容比热容的表达式,将上述步骤中测定的单轴应力F、温度T、T0,密度ρ和热膨胀系数α带入公式中,计算并进行数据处理,得到的待测材料定容比热容;

具体为,根据形变热力学理论,可将形变自由能f(εik)表示为:

式(1)中:K为体积模量;μ为剪切模量;δik为Kronecker-delta记号;εik、εll为应变张量分量;

当温度改变量(T-T0)相对较小时,物体的熵S表示为:

式(2)中:S(εll,T)是当温度变为T并发生εll的体应变时试件的熵;S0(T0)是未变形试件在温度T0下的熵;CV为物体在温度T0时的定容比热容;α是试件的热膨胀系数;当物体绝热形变时,熵S为常量,即ΔS=0,由此可以确定温度变化ΔT=T-T0与体积应变改变量θ=εll-0之间的关系:

由(3)公式能够得到当物体绝热形变时,待测材料定容比热容表达式:

式(4)中:ΔT=T-T0为试件在单次加载实验中的温度变化值;

由于试件单轴拉伸时,其应力状态理论值为:

其中:Δσy为试件在单轴拉伸状态下所受轴向正应力正应力改变量,Δσz为试件在单轴拉伸状态下所受横截面内竖向正应力正应力改变量,Δσx为试件在单轴拉伸状态下所受横截面内水平向正应力正应力改变量,ΔF为外加轴向力的改变量;

又因为体应变改变量与应力之间符合关系式:

因此可知,单轴拉伸时,试件体应变改变量θ符合关系式:

综上,将公式(5)代入公式(4)中得出待测材料定容比热容符合关系;

进一步地,将步骤400中ΔTi代入公式(6),可以得到多组循环加载周期下待测材料定容比热容表达式:

通过多次循化加载并求出平均温度变化值ΔTi,可以更加准确地测出待测材料的定容比热容。

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种在低气压下测量材料热适应系数的装置和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类