一种高击穿场强的储能薄膜及其制备方法

文档序号:93351 发布日期:2021-10-12 浏览:50次 >En<

阅读说明:本技术 一种高击穿场强的储能薄膜及其制备方法 (Energy storage thin film with high breakdown field strength and preparation method thereof ) 是由 张永泉 姚安权 张昌海 迟庆国 张天栋 冯宇 张月 于 2021-06-17 设计创作,主要内容包括:本发明公开了一种高击穿场强的储能薄膜及其制备方法,属于高性能储能薄膜材料制备技术领域。本发明解决了现有制备的储能薄膜击穿场强低、性能调控过程复杂以及储能密度低下等技术问题。本发明通过分层退火的方式,实现了高退火温度下的极化层叠加低退火温度下的耐压层,成功制备了具有电学性能的铁电薄膜。相较于现有离子掺杂、调控退火温度等现有解决手段相比,该薄膜结构设计方案,极大地降低了制备工艺的操作难度以及能源消耗,更加贴近工业生产并显著提高了储能密度。(The invention discloses an energy storage thin film with high breakdown field strength and a preparation method thereof, belonging to the technical field of preparation of high-performance energy storage thin film materials. The invention solves the technical problems of low breakdown field strength, complex performance regulation and control process, low energy storage density and the like of the existing prepared energy storage film. According to the invention, the polarization layer at high annealing temperature is superposed with the pressure-resistant layer at low annealing temperature in a layered annealing mode, and the ferroelectric film with electrical property is successfully prepared. Compared with the existing solutions of ion doping, annealing temperature regulation and the like, the film structure design scheme greatly reduces the operation difficulty and energy consumption of the preparation process, is more close to industrial production and obviously improves the energy storage density.)

一种高击穿场强的储能薄膜及其制备方法

技术领域

本发明涉及一种高击穿场强的储能薄膜及其制备方法,属于高性能储能薄膜材料制备

技术领域

背景技术

介质电容器有着更快的充放电速率(ns)和更高的功率密度(高达108W/kg),能满足如混合动力汽车、医疗除颤器、以及卫星等超高功率电子和系统的要求。然而,介电电容器的进一步开发及应用受到低能量密度的严重限制。近些年来,由于薄膜材料厚度小、缺陷少、储能密度适中等优异特性,科研工作者们逐渐将目光从块体材料转移到薄膜材料上。

对于反铁电(AFE)材料这类介质电容器来说,提高击穿场强更能明显增加储能密度。现有的提高击穿场强的方式有主动引入离子掺杂、增加薄膜厚度、调控结晶温度以及增加异质结等,但是制备较为工艺繁琐,这无疑增加了制备的时间成本以及制备成本,因此提供一种能够保证一定的极化强度基础上实现较大的击穿电场的提升,大幅提高薄膜的储能密度的高击穿场强的储能薄膜结构及其制备方法是十分必要。

发明内容

本发明为了解决现有制备的储能薄膜击穿场强低、性能调控过程复杂以及储能密度低下等技术问题,提供一种新型的储能薄膜结构以及制备方法。

本发明的技术方案:

一种高击穿场强的储能薄膜,包括晶化层和非晶化层,薄膜厚度为200-700nm,晶化层与非晶化层厚度比为1:(1-5)。

进一步限定,晶化层厚度为40-230nm,非晶化层厚度为60-670nm。

更进一步限定,晶化层厚度和非晶化层厚度均为60-120nm。

更进一步限定,薄膜厚度为200-300nm。

进一步限定,薄膜为锆酸铅类反铁电薄膜。

一种上述高击穿场强的储能薄膜的制备方法,该方法包括以下步骤:

步骤1,通过气相法或液相法制备第一层薄膜,所述的第一层薄膜厚度需要达到晶化层厚度要求,然后进行高温退火处理,获得晶化层薄膜;

步骤2,在步骤1获得的晶化层薄膜表面采用气相沉积法或液相法涂覆第二层薄膜,所述的第二层薄膜厚度需要达到非晶化层厚度要求,然后进行低温退火处理,在晶化层薄膜表面制备非晶化层薄膜,获得高击穿场强的储能薄膜。

进一步限定,步骤1中高温退火的温度为650-750℃。

进一步限定,步骤2中低温退火的温度为400-650℃。

进一步限定,步骤1和步骤2中退火气氛为氧气,流速为0.2-0.7L/min。

进一步限定,气相沉积法制备薄膜为磁控溅射或化学气相沉积。

进一步限定,液相法制备薄膜为溶胶凝胶-旋涂法。

进一步限定,退火的方式包括但不限于快速退火炉,还可以是马弗炉、真空退火炉以及管式炉等。

应用上述方法制备锆酸铅基高击穿场强的储能薄膜的具体过程如下:

步骤1,将三水乙酸铅在60-180℃条件下,热处理0.5-2h,加入体积比为(6-8):1的乙二醇和甲醚作为溶剂,数滴乙酸作为助溶剂,常温下在转速为350-450r/min条件下磁力搅拌1-2h,冷却至室温,加入正丙醇锆溶液继续搅拌,过滤以及陈化24h后,得到浓度为0.2-0.6mol/L的锆酸铅溶胶;

步骤2,将步骤1获得的锆酸铅溶胶滴在衬底上,在转速为500-1000r/min条件下铺展胶体,然后在转速为3500-5500r/min条件下匀胶,转移至平板加热器上加热初步去除溶剂;

步骤3,重复步骤2直至薄膜厚度达到40-230nm,将薄膜进行退火处理,获得晶化层薄膜;

所述的退火处理条件为:气氛为氧气,氧气流速为0.2-0.7L/min,在速率为20-50℃/min条件下升温至650-750℃,保温2-7min;

步骤4,在步骤3获得的晶化层薄膜表面继续滴加步骤1获得的锆酸铅溶胶,在转速为500-1000r/min条件下铺展胶体,然后在转速为3500-5500r/min条件下匀胶,转移至平板加热器上加热初步去除溶剂;

步骤5,重复步骤2直至薄膜厚度达到200-700nm,进行退火处理,在晶化层薄膜表面制备非晶化层薄膜,获得高击穿场强的储能薄膜;

所述的退火处理条件为:气氛为氧气,氧气流速为0.2-0.7L/min,在速率为20-50℃/min条件下升温至400-650℃,保温2-7min。

进一步限定,衬底使用之前使用无水乙醇超声15min后,使用鼓风干燥箱干燥1h,并在平板加热器加热5min。

本发明具有以下有益效果:本发明通过分层退火的方式,在高退火温度下形成晶化层,并在其表面继续低温退火形成非晶化层,并通过调控晶化层和非晶化层的厚度比例,使薄膜在保证一定的极化强度基础上实现较大的击穿电场的提升,大幅提高薄膜的储能密度。此外,本发明还具有以下优点:

(1)工艺简单,无需进一步精细化调控退火温度,贴近工业化生产水平,有利于推动高储能密度介电电容器的开发与应用;

(2)本发明对近衬底侧薄膜进行高温退火,形成晶化层,为薄膜提供在较低电场下的极化能力,提高薄膜低场下的存储电荷的能力,并在高电场下持续存储电荷;

(3)本发明在晶化层薄膜上继续制备一定厚度的薄膜,并在较低的结晶温度下完成退火形成非晶层,为薄膜在高电场下提供耐压能力,显著提高整体的击穿场强,同时通过引入新的界面,一定程度上限制了泄漏电流的进一步扩大;

(4)晶化层和非晶层之间同属一种介质,界面亲和性好,层间应力小;

(5)降低薄膜的退火温度不仅降低了其制备过程中的能源损耗,也降低了其元素挥发带来的产品良率的问题,更进一步提高了薄膜整体的储能密度。

附图说明

图1为实施例1获得PZO薄膜样品1-5的XRD对比图;

图2为实施例1获得PZO薄膜样品1-5的SEM图,其中(a)-(e)依次对应样品1-5;

图3为实施例1获得PZO薄膜样品1-5的极化曲线对比图;

图4为实施例1获得PZO薄膜样品1-5的储能密度曲线对比图;

图5为实施例1获得PZO薄膜样品1-5的储能效率曲线对比图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

下述实施例中所使用的实验方法如无特殊说明均为常规方法。所用材料、试剂、方法和仪器,未经特殊说明,均为本领域常规材料、试剂、方法和仪器,本领域技术人员均可通过商业渠道获得。

实施例1:

一、将2.5261g三水乙酸铅(过量10%)于烘箱125℃去除结晶水1h,转移至锥形瓶中,然后加入15.3ml乙二醇甲醚作为溶剂,2ml乙酸作为助溶剂,常温磁力以350r/min转速搅拌2h后冷却至室温,加入2.7ml正丙醇锆溶液继续以350r/min转速搅拌2h。然后采用0.22μm孔隙滤纸过滤并陈化处理24h,得到0.3mol/L的锆酸铅溶胶。

二、在提前进行超声15min、丙酮擦拭、鼓风烘箱烘干以及400℃加热3min去除应力处理后的Pt(111)/Ti/SiO2/Si(100)衬底上,滴加8-11滴步骤一获得的锆酸铅胶体,并在800r/min低转速匀胶15s,在4000r/min高转速下打薄胶体10s,获得厚度为60nm的薄膜,然后将薄膜转移至平板加热器上400℃加热5min去除溶剂。

三、上述步骤共操作m次,转移至快速退火炉中,以30℃/s的升温速率升至700℃,并在0.5L/min流速下的氧气氛围退火180s,获得晶化层薄膜。

四、将上述薄膜上继续滴加胶体,以步骤三的操作再旋涂n次,并在相同条件下以550℃为退火温度进行退火处理,获得PZO薄膜。

当m为4次,n为0次时,获得的PZO薄膜命名为样品1。

当m为3次,n为1次时,获得的PZO薄膜命名为样品2。

当m为2次,n为2次时,获得的PZO薄膜命名为样品3。

当m为1次,n为3次时,获得的PZO薄膜命名为样品4。

当m为0次,n为4次时,获得的PZO薄膜命名为样品5。

对上述样品1-5的薄膜进行表征以及性能测试,结果如图1-4所示。

如图1所示,随着低温退火层数n的增加,(110)指向逐渐变弱,薄膜的焦绿石相逐渐增多,这说明随着非晶层厚度的增加,薄膜逐渐出现杂相。

如图2所示,随着低温退火层数n的增加,薄膜表面孔隙逐渐减少,其中当m为1,n为3时薄膜表面最为致密,继续增加低温退火层数开始劣化,这说明一定厚度的非晶层有助于提高薄膜致密度。

如图3所述,随着低温退火层数n的增加,薄膜极化逐渐降低,但是薄膜的击穿场强逐渐上升,这是由于非晶层介电常数低,极化程度低,承受更高的电场强度,薄膜整体的击穿场强提高。

如图4所示,当m为1,n为3时薄膜的储能密度具有显著提升,这是由于一定厚度比的晶化层与非晶层组合,既提高了薄膜整体的击穿场强,也提高了薄膜整体的极化程度,整体提高了储能密度。

如图5所示,当m为1,n为3时薄膜的储能效率保持在55%以上,这是由于非晶层薄膜厚度的提高,线性储能占比逐渐变高,充放电效率得到一定提升。

实施例2:

一、将1.79919g三水乙酸铅(过量10%)于烘箱125℃去除结晶水1h,转移至锥形瓶中。加入11.6ml乙二醇甲醚作为溶剂,1ml乙酸作为助溶剂,常温磁力以350r/min转速搅拌2h后冷却至室温,加入1ml正丙醇锆溶液以及0.7ml钛酸四丁酯溶液继续以350r/min转速搅拌2h。然后采用0.22μm孔隙滤纸过滤并陈化处理24h后,得到0.3mol/L的PZT溶胶。

二、在提前进行超声15min、丙酮擦拭、鼓风烘箱烘干以及400℃加热3min去除应力处理后的Pt(111)/Ti/SiO2/Si(100)衬底上,滴加8-11滴锆钛酸铅胶体,并在800r/min低转速匀胶15s,4000r/min高转速下打薄胶体10s,转移至平板加热器上400℃加热5min去除溶剂。

三、重复上述步骤直到薄膜厚度为180nm,转移至快速退火炉中,以30℃/s的升温速率升至700℃,并在0.5L/min流速下的氧气氛围退火180s。

四、将上述薄膜继续滴加胶体,相同的步骤旋涂至薄膜厚度为240nm,并在与步骤三相同条件下以550℃为退火温度进行处理,获得PZT薄膜。

实施例3:

一、将2.4755g三水乙酸铅(过量10%)以及0.0520g硝酸镧于烘箱125℃去除结晶水1h,转移至锥形瓶中,加入15.3ml乙二醇甲醚作为溶剂,2ml乙酸作为助溶剂,常温磁力以350r/min转速搅拌2h后冷却至室温,加入2.7ml正丙醇锆溶液继续以350r/min转速搅拌2h。采用0.22μm孔隙滤纸过滤并陈化处理24h后,得到0.3mol/L的PLZO-2溶胶。

二、在经提前超声15min、丙酮擦拭、鼓风烘箱烘干以及400℃加热3min去除应力处理后的Pt(111)/Ti/SiO2/Si(100)衬底上,滴加8-11滴锆酸铅胶体,并在800r/min低转速匀胶15s,4000r/min高转速下打薄胶体10s,转移至平板加热器上400℃加热5min去除溶剂。

三、重复上述步骤直到薄膜厚度为180nm,转移至快速退火炉中,以30℃/s的升温速率升至700℃,并在0.5L/min流速下的氧气氛围退火180s。

四、将上述薄膜继续滴加胶体,相同的步骤旋涂至薄膜厚度为240nm,并在与步骤三相同条件下以550℃为退火温度,获得PLZO-2薄膜。

本发明提出了一种兼顾高击穿场强以及高极化程度的储能薄膜结构设计方案,相较于现有实现手段,本发明显著减少了制备时间,降低了操作难度以及原料浪费,做到了制备过程简单、能源损耗低、击穿场强以及储能提升明显,为后面制备高储能密度薄膜提供了一种思路。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种石墨阳极板及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!