具有借助于液压惯性的频率相依性负载的减震器

文档序号:90805 发布日期:2021-10-08 浏览:57次 >En<

阅读说明:本技术 具有借助于液压惯性的频率相依性负载的减震器 (Shock absorber with frequency dependent load by means of hydraulic inertia ) 是由 雅西尔·纳泽拉·加西亚 于 2019-08-07 设计创作,主要内容包括:本发明涉及一种依据借助于液压惯性的频率的负载调节的液压减震器,由汽缸(2)组成,汽缸(2)包括充满液压流体(8)的内部腔室(7),主活塞(4)连接到杆(3)和通过至少一个第一弹簧(11)弹性连接杆(3)的惯性活塞(5)。内部腔室(7)因此被分成三个子腔室(9、10、10a)。第一子腔室(9)和第二子腔室(10)通过穿过主活塞(4)的孔(6)和阀(13)相互连通。第二子腔室(10)和第三子腔室(10a)通过穿过惯性活塞的惯性通道(12)相互连通。第一子腔室(9)和第二子腔室(10)也通过杆(3)中的流动路径(14)和连接到惯性活塞(5)的的滑动阀(15)相互连通。(The invention relates to a hydraulic shock absorber for load regulation according to the frequency by means of hydraulic inertia, consisting of a cylinder (2), the cylinder (2) comprising an internal chamber (7) filled with hydraulic fluid (8), a main piston (4) connected to a rod (3) and an inertia piston (5) elastically connecting the rod (3) by means of at least one first spring (11). The inner chamber (7) is thus divided into three sub-chambers (9, 10 a). The first (9) and second (10) sub-chambers communicate with each other through a bore (6) through the main piston (4) and a valve (13). The second sub-chamber (10) and the third sub-chamber (10a) communicate with each other through an inertia track (12) passing through the inertia piston. The first (9) and second (10) sub-chambers also communicate with each other via a flow path (14) in the rod (3) and a slide valve (15) connected to the inertia piston (5).)

具有借助于液压惯性的频率相依性负载的减震器

技术领域

本发明涉及用于机器中的机械振动控制的组件工业的现有技术。本发明的应用的特定情况是用作车辆悬架的减震器。

背景技术

减震器的功能是减弱其内置于的机器的移动部分中的振动。在车辆悬架的特定情况下,这些减震器提供双重功能:1)确保车辆由于加速度制动和转向操纵以及来自道路的竖直输入而保持稳定;2)隔离或减弱通过车轮和悬架传递到车身,并且因此传递到车辆乘客的输入。

为了优化这些标准且为了最大限度地减少车辆车身的移动,需要较高的阻尼水平,其中为了最大限度地减少车轮移动到车身的传递性,需要相当低的阻尼水平。为了在两个标准下获得更好的悬架行为,已经开发了不同系统,其依据车辆的动态状态和/或道路不平度来调适阻尼水平。

工业化的减震物的最常见类型由连接到杆的活塞形成,所述杆在填充有流体的汽缸内部移动。活塞将液压流体划分到两个不同腔室中。液压流体可通过活塞中的经校准孔口从一个腔室流动到另一腔室。杆的一个末端通常连接到车身,且汽缸连接到车轮。

由于车辆的车身与车轮之间的相对移动,杆遵循汽缸内部的比例移动,从而在一个腔室与另一腔室之间产生液压流动。由于流体不可压缩,因此通过活塞的流动与减震器末端的相对移动成比例。由活塞产生的压力差与通过经校准孔口的流体的流动成比例。

由于阻尼负载与减震器末端的相对速度成比例,因此在高频率和大幅度输入下,在阻尼器末端处产生高负载,这意味着道路不平度到车辆车身的较高传递性。

已开发由计算机控制的可调整液压系统,以便抵消道路不平度且保持良好水平的车身控制。借助于传感器和算法,有可能调适经校准孔口以便实时获得最优阻尼水平。这些系统是昂贵的,且在一些情况下,其性能在道路适应性方面不是最优的。

为提高车辆的舒适性同时保持良好的阻尼水平而开发的其它系统是具有频率选择性阻尼的减震器。这些阻尼器在低频率移动下提供高负载水平,从而提供良好的车辆稳定性,且在高频率输入下提供低阻尼水平,从而筛选更好的道路输入。此系统的实例为ES2261747T3。

这些解决方案的一个固有问题是,当高频率阻尼减小时,每个谐振频率中的车轮阻尼也减小,从而产生所谓的“车轮抖动”或车轮振动。由于将车轮振动传递到车身,此现象可导致轮胎抓地力降低且导致乘客舒适性降低,因此,设计目标为实现以下系统,其:1)在低频率下控制车辆的质量块,从而提供高水平的粘性阻尼;2)在较高频率下提供低阻尼水平;3)尽管粘性阻尼水平较低,但能够实现车轮移动的良好阻尼水平。

调谐质量阻尼器在结构的控制中的益处是众所周知的。这些阻尼器由通过弹簧连接的质量块和平行于主质量块的阻尼器组成。所添加的质量块小于主质量块。所添加的质量块的本征频率略低于待阻尼的系统。在所添加的质量块的本征频率周围,这些阻尼器以反相位振荡,因此产生对主质量块的阻尼效应。这可被视为动态阻尼,且比粘性阻尼更有效。

集成此概念的动态阻尼的一种方式在用于将发动机支撑到车身的液压支架以及用于悬架系统的液压衬套中展示。这些元件由通过惯性通道连接的液压腔室形成。由于在支架的末端产生的移动,迫使液压流体加速通过减小直径的惯性通道。由此通道产生的此惯性效应等效于调谐质量阻尼器系统中的质量块的惯性,其益处在于流体的总质量低于将产生等效动态效应的质量。

为了实现如上文所描述的悬架中的更好性能,已知以下设计:

文件DE102004015448B3描述减震器,其阻尼水平取决于其末端的移动幅度,并且因此呈现上文所描述的标准1)和2)的解决方案。工作原理是基于移动由弹簧控制的滑动活塞,所述弹簧在压缩时控制滑动活塞上的压力差。

文件US20150167773A1描述使用惯性通道的阻尼器。此设计的奇异性是惯性通道上的压力差等于常规阻尼器的主活塞上的压力差。因此,应理解,这些压力差是串联的。

在FR2892973A1中呈现一种悬架拓扑,其中调谐质量阻尼器串联地连接车轮质量与车身。本发明还使用通过惯性通道连接的活塞系统以便优化惯性质量系统。

在EP2789872A2中,呈现具有调谐质量阻尼器的悬架拓扑,如图2中所描述。在其相长形式中,其使用常规减震器内部的惯性通道来构建调谐质量系统。

US9080634B2描述具有借助于平行于主活塞流动的流动的频率相依性负载的减震器。此液压由自身的流动控制。在较高移动频率下,此平行流动保持打开且因此阻尼负载较低,因此实现频率相依性负载。

发明内容

为了实现上文所解释的目标,本发明提出一种液压阻尼器,其粘性阻尼水平取决于频率,还借助于连接到减震器的末端中的一个的惯性通道提供动态阻尼。

本发明包括连接到在含于汽缸内的液压流体内部移动的主活塞的一个杆。在此阻尼器中,主活塞将机油体积划分到两个腔室中。通过主活塞的经校准孔口,机油可以从一个腔室流动到另一腔室。一个阻尼器末端通常连接到车身,且汽缸连接到车轮。

根据本发明,在设计中引入额外活塞,即惯性活塞,其将一个腔室划分成两个子腔室;因此,阻尼器中的机油被划分到3个腔室中。惯性活塞通过至少一个弹簧连接到杆,且由惯性活塞划分的子腔室通过惯性通道连接。

在两个惯性通道末端处的压力差与通道长度和通过其的质量流量成比例,且与惯性通道的面积成反比。由于三个腔室的总体积是恒定的且考虑到机油不可压缩,因此通过惯性活塞的流动与腔室内部的惯性活塞移动成比例。

惯性活塞移动等于杆的移动加上惯性活塞到活塞杆的相对移动。因此,此系统的动态响应涉及动态调谐质量阻尼器。正确地选择弹簧参数和惯性通道尺寸,可调谐惯性活塞的本征频率以便匹配和减弱车轮振动。

在所呈现的本发明的另一开发中,第三流动在由主活塞划分的腔室之间平行打开。此第三流动可由惯性活塞的移动控制。由于惯性活塞仅在主活塞的较高频率的移动下移动,因此可通过降低惯性活塞的两侧处的压力差而减小粘性负载。

在更高级的设计中,可控制在高频率下通过此活塞的流动,从而提供在高频率下的更好且更精确的控制。

附图说明

图1示意性地展示常规阻尼器设计。

图2示意性地展示根据本发明的动态调谐质量阻尼器的实施例。

图3展示根据本发明的动态调谐质量阻尼器的更详细3D设计。

具体实施方式

基于常规减震器(20)的设计(其中杆(3)附接到在汽缸(2)中含有的液压流体(8)内部移动的主活塞(4)),在主活塞(4)中产生经校准的孔(6),所述经校准的孔使得流体(8)能够从第一子腔室(9)流动到另一第二子腔室(10)或反之亦然。杆(3)的外部末端(在车辆的情况下)通常连接到车辆的车身,且汽缸(2)连接到车轮。

引入额外活塞(5),即惯性活塞,其将腔室(10)划分成两个子腔室(10)和(10a)。以此方式,减震器中含有的流体(8)被划分到第一子腔室(9)、第二子腔室(10)和第三子腔室(10a)中。惯性活塞(5)通过至少一个第一弹簧(11)连接到杆(3)。由惯性活塞(5)划分的第二子腔室(10)与第三子腔室(10a)通过惯性通道(12)连接。

惯性通道(12)的两端处的压力差与惯性通道(12)的长度和通过惯性通道(12)的质量流量成比例,与惯性通道(12)的横截面积成反比。由于第二子腔室(10)和第三子腔室(10a)的总体积是恒定的且考虑到流体(8)不可压缩,因此通过惯性活塞(5)的质量流量与惯性活塞(5)在第二子腔室(10)和第三子腔室(10a)内的移动成比例。

惯性活塞(5)的移动等于杆(3)的移动加上惯性活塞(5)相对于杆(3)的相对移动。因此,惯性活塞(3)的频率响应与动态调谐质量阻尼器的频率响应类似。通过适当地选择第一弹簧(11)的参数和惯性通道(12)的尺寸,有可能调整惯性活塞(5)的谐振频率且因此提供车轮质量的动态阻尼。

在此处呈现的想法的高级实施例中,平行流体通道(14)在由主活塞(4)间隔开的腔室(9)与(10)或(10a)之间打开。通过惯性活塞(5)或通过刚性地或弹性地连接到活塞(5)的滑动阀(15)打开或关闭与主活塞(4)液压地平行的此流动。惯性活塞(5)在高频率主活塞(4)的移动下移动,借此惯性活塞(5)或滑动阀(15)仅在高频率下打开额外流(14),从而减小主活塞(4)的两侧上的压力差,且因此减小粘性阻尼力。

在更高级的设计中,可通过负载调节阀(16)控制高频率流动,以使得可更精确地控制高频率下的压力差。

7页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:挠性飞轮

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类