基于模块化多电平变换器的双三相开绕组风力发电系统

文档序号:926544 发布日期:2021-03-02 浏览:16次 >En<

阅读说明:本技术 基于模块化多电平变换器的双三相开绕组风力发电系统 (Double three-phase open winding wind power generation system based on modular multilevel converter ) 是由 贺明智 陈彦丞 王学庆 杨成 王指香 于 2021-01-27 设计创作,主要内容包括:本发明公开了一种基于模块化多电平变换器的双三相开绕组风力发电系统,包括双三相开绕组永磁同步风力发电机以及模块化多电平变换器,所述模块化多电平变换器包括多个模块化多电平变换器子模块,每一个所述三相开绕组永磁同步发电机的三相开绕组的两端依次串联多个所述模块化多电平变换器子模块后分别连接至直流母线的正极和负极,所述直流母线的正极和负极之间还设有直流母线电容。本发明旨在为风力发电领域提供一种高电压等级下的大容量、高功率密度、高可靠的解决方案,以使得风力发电的安全性、稳定性与高效性得到提升。(The invention discloses a double three-phase open winding wind power generation system based on a modular multilevel converter, which comprises a double three-phase open winding permanent magnet synchronous wind power generator and the modular multilevel converter, wherein the modular multilevel converter comprises a plurality of modular multilevel converter sub-modules, two ends of a three-phase open winding of each three-phase open winding permanent magnet synchronous generator are sequentially connected with the modular multilevel converter sub-modules in series and then are respectively connected to the positive pole and the negative pole of a direct current bus, and a direct current bus capacitor is arranged between the positive pole and the negative pole of the direct current bus. The invention aims to provide a high-capacity, high-power-density and high-reliability solution under a high voltage level for the field of wind power generation, so that the safety, stability and high efficiency of wind power generation are improved.)

基于模块化多电平变换器的双三相开绕组风力发电系统

技术领域

本发明涉及可再生能源风力发电技术领域,特别是一种基于模块化多电平变换器的双三相开绕组风力发电系统。

背景技术

随着化石燃料的枯竭和全球变暖的加速,可再生能源已成为满足社会能源需求的新的选择。而风电作为一类重要的清洁可再生能源,逐渐得到越来越多的关注,风电相关领域的研究也取得了长足的进展。而与小型风力发电组相比,大型风力电机可以以更低的单位安装和维护成本获取更多的风力发电量。也因此,风力发电机组的容量和规模在过去几十年中呈现指数型增长。

风力发电机组容量的不断增大也给电力电子变换器件提出了更高的要求。因而,研究应用于风力发电的高功率密度、高耐压等级、大容量的电力电子变换器和风力发电机,已成为新能源发电领域具有重要工程意义的研究方向。

发明内容

为解决现有技术中存在的问题,本发明的目的是提供一种基于模块化多电平变换器的双三相开绕组风力发电系统,旨在为风力发电领域提供一种高电压等级下的大容量、高功率密度、高可靠的解决方案,以使得风力发电的安全性、稳定性与高效性得到提升。

为实现上述目的,本发明采用的技术方案是:一种基于模块化多电平变换器的双三相开绕组风力发电系统,包括双三相开绕组永磁同步风力发电机以及模块化多电平变换器,所述模块化多电平变换器包括多个模块化多电平变换器子模块,每一个所述三相开绕组永磁同步发电机的三相开绕组的两端依次串联多个所述模块化多电平变换器子模块后分别连接至直流母线的正极和负极,所述直流母线的正极和负极之间还设有直流母线电容。

优选地,双三相开绕组永磁同步风力发电机的两套三相开绕组空间上互差30º电角度。

优选地,所述模块化多电平变换器子模块为模块化多电平变换器半桥子模块、模块化多电平变换器全桥子模块、模块化多电平变换器二极管箝位型子模块或模块化多电平变换器箝位双子模块。

本发明主要由双三相开绕组永磁同步发电机、每个桥臂包含n个模块化多电平变换器子模块的模块化多电平变换器、直流母线、以及直流母线电容构成;本发明所采用的模块化多电平变换器结构,省去了传统模块化多电平变换器中的桥臂电抗器,而将双三相开绕组永磁同步发电机中的电感进行复用,从而能够简化系统结构,降低系统成本,提升系统功率密度,通过将双三相永磁同步风力发电机的开绕组连接方式,与模块化多电平变换器拓扑结合,能够大幅提升风力发电系统的电压等级。

所采用的双三相永磁同步风力发电机,两套三相开绕组空间上互差30º电角度,两套三相绕组均采用开绕组连接方式,能够提升风力发电系统的电流应力和电压应力,从而大幅提升系统的功率等级。所采用的双三相永磁同步风力发电机,当其发生缺相故障时,剩余五相发电机绕组仍能够继续发电,可以较大程度地确保风力发电机绕组缺相故障下的功率输出,从而提高系统的可靠性。

本发明所采用的模块化多电平变换器,具有较高的系统冗余特性,在其发生短路或者开路故障后,系统能够通过隔离故障模块化多电平变换器子模块,并配合开绕组连接方式调制的灵活性,继续保持全功率正常输出,从而提高整个风力发电系统的可靠性。

本发明的有益效果是:

1、本发明采用的永磁同步风力发电机采用了双三相绕组的结构,两套三相开绕组空间上互差30º电角度。不仅能够大幅度提高发电系统的容量与功率密度,也能够在其中某一相发生故障时,其余五相发电机绕组仍能够保持正常工作,从而极大地提高了风力发电系统的可靠性。

2、本发明采用的永磁同步风力发电机的两套三相绕组均采用开绕组的连接方式,可以通过对绕组两端的多组变换器进行分别控制,从而能够实现多种控制策略,体现了本发明控制方法灵活的特点。

3、本发明所采用的模块化多电平变换器相较于传统的模块化多电平变换器,对双三相开绕组永磁同步风力发电机中的绕组电感进行复用,省去了每个桥臂中的桥臂电感,从而减少了元件数目,简化了系统结构,同时降低了制造成本,也使得系统的功率密度得到提升。

4、本发明采用模块化多电平变换器,可以通过调整变换器子模块的数目,灵活地提高风力发电系统的电压等级,具有较强的容量拓展能力,能够适用于较高电压等级下的风力发电工作环境。

5、本发明采用模块化多电平变换器,当变换器的某一子模块发生故障时,系统能够及时将故障子模块隔离,继续维持正常输出,从而提高风力发电系统输出功率的可靠性。

附图说明

图1为本发明实施例的电路结构图;

图2为本发明实施例中双三相开绕组永磁同步风力发电系统的结构示意图;

图3为本发明实施例中模块化多电平变换器子模块的拓扑结构图。

附图标记:

1、三相开绕组,2、模块化多电平变换器,3、模块化多电平变换器子模块,4、直流母线,5、直流母线电容。

具体实施方式

下面结合附图对本发明的实施例进行详细说明。

实施例

如图1所示,一种基于模块化多电平变换器的双三相开绕组风力发电系统,包括双三相开绕组永磁同步风力发电机以及模块化多电平变换器2,所述模块化多电平变换器2包括多个模块化多电平变换器子模块3,每一个所述三相开绕组永磁同步发电机的三相开绕组1的两端依次串联多个所述模块化多电平变换器子模块3后分别连接至直流母线4的正极和负极,所述直流母线4的正极和负极之间还设有直流母线电容5。

在本实施例中,双三相开绕组永磁同步风力发电机的两套三相开绕组1空间上互差30º电角度。

在本实施例中,所述模块化多电平变换器子模块3为模块化多电平变换器半桥子模块、模块化多电平变换器全桥子模块、模块化多电平变换器二极管箝位型子模块或模块化多电平变换器箝位双子模块。

下面对本实施例作进一步说明:

再如图1所示,在基于模块化多电平的双三相开绕组永磁同步风力发电系统中,风机带动风力发电系统三相开绕组1旋转,在双三相开绕组A1B1C1A2B2C2与D1E1F1D2E2F2产生的交流电动势,交流电流分别经过模块化多电平变换器2的上、下桥臂的整流作用,从而将其转换为恒定的直流电。本实施例将双三相开绕组永磁同步发电机与模块化多电平变换器2相结合,兼具两种方案的优点;系统在提供较大容量和较高功率密度的同时,具有较高的冗余度与较高的可靠性,也具有很强的灵活度与可扩展能力。在双三相开绕组永磁同步风力发电机处于正常工作状态时,由于两组三相开绕组1均采用了开绕组的连接方式,因此可以对每一相绕组实行独立的控制策略,提升了风力发电系统控制方式的灵活性;而当双三相开绕组永磁同步发电机中的某一相绕组发生故障时,由于各个绕组独立控制的特点,其余几相绕组仍可以维持正常工作,因而保持风力发电系统的功率输出。同样地,由于风力发电系统采用了模块化多电平变换器2的拓扑结构,可以自由选择不同类型、不同数量的模块化多电平变换器子模块3作为模块化多电平变换器2的基本单元进行级联,从而灵活地调节变换器容量与输出电压等级,具有良好的可拓展能力;再对两侧模块化多电平变换器2实行相应的控制策略,从而实现对模块化多电平变换器2的灵活控制。模块化多电平变换器2具有较高的冗余性,当其中某一模块发生故障或异常运行时,模块化多电平变换器系统能够对故障模块化多电平变换器子模块3进行隔离,并控制其余模块化多电平变换器子模块3保持正常工作状态;从而维持系统正常功率输出,大幅提高系统的容错率与可靠性,保障风力发电系统正常运行。

如图2所示,在双三相开绕组永磁同步风力发电系统中,风力发电机组的叶片在风力的推动下旋转,机组的双三相开绕组1切割永磁体所产生的磁场,从而在绕组中产生六相感应电动势。两组三相开绕组1均采用开绕组的连接方式,且绕组之间相差30°电角度。两组三相开绕组1通过交流母线与模块化多电平变换器1相连接,再通过模块化多电平变换器1,在直流母线4上得到电压恒定的直流输出。本实施例中的永磁同步风力发电机采用了双三相开绕组方式连接,绕组数目比单三相绕组发电机提升了一倍,绕组允许通过的最大电流得到大幅提升,因而系统发电容量相较单绕组发电机也提升了一倍,可以获得更大的发电功率输出。此外,通过将双三相开绕组永磁同步风力发电机与模块化多电平变换器2进行融合,能够进一步提升系统电压等级和单机发电功率等级。

如图3所示的是几种常见的模块化多电平变换器子模块3的拓扑结构图。其中(a)为模块化多电平变换器半桥子模块,单个半桥子模块能够输出两种不同电平,且具有结构简单,使用器件少的特点,应用也最为广泛;(b)为模块化多电平变换器全桥子模块,单个全桥子模块能够输出3种不同电平,输出电压可以包含两种不同极性,且能够阻断故障电流,应用于双极性电压输出场合;(c)为模块化多电平变换器T型多电平子模块,单个二极管箝位性子模块能够输出3种不同电平,其控制相对简单,但不具备故障电流切除能力;(d)为模块化多电平变换器箝位双子模块,单个箝位双子模块能够输出4种不同电平,具有清除双向电流故障的作用,但相应控制复杂度也较高。在上述几种模块化多电平变换器子模块中,通过控制开关管的开通与关断,对模块化多电平变换器子模块的电容进行充放电控制。而将若干个相同或不同的模块化多电平变换器子模块进行级联,并通过控制各子模块的接入和切除,就能够在直流母线4上取得需要的直流输出电压。综上,本实施例所提出的发电系统由于采用模块化多电平变换器2,可以根据实际应用需求采用适合相应场景的模块化多电平变换器子模块3。

以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种无刷双馈发电机抗负载扰动控制装置及方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类