电外科器械

文档序号:957288 发布日期:2020-10-30 浏览:1次 >En<

阅读说明:本技术 电外科器械 (Electrosurgical instrument ) 是由 C·P·汉考克 帕特里克·伯恩 P·沙阿 于 2019-06-27 设计创作,主要内容包括:一种电外科器械,具有带有增强的柔韧性的辐射尖端。在第一方面中,这通过使所述辐射尖端中的介电材料成形为有利于所述辐射尖端弯曲来实现。在第二方面中,这通过将所述辐射尖端的介电主体和外护套形成为单独的部分以允许所述部分之间的运动和挠曲来实现。通过提高所述辐射尖端的所述柔韧性,可提高所述电外科器械的可操纵性。(An electrosurgical instrument has a radiating tip with enhanced flexibility. In a first aspect, this is achieved by shaping the dielectric material in the radiating tip to facilitate bending of the radiating tip. In a second aspect, this is achieved by forming the dielectric body and the outer sheath of the radiating tip as separate parts to allow movement and flexing between the parts. By increasing the flexibility of the radiating tip, the maneuverability of the electrosurgical instrument may be increased.)

电外科器械

发明领域

本发明涉及一种用于向生物组织递送微波能量和/或射频能量以便消融靶组织的电外科器械。探针可***穿过内窥镜或导管的通道,或者可用于腹腔镜手术或开放手术中。所述器械可用于肺或胃肠应用,但不限于此。

发明背景

已发现电磁(EM)能量并且特别是微波和射频(RF)能量因其能够切割、凝结和消融身体组织而可用于电外科手术中。通常,用于向身体组织递送EM能量的设备包括包含EM能量源的发生器,以及连接到发生器的电外科器械,以用于向组织递送能量。常规的电外科器械常常设计成经皮地***到患者的身体中。然而,例如如果靶部位是在移动的肺或胃肠(GI)道的薄壁区段中,则可能难以将器械经皮地定位在身体中。其他电外科器械可通过外科观测装置(例如,内窥镜)递送到靶部位,该外科观测装置可延伸穿过身体内的通道,诸如气道或者食道或结肠的内腔。这允许最小侵入性治疗,从而能够降低患者的死亡率并且降低术中和术后并发症率。

使用微波EM能量进行组织消融是基于生物组织主要由水构成的事实。人体软器官组织通常具有在70%与80%之间的水分。水分子具有永久电偶极矩,这意味着在整个分子上存在电荷不平衡。这种电荷不平衡会使分子响应于由时变电场的施加所产生的力而移动,因为所述分子会旋转来使其电偶极矩与所施加的场的极性对准。在微波频率下,快速分子振荡会导致摩擦加热以及随之发生的呈热形式的场能量的耗散。这被称为介电加热。

此原理被用于微波消融治疗中,其中靶组织中的水分子通过在微波频率下施加局部电磁场而快速地加热,从而导致组织凝结和细胞死亡。已知可使用微波发射探针来治疗肺和其他器官中的各种疾病。例如,在肺中,微波辐射可用于治疗哮喘和消融肿瘤或病灶。

RF EM能量可用于生物组织的切割和/或凝结。使用RF能量切割的方法基于如下原理进行操作:在电流(受助于细胞的离子内容物,即,钠和钾)穿过组织基质时,整个组织上对电子流的阻抗产生热。当将纯正弦波施加到组织基质时,在细胞内产生足够的热以使组织的水分蒸发。因此,细胞膜无法控制的细胞的内部压力就会剧增,从而导致细胞破裂。当大面积地发生这种情况时,可预见的是组织早已被切断。

RF凝结术通过以下方式来操作:将较低效率的波形施加到组织,由此代替蒸发,将细胞内容物加热到约65℃。这通过干燥剂对组织进行干燥并且还会使血管壁以及构成细胞壁的胶原蛋白中的蛋白质变性。使蛋白质变性充当对凝结级联的刺激,因此凝结被增强。同时,细胞壁中的胶原蛋白从棒状分子变性为卷曲分子,这使血管收缩并使大小减小,从而赋予凝块锚定点以及较小的封堵区域。

发明内容

最一般地,本发明提供了一种电外科器械,该电外科器械具有带有增强的柔韧性的辐射尖端。在本发明的第一方面中,这可通过使辐射尖端中的介电材料成形为有利于该辐射尖端弯曲来实现。在本发明的第二方面中,这通过将辐射尖端的介电主体和外护套形成为单独的部分以允许该部分之间的运动和挠曲来实现。通过提高辐射尖端的柔韧性,可提高电外科器械的可操纵性。

本发明的电外科器械可用于消融身体中的靶组织。为了有效地消融靶组织,辐射尖端应定位得尽可能靠近靶组织(并且在许多情况下位于靶组织内部)。为了到达靶组织(例如,肺中的靶组织),可能需要引导装置通过通路(例如,气道)并且绕过身体内的障碍物。因此,使辐射尖端更柔性可有利于将辐射尖端引导到靶组织。例如,在靶组织处于肺中的情况下,这可有利于沿着可能狭窄且蜿蜒的通路(诸如小支气管)操纵器械。通过将辐射尖端定位得尽可能靠近靶组织,可避免或减小对周围健康组织的辐照。

根据本发明的第一方面,提供了一种电外科器械,该电外科器械包括:同轴馈电电缆,该同轴馈电电缆用于传送微波能量和/或射频能量,该同轴馈电电缆具有内导体、外导体和将内导体与外导体隔开的介电材料;以及辐射尖端,该辐射尖端设置在同轴馈电电缆的远端处以接收微波能量和/或射频能量,该辐射尖端包括:能量递送结构,该能量递送结构被配置为从辐射尖端的外表面递送从同轴馈电电缆接收的微波能量和/或射频能量,其中该能量递送结构包括:细长导体,该细长导体电连接到内导体并且在纵向方向上延伸超出同轴馈电电缆的远端;以及介电主体,该介电主体围绕细长导体设置,其中介电主体在其中包括空腔,该空腔与细长导体相邻地设置以有利于辐射尖端挠曲。

能量递送结构可被配置为仅递送微波能量,或仅递送射频能量。而且在实施方案中,能量递送结构可被配置为能够单独地或同时地递送微波能量和射频能量两者。细长导体可被配置为用于辐射微波能量的天线,或者被配置为提供与有源电极的电连接以递送射频能量的构件(例如,与连接到外导体的返回电极相结合)。

电外科器械可能适合于消融尤其是人体中的受局限或难以接近的位置,诸如肺或子宫中的组织。然而,可理解,该器械可用于消融其他器官中的组织。

同轴馈电电缆可为在一端处可连接到电外科发生器的常规的低损耗同轴电缆。具体地,内导体可为沿着同轴馈电电缆的纵向轴线延伸的细长导体。介电材料可围绕内导体设置,例如,第一介电材料可具有通道,内导体延伸穿过该通道。外导体可为由导电材料制成的设置在介电材料的表面上的套筒。同轴馈电电缆还可包括用于使电缆绝缘并保护电缆的外保护性护套。在一些示例中,保护性护套可由不粘材料制成或涂覆有不粘材料以防止组织粘连到电缆。辐射尖端位于同轴馈电电缆的远端处,并且用于将沿着同轴馈电电缆传送的EM能量递送到靶组织中。辐射尖端可永久地附接到同轴馈电电缆,或者辐射尖端可以可移除地附接到同轴馈电电缆。例如,连接器可提供在同轴馈电电缆的远端处,该连接器被布置成接纳辐射尖端并且形成所需的电连接。

介电主体可包括用于传送细长导体的通道。器械可通过将细长导体馈送通过通道或者通过将介电主体沉积在细长导体上来组装。

介电主体可为大体上圆柱形的,但其他形状也是可能的。介电主体可附接到同轴馈电电缆的远端。在一些示例中,介电主体可包括同轴馈电电缆的介电材料的延伸超出同轴馈电电缆的远端的突出部分。这可简化辐射尖端的构造,并且避免EM能量在辐射尖端与同轴馈电电缆之间的边界处的反射。在其他示例中,与同轴馈电电缆的介电材料隔开的第二介电材料可用于形成介电主体。第二介电材料可与同轴馈电电缆的介电材料相同,或不同。第二介电材料可被选择为提高与靶组织的阻抗匹配,以便提高将微波能量递送到靶组织中的效率。介电主体还可包括多个不同的介电材料件,该不同的介电材料件被选择和布置成以期望的方式使辐射剖面成形。介电主体可由不粘材料(例如,PTFE)制成或涂覆有不粘材料以防止组织粘连到介电主体。

介电主体在纵向方向上,即,在平行于同轴馈电电缆的纵向轴线的方向上延伸。细长导体在介电主体中的通道内延伸。通道可为延伸穿过介电主体的一部分的通路。细长导体可为具有细长形状的任何合适的导体。例如,细长导体可为在介电主体内延伸的导电材料的线、杆或条带。在一些实施方案中,细长导体可为内导体的延伸超出同轴馈电电缆的远端的远侧部分。换句话说,内导体可延伸超出同轴馈电电缆的远端并且延伸到介电主体中以形成细长导体。这可有利于在同轴馈电电缆的远端处形成辐射尖端,因为它使得不必将单独的导体连接到内导体的远端。

辐射尖端可被配置为充当微波辐射器,即,该辐射尖端可被配置为辐射由同轴馈电电缆传送的微波能量。具体地,从同轴馈电电缆传送到辐射尖端的微波能量可沿着细长导体的长度辐射。外导体可终止于同轴馈电电缆的远端,使得细长导体延伸超出外导体的远端。以此方式,辐射尖端可充当微波单极天线。因此,传送到辐射尖端的微波能量可从细长导体辐射到周围靶组织中。

另外地或可选地,辐射尖端可被配置为使用RF能量来切割或消融靶组织。例如,辐射尖端可包括一对暴露电极(例如,双极RF电极),该对暴露电极被布置成切割或消融靶组织。电极中的一个电极可电连接到内导体(例如,经由细长导体),并且电极中的另一个电极可电连接到外导体。以此方式,通过将射频能量传送到近侧电极和远侧电极,可切割和/或消融位于电极之间或周围的生物组织。在一些情况下,辐射尖端可被配置为单独地或同时地递送微波能量和RF能量两者。这可允许通过在RF能量与微波能量之间进行切换或改变这两种能量的施加来快速地改变电外科器械的功能。

空腔可形成于介电主体的围绕细长导体设置的部分中,即,空腔可位于介电主体的具有通道的部分中,细长导体延伸穿过该通道。空腔可在横向(例如,径向)方向上与通道间隔开,该横向方向垂直于纵向方向。例如,在介电主体是圆柱形的情况下,通道可基本上以圆柱形主体的中心轴线为中心,并且空腔可与通道径向地间隔开。空腔可为形成于介电主体内或介电主体的表面上的空隙,例如,不存在介电主体的介电材料的区域。例如,空腔可为介电主体的表面上的凹入部或凹陷。空腔可形成于介电主体的外表面中。可选地,空腔可形成于介电主体的内表面中,例如,形成于通道的壁中。在空腔形成于介电主体内的情况下,该空腔可为包封在介电主体内的空隙或凹穴。

空腔可减小介电主体的包围细长导体的部分中的材料的量。例如,空腔可减小在介电主体的包围细长导体的部分中形成介电主体的材料的横向方向上的总厚度。这可减小围绕细长导体的介电主体的刚度。空腔还可充当有利于介电主体弯曲的弯曲点或挠曲部。空腔因此可用于提高介电主体的柔韧性。这可有利于辐射尖端弯曲,进而可有利于引导电外科器械通过身体中的狭窄且蜿蜒的通路。这可使得辐射尖端能够定位得尽可能靠近靶组织,以确保能量有效地递送到靶组织。与介电材料的总体积相比较,空腔的体积可能是相对较小的。以此方式,空腔可提高介电主体的柔韧性,而不会显著地影响介电主体的阻抗匹配性质。因此,辐射尖端的辐射剖面可能不会受到空腔的存在的显著的影响。

空腔可为空的(例如,空腔可用空气填充)。在一些情况下,空腔可用可变形材料填充,以提高介电主体的柔韧性。

在一些情况下,多个空腔可形成于介电主体中。空腔可沿着介电主体的长度布置,例如,该空腔可为纵向地间隔开的。这可沿着介电主体的长度提供多个弯曲点,以有利于介电主体沿着其长度弯曲。空腔还可围绕介电主体的纵向轴线布置。这可有利于介电主体在不同方向上相对于纵向方向弯曲。因此,具有多个空腔可进一步提高介电主体的柔韧性。多个空腔可为均匀地间隔开的,或者多个空腔可以任意方式布置。空腔可被置于介电主体上以有利于介电主体在特定方向上弯曲。例如,将空腔置于介电主体的侧部上可例如通过利用空腔减小介电主体在侧部上的刚度来有利于介电主体朝向侧部弯曲。多个空腔可围绕介电主体的纵向轴线布置,以有利于介电主体在多个方向上弯曲。

空腔(或多个空腔)可在介电主体的制造期间形成。例如,介电主体可被模制成包括一个或多个空腔。可选地,空腔可通过在介电主体中钻出孔洞和/或切削掉介电主体的部分来形成。

在一些实施方案中,空腔可由在介电主体中纵向地延伸的内腔形成。介电主体可包括包围细长导体的内套筒(即,提供通道,细长导体延伸穿过该通道)。内腔可与细长导体间隔开内套筒的径向厚度。内腔可沿着介电主体的全部或一部分延伸,以提高介电主体的柔韧性。内腔可为延伸穿过介电主体的一部分的通路或通道。内腔可为封闭内腔,即,内腔可形成于介电主体内部。可选地,内腔可为开放内腔,即,内腔可形成于介电主体的表面处。在一些示例中,内腔可平行于介电主体中的通道。在其他示例中,内腔可具有螺旋形状,使得内腔缠绕在介电主体中的通道上。内腔可具有圆形横截面,或者该内腔可具有另一种形状的横截面。有利地,内腔可用于将布线或其他输入端传送通过辐射尖端。介电主体中的内腔与同轴馈电电缆中的内腔可为连续的,使得输入端可从电外科器械的近端输送到辐射尖端。例如,内腔可用于传送流体(例如,用于冷却尖端的冷却剂流体)。内腔可用于传送控制线(例如,以控制位于辐射尖端的远端处的刀片或其他机构)。

在介电主体中可能存在纵向地延伸的多个内腔(例如,其中存在多个空腔)。内腔可被布置成使得内腔围绕介电主体中的通道间隔开,例如,该内腔可围绕通道均匀地间隔开。这可有利于辐射尖端相对于纵向轴线在多个方向上弯曲。

在一些实施方案中,内腔可具有环形横截面,该环形横截面包围介电主体的其中形成有通道的部分。换句话说,介电主体可包括:内部分,该内部分中形成包含细长导体的通道;以及外部分,该外部分围绕内部分形成套筒。外部分可与内部分间隔开,以在内部分与外部分之间形成内腔。外部分可例如使用间隔物来与内部分间隔开。通过向内腔提供包围介电主体的内部分的环形横截面,可围绕介电主体的纵向轴线有效地形成空腔。这可能会导致介电主体的刚度绕纵向轴线为基本上对称的,这可有利于介电主体相对于纵向轴线弯曲,例如,可能不存在优先弯曲方向。内腔可被布置成使得其环形横截面基本上以介电主体的纵向轴线为中心,使得内腔绕纵向轴线为轴向地对称的。这可进一步提高介电主体绕纵向轴线的刚度的各向同性。

在一些实施方案中,内腔可设置在介电主体的外表面上。例如,内腔可在介电主体的外表面上形成纵向地延伸的沟槽。内腔因此可为在介电主体的外表面上的开放内腔。在介电主体包括多个空腔的情况下,多个沟槽可形成于外表面上。除了有利于辐射尖端弯曲之外,沟槽还可用作接合特征。例如,电外科器械的外保护性护套可具有接合在沟槽中的一个或多个突出部,以相对于辐射尖端固定外保护性护套。在另一个示例中,沟槽可用于沿着外科观测装置的器械通道引导辐射尖端和/或维持辐射尖端的期望的取向。介电主体的表面上的沟槽还可用于夹持辐射尖端,例如,以使辐射尖端旋转。

在一些实施方案中,空腔可由介电主体中的凹陷形成。凹陷可形成于介电主体的表面中。凹陷可为形成于介电主体的表面中的凹入部或凹口。凹陷可充当介电主体的弯曲点或挠曲部,例如,该凹陷可构成与介电主体的其他区域相比较对弯曲的阻力更小的区域(例如,由于介电主体在凹陷处的减小的厚度)。凹陷的长度可垂直于纵向方向,以有利于介电主体相对于纵向方向弯曲。多个凹陷可形成于介电主体中,以提供多个弯曲点或挠曲部。以此方式,可有利于沿着介电主体的长度在多个点处弯曲介电主体。

在一些实施方案中,凹陷可形成于介电主体的外表面中。在其他实施方案中,凹陷可形成于介电主体的内表面中,例如,形成于介电主体中的通道的壁中。在存在多个凹陷的情况下,凹陷中的一些可形成于外表面中,同时凹陷中的一些可形成于内表面中。

在一些实施方案中,凹陷可形成围绕介电主体的圆周延伸的沟槽。沟槽可形成于介电主体的外表面中。沟槽可围绕介电主体的圆周形成圈或环。在这种情况下,沟槽可在垂直于纵向方向的方向上定向。在其他情况下,沟槽可具有螺旋形状,使得该沟槽沿着介电主体的长度缠绕在介电主体上。通过围绕介电主体的圆周形成沟槽,介电主体的刚度可绕纵向轴线为基本上对称的。这可有利于介电主体相对于纵向轴线弯曲。

在一些实施方案中,介电主体可包括波纹表面,并且凹陷可由波纹表面中的波纹形成。介电主体的外表面可为波纹的,和/或内表面(通道的壁)可为波纹的。在一些情况下,介电主体的外表面和内表面两者都可为波纹的。例如,介电主体的一部分可由某个长度的波纹管或管道形成。合适的波纹管或管道可由PTFE、FEP或PFA制成。波纹表面可包括被布置成形成一系列峰和谷的一系列波纹或脊。凹陷可对应于形成于相邻的波纹/脊之间的谷。由于波纹表面可包括多个波纹,因此多个凹陷可形成于波纹表面中。凹陷可用作介电主体的弯曲点或挠曲部,如上文所论述。波纹管是可广泛地商购获得的。这可有利于以低成本生产柔性辐射尖端。

在一些实施方案中,辐射尖端还可包括围绕介电主体的外表面设置的外护套,该外护套与介电主体隔开以允许外护套与介电主体之间的相对运动。外护套可用于保护辐射尖端免于环境的影响并且将辐射尖端与环境隔离。外护套可由不粘材料(例如,PTFE)制成或涂覆有不粘材料以防止组织粘连到外护套。外护套可为覆盖介电主体的外表面的绝缘材料套筒。例如,外护套可由收缩在介电主体周围的一定长度的热收缩管形成。外护套与介电主体隔开,这意味着该外护套与介电主体分开地形成,即,该外护套和该介电主体被形成为单独的部件。此外,可能没有粘合剂或其他连接构件将外护套固定到介电主体。外护套可经由外护套与介电主体之间的摩擦力而保持在介电主体上。因此,介电主体的外表面与外护套之间的少量的相对运动可能是可能的。以此方式,当介电主体弯曲时,外护套可相对于介电主体的表面移动,以避免外护套中的应力积聚。例如,外护套可能会围绕介电主体中的弯曲部的内侧“聚成一团”。因此,外护套可能不会对辐射尖端的弯曲提供任何显著的阻力,即,外护套可能不会显著地增加辐射尖端的刚度。使外护套与介电主体分开地形成因此可有利于辐射尖端弯曲。另外地,这可避免可能会造成介电主体的断裂和/或外护套的撕裂的在介电主体与外护套之间的界面处的应力集中。

外护套可在一端处附接到同轴馈电电缆的远端,以相对于同轴馈电电缆固定该外护套的位置。例如,外护套可附接到同轴馈电电缆的保护性护套。在一些情况下,外护套可为同轴馈电电缆的保护性护套的延续部,例如,外护套可为同轴馈电电缆的保护性护套的延伸超出同轴馈电电缆的远端的远侧部分。在空腔形成于介电主体的外表面上的情况下,外护套可用于覆盖空腔。以此方式,尽管介电主体中存在空腔,但辐射尖端可具有平滑外表面。

外护套的配置可提供本发明的独立方面。根据这个方面,提供了一种电外科器械,该电外科器械包括:同轴馈电电缆,该同轴馈电电缆用于传送微波能量和/或射频能量,该同轴馈电电缆具有内导体、外导体和将内导体与外导体隔开的介电材料;以及辐射尖端,该辐射尖端设置在同轴馈电电缆的远端处以接收微波能量和/或射频能量,该辐射尖端包括:能量递送结构,该能量递送结构被配置为从辐射尖端的外表面递送从同轴馈电电缆接收的微波能量和/或射频能量,其中该能量递送结构包括:细长导体,该细长导体电连接到内导体并且在纵向方向上延伸超出同轴馈电电缆的远端;以及介电主体,该介电主体围绕细长导体设置;以及外护套,该外护套围绕介电主体的外表面设置,其中外护套与介电主体隔开以允许外护套与介电主体之间的相对运动。

本发明的第一方面的特征可与本发明的第二方面共享并且不再进行论述。具体地,本发明的第二方面的电外科器械的介电主体可包括如上文针对本发明的第一方面论述的空腔(或多个空腔)。

上文阐述的本发明的第一方面或第二方面的实施方案可包括以下特征。

在一些实施方案中,介电主体可由第一介电材料形成,并且外护套可由不同于第一介电材料的第二介电材料形成。第一介电材料和第二介电材料可被选择为提高辐射尖端与靶组织的阻抗匹配。第一介电材料和第二介电材料还可被选择为有利于辐射尖端弯曲。例如,第二介电材料可具有比第一介电材料低的刚度。这可确保外护套不会显著地增加辐射尖端的总刚度。

在一些实施方案中,第一介电材料可具有比第二介电材料高的熔化温度。这可使得外护套能够通过使第二介电材料熔化或收缩在介电主体上方来形成。例如,外护套可由用第二介电材料制成的热收缩材料管形成。热收缩管可被置于介电主体上方,并且然后通过施加热而收缩在介电主体上方。由于第一介电材料的熔化温度高于第二介电材料的熔化温度,因此当外护套形成于介电主体上方时,介电主体不会熔化。这可确保外护套良好地配合在介电主体上方,同时将它们保持为单独的部件以允许它们之间的相对运动。这可有利于制造辐射尖端。

在一些实施方案中,第一介电材料可为聚四氟乙烯(PTFE),并且第二介电材料可为氟化乙丙烯(FEP)。PTFE具有比FEP高的熔化温度。FEP通常比PTFE软,因此可能能够容易地弯曲。使用这种材料组合,外护套可通过(例如,使用模具)使FEP熔化在介电主体上方,以在介电主体上直接地形成外护套来形成。可选地,由FEP制成的某个长度的热收缩管可用于在介电主体上方形成外护套。

在一些实施方案中,外护套可包括被布置成覆盖介电主体的远端的远侧尖端。因此,外护套可覆盖介电主体的外表面(例如,侧部)和远端两者。以此方式,外护套可在介电主体上形成帽盖。远侧尖端可由与外护套的其余部分相同的介电材料(例如,第二介电材料)制成。远侧尖端可为尖的,以有利于将辐射尖端***到靶组织中。可选地,远侧尖端可为圆化的或平坦的。远侧尖端可用于提高与靶组织的阻抗匹配。远侧尖端还可用于防止位于辐射尖端周围的环境中的流体进入在外护套与介电主体之间的空间(例如,空腔)。

在一些实施方案中,外护套可被配置为围绕介电主体的外表面形成密封。外护套因此可包封介电主体的外表面。外护套可用于防止位于辐射尖端周围的环境中的流体进入在外护套与介电主体之间的空间。例如,密封可在介电主体的近端处并在介电主体的远端处形成于外护套与介电主体之间。在外护套包括远侧尖端的情况下,可能仅在介电主体的近端处需要密封。在一些情况下,密封可形成于外护套与同轴馈电电缆的远端之间,以防止在同轴馈电电缆与辐射尖端之间的界面处泄漏。

在空腔是在介电主体的外表面上的情况下,外护套可用于将空气捕集(或某种其他流体)捕集在空腔中,并且用于防止周围环境中的流体进入空腔。

在一些实施方案中,辐射尖端还可包括介电扼流圈。介电扼流圈可为电绝缘材料件,其相对于外导体安装(例如,安装在外导体与近侧电极之间)以减小在辐射尖端处顺着同轴馈电电缆往回反射的EM能量的传播。这可减小辐射尖端的辐射剖面沿着同轴馈电电缆延伸的量,并且提供增强的辐射剖面。

介电主体可包括螺旋主体,细长导体延伸穿过该螺旋主体。换句话说,介电主体的一部分可成形为螺旋状物,其中该螺旋状物缠绕在一定长度的细长导体上。细长导体从中延伸穿过的通道因此可由螺旋状物的线圈形成。介电主体的螺旋形状可有利于介电主体弯曲,并且可提供介电主体绕介电主体的纵向轴线的基本上对称的刚度。螺旋主体可充当螺旋弹簧,从而提供辐射尖端的高度的柔韧性。此外,介电主体的螺旋形状可有利于介电主体在被弯曲之后返回至其原始形状。例如,在弯曲以经过蜿蜒通路之后,辐射尖端可因介电主体的回弹性而重新伸直。

螺旋介电主体可构成本发明的第三独立方面。根据这个方面,提供了一种电外科器械,该电外科器械包括:同轴馈电电缆,该同轴馈电电缆用于传送微波能量和/或射频能量,该同轴馈电电缆具有内导体、外导体和将内导体与外导体隔开的介电材料;以及辐射尖端,该辐射尖端设置在同轴馈电电缆的远端处以接收微波能量和/或射频能量,该辐射尖端包括:能量递送结构,该能量递送结构被配置为从辐射尖端的外表面递送从同轴馈电电缆接收的微波能量和/或射频能量,其中该能量递送结构包括:细长导体,该细长导体电连接到内导体并且在纵向方向上延伸超出同轴馈电电缆的远端;以及介电主体,该介电主体围绕细长导体设置;其中介电主体包括螺旋主体,细长导体延伸穿过该螺旋主体。

本发明的第一方面和本发明的第二方面的特征可与本发明的第三方面共享,并且不再进行论述。

在上文论述的本发明的任何方面的电外科器械的一些实施方案中,能量递送结构可包括近侧调谐元件和远侧调谐元件,该近侧调谐元件和该远侧调谐元件中的每一者电连接到细长导体,该近侧调谐元件和该远侧调谐元件纵向地间隔开细长导体的一定长度。介电主体可包括设置在近侧调谐元件与远侧调谐元件之间的第一介电间隔物。

近侧调谐元件可为位于辐射尖端的近端附近的导电材料(例如,金属)件。远侧调谐元件可为位于辐射尖端的远端附近的导电材料(例如,金属)件。因此,远侧调谐元件可比近侧调谐元件更为远离同轴馈电电缆的远端。近侧调谐元件和远侧调谐元件都电连接到细长导体。例如,近侧调谐元件和远侧调谐元件各自可设置在细长导体上或围绕该细长导体设置。近侧调谐元件和远侧调谐元件可通过任何合适的手段电连接到细长导体。例如,近侧调谐元件和远侧调谐元件可被焊接或钎焊到细长导体。在另一个示例中,近侧调谐元件和远侧调谐元件可使用导电粘合剂(例如,导电环氧树脂)连接到细长导体。近侧调谐元件和远侧调谐元件在纵向方向上间隔开细长导体的一定长度。换句话说,细长导体的某个区段设置在近侧电极与远侧电极之间。近侧调谐元件和远侧调谐元件可由介电主体的一部分覆盖,使得近侧调谐元件和远侧调谐元件与环境隔离/被保护免于环境的影响。

近侧调谐元件和远侧调谐元件可用于使由辐射尖端发射的微波能量的剖面成形。具体地,诸位发明人已发现,将纵向地间隔开的调谐元件置于细长导体上可用于产生集中在辐射尖端周围的辐射剖面。辐射剖面可具有近似球形的形状。调谐元件还可用于减小辐射剖面的沿着同轴馈电电缆往回延伸的尾部。以此方式,传送到辐射尖端的微波能量可从辐射尖端发射并且消融在辐射尖端周围的明确地限定的体积中的周围靶组织。调谐元件的形状、大小和位置可被选择为获得期望的微波辐射剖面。

第一介电间隔物可为介电主体的位于近侧调谐元件与远侧调谐元件之间的部分。介电主体中的通道可部分地或完全地形成于第一介电间隔物中。在一些情况下,近侧调谐元件可与同轴馈电电缆的远端间隔开。在这种情况下,介电主体可包括第二介电间隔物,该第二介电间隔物设置在同轴馈电电缆的远端与近侧调谐元件之间。

在空腔形成于介电主体中的情况下,该空腔可形成于第一介电间隔物中。在一些情况下,空腔可形成于第二介电间隔物中。可选地,空腔可形成于第一介电间隔物和第二介电间隔物两者中。这可进一步提高辐射尖端的柔韧性。

在辐射尖端包括外护套的情况下,该外护套可覆盖第一介电间隔物的外表面。外护套可与第一介电间隔物隔开,以允许外护套与第一介电间隔物之间的相对运动。在介电主体还包括第二介电间隔物的情况下,外护套还可覆盖第二介电间隔物的外表面。外护套也可覆盖近侧调谐元件和远侧调谐元件的外表面,以保护该近侧调谐元件和该远侧调谐元件免于环境的影响并且使它们与环境隔离。

在上文论述的本发明的任何方面的电外科器械的一些实施方案中,能量递送结构可包括设置在介电主体的表面上的远侧电极和近侧电极,该远侧电极和该近侧电极由介电主体的中间部分彼此物理地隔开。近侧电极可电连接到外导体。远侧电极可经由细长导体电连接到内导体。

由于近侧电极和远侧电极分别电连接到外导体和内导体,因此近侧电极和远侧电极可接收沿着同轴馈电电缆传送的RF能量以用作双极RF电极。以此方式,通过将射频能量传送到近侧电极和远侧电极,可消融和/或凝结位于电极之间或周围的生物组织。此外,当沿着同轴馈电电缆传送微波能量时,在近侧电极与远侧电极之间的纵向间距使得近侧电极和远侧电极能够起到偶极天线的极的作用。因此,当沿着同轴馈电电缆传送微波能量时,辐射尖端可起到微波偶极天线的作用。近侧电极和远侧电极的间距可取决于使用的微波频率,以及由靶组织引起的负载。辐射尖端的这种配置因此允许使用RF和微波能量两者来治疗组织。诸位发明人还已发现,通过在RF能量与微波能量之间进行切换,有可能改变器械的辐射剖面(又被称为“消融剖面”)。换句话说,可通过在RF能量与微波能量之间进行切换来调整由电外科器械消融的组织的体积的大小和形状。这可使得消融剖面能够被原位改变,而不用在外科手术期间更换器械。

介电主体的中间部分可为位于近侧电极与远侧电极之间的介电间隔物。介电主体中的通道可部分地或完全地形成于介电主体的中间部分中。

在空腔形成于介电主体中的情况下,该空腔可形成于介电主体的中间部分中。在辐射尖端包括外护套的情况下,该外护套可覆盖介电主体的中间部分的外表面。外护套可与中间部分隔开,以允许外护套与介电主体之间的相对运动。外护套可被布置成使得该外护套不覆盖近侧电极和远侧电极,即,近侧电极和远侧电极暴露在辐射尖端的表面处。外护套可被布置成使得该外护套与近侧电极和远侧电极的表面齐平,使得辐射尖端具有平滑外表面。

在一些实施方案中,辐射尖端还可包括安装在介电主体的中间部分中的调谐元件。调谐元件可用于使辐射剖面成形,并且提高在辐射尖端与靶组织之间的阻抗匹配。调谐元件可包括安装在介电主体的中间部分内的导电主体,该导电主体电连接到细长导体。调谐元件可具有被选择为引入电容以提高辐射尖端的耦合效率的尺寸。例如,导电主体可为围绕细长导体的位于近侧电极与远侧电极之间的部分安装的套筒。

上文论述的本发明的任何方面的电外科器械可形成完整的电外科系统的部分。例如,该电外科系统可包括:电外科发生器,该电外科发生器被布置成供应微波能量和/或射频能量;以及本发明的电外科器械,该电外科器械被连接来从电外科发生器接收微波能量和/或射频能量。该电外科设备还可包括外科观测装置(例如,内窥镜),该外科观测装置具有用于***到患者的身体内的柔性插绳,其中该柔性插绳具有沿着其长度延伸的器械通道,并且其中该电外科器械被设定尺寸以配合在该器械通道内。

在本说明书中,“微波”可广泛地用于指示400MHz至100GHz的频率范围,但优选地为1GHz至60GHz的范围。用于微波EM能量的优选的点频率包括:915MHz、2.45GHz、3.3GHz、5.8GHz、10GHz、14.5GHz和24GHz。5.8GHz可为优选的。相比之下,本说明书使用“射频”或“RF”指示至少低三个数量级(例如,高达300MHz)的频率范围。优选地,RF能量具有足够高以防止神经刺激(例如,大于10kHz)且足够低以防止组织变白或热扩散(例如,低于10MHz)的频率。用于RF能量的优选的频率范围可为在100kHz与1MHz之间。

在本文中,术语“近侧”和“远侧”分别指代电外科器械的更远离和更靠近治疗部位的端部。因此,在使用中,电外科器械的近端更靠近用于提供RF和/或微波能量的发生器,而远端更靠近治疗部位,即,患者体内的靶组织。

除非上下文另外指明,否则术语“传导的”在本文中用于表示导电的。

本文使用的术语“纵向”指代沿着电外科器械的长度的平行于同轴传输线的轴线的方向。本文使用的术语“横向”指代垂直于纵向方向的方向,例如,从同轴传输线的纵向轴线径向地向外的方向。术语“内”表示径向地更靠近器械的中心(例如,轴线)。术语“外”表示径向地更远离器械的中心(轴线)。

术语“电外科”是相对于在外科手术期间使用且利用微波和/或射频电磁(EM)能量的器械、设备或工具使用的。

附图说明

以下参考附图论述了本发明的示例,在附图中:

图1是作为本发明的实施方案的用于组织消融的电外科系统的示意图;

图2是作为本发明的实施方案的电外科器械的示意性横截面侧视图;

图3是作为本发明的另一个实施方案的电外科器械的示意性横截面侧视图;

图4a是作为本发明的实施方案的电外科器械的示意性横截面侧视图;

图4b是图4a的电外科器械的介电间隔物的横截面图;

图5a至图5c是可用于根据本发明的实施方案的电外科器械中的介电间隔物的横截面图;

图6是作为本发明的另一个实施方案的电外科器械的示意性横截面侧视图;

图7a和图7b是图6的电外科器械的介电间隔物的透视图;

图8是示出图2的电外科器械的模拟辐射剖面的图;

图9是示出图6的电外科器械的模拟辐射剖面的图;

图10是作为本发明的另一个实施方案的电外科器械的示意性横截面侧视图;并且

图11a和图11b示出了可用于根据本发明的实施方案的电外科器械中的介电间隔物的透视图。

具体实施方式

图1是能够向侵入性电外科器械的远端供应微波能量和射频能量的完整的电外科系统100的示意图。系统100包括发生器102,该发生器用于可控制地供应微波和/或射频能量。适合于此目的的发生器被描述于WO 2012/076844中,其以引用的方式并入本文。发生器可被布置成监测从所述器械接收回的反射信号,以便确定适于递送的功率电平。例如,发生器可被布置成计算在器械的远端处观察到的阻抗,以便确定最佳递送功率电平。发生器可被布置成以一系列脉冲递送功率,这一系列脉冲被调制为匹配患者的呼吸周期。这将允许在肺泄气时进行功率递送。

发生器102通过接口电缆104连接到接口接合部106。如果需要,则接口接合部106可容纳器械控制机构,该器械控制机构可通过滑动触发器110,例如以控制一根或多根控制线或推杆(未示出)的纵向(来回)运动来操作。如果存在多根控制线,则在接口接合部上可存在多个滑动触发器来提供全面控制。接口接合部106的功能是将来自发生器102和器械控制机构的输入组合到单个柔性轴112中,该柔性轴从接口接合部106的远端延伸。在其他实施方案中,其他类型的输入端也可连接到接口接合部106。例如,在一些实施方案中,流体供应可连接到接口接合部106,使得流体可递送到器械。

柔性轴112能够***穿过内窥镜114的器械(工作)通道的整个长度。

柔性轴112具有远侧组件118(在图1中未按比例绘制),该远侧组件被成形为穿过内窥镜114的器械通道并且在内窥镜的管的远端处突出(例如,突出到患者体内)。远端组件包括用于将微波能量和射频能量递送到生物组织中的工作尖端。下文更详细地论述尖端配置。

远侧组件118的结构可被布置成具有适合于穿过工作通道的最大外径。通常,外科观测装置(诸如内窥镜)中的工作通道的直径小于4.0mm,例如为2.8mm、3.2mm、3.7mm、3.8mm中的任一者。柔性轴112的长度可等于或大于0.3m,例如2m或更大。在其他示例中,远侧组件118可在柔性轴112已***穿过工作通道之后(且在将器械绳引入到患者体内之前)安装在该轴的远端处。可选地,柔性轴112可在进行其近侧连接之前从远端***到工作通道中。在这些布置中,可准许远端组件118具有大于外科观测装置114的工作通道的尺寸。

上文描述的系统是将器械引入到患者的身体内的一种方式。其他技术是可能的。例如,还可使用导管来***器械。

图2示出了作为本发明的实施方案的电外科器械200的横截面侧视图。电外科器械200被配置为通过将微波能量辐射到组织中来消融生物组织。电外科器械的远端可例如对应于上文论述的远侧组件118。电外科器械200包括同轴馈电电缆202,该同轴馈电电缆能够在其近端处连接到发生器(诸如发生器102)以便传送微波能量。同轴馈电电缆可对应于上文提及的接口电缆104。同轴馈电电缆202包括由介电材料208隔开的内导体204和外导体206。同轴馈电电缆202优选地对于微波能量是低损耗的。扼流圈(未示出)可提供在同轴馈电电缆204上,以抑制从远端反射的微波能量的反向传播,并且因此限制沿着装置的反向加热。同轴馈电电缆202还包括围绕外导体206设置来保护该同轴馈电电缆的柔性保护性护套210。保护性护套210可由绝缘材料制成以使外导体206与其周围环境电隔离。保护性护套210可由不粘材料,诸如PTFE制成,或涂覆有该不粘材料以防止组织粘连到器械。

辐射尖端212形成于同轴馈电电缆202的远端214处。图2中的虚线215示出了在同轴馈电电缆202与辐射尖端212之间的界面。辐射尖端212被布置成接收由同轴馈电电缆202传送的微波能量,并且将能量递送到生物组织中。同轴馈电电缆202的外导体206终止于同轴馈电电缆202的远端214,即,外导体206不延伸到辐射尖端212中。辐射尖端212包括内导体204的延伸超出同轴馈电电缆202的远端的远侧部分216。具体地,内导体204的远侧部分216延伸超出外导体206的远端。

由导电材料(例如,金属)制成的近侧调谐元件218在辐射尖端212的近端附近电连接到内导体204的远侧部分216。近侧调谐元件218具有圆柱形形状,并且包括内导体204的远侧部分216从中穿过的通道220。近侧调谐元件218可例如使用导电粘合剂(例如,导电环氧树脂)或者通过钎焊或焊接来固定到内导体204。近侧调谐元件218被安装成使得其以内导体204为中心,从而使得该近侧调谐元件绕内导体204的纵向轴线对称地设置。

由导电材料(例如,金属)制成的远侧调谐元件222在辐射尖端212的远端附近电连接到内导体204的远侧部分216。因此,远侧调谐元件222沿着内导体204定位在比近侧调谐元件218远的地方。远侧调谐元件222与近侧调谐元件间隔开内导体204的远侧部分216的长度。类似于近侧调谐元件218,远侧调谐元件具有圆柱形形状并且包括通道224。如图2中可见,内导体204的远侧部分216延伸到通道224中。内导体204的远侧部分216终止于通道224的远端,即,该远侧部分不会突出超过远侧调谐元件222。远侧调谐元件222可例如使用导电粘合剂(例如,导电环氧树脂)或者通过钎焊或焊接来固定到内导体204。类似于近侧调谐元件218,远侧调谐元件222被安装成使得其以内导体204为中心。

近侧调谐元件218和远侧调谐元件222两者都具有相同的外径。近侧调谐元件218和远侧调谐元件222的外径可略小于电外科器械200的外径。在所示的示例中,远侧调谐元件222在器械的纵向方向上比近侧调谐元件218长。例如,远侧调谐元件222可能大约是近侧调谐元件218的两倍长。通过使远侧调谐元件222长于近侧调谐元件218,有可能将微波发射集中在辐射尖端212的远端周围。

介电材料208的远侧部分226超出同轴馈电电缆202的远端214延伸到辐射尖端212中。介电材料208的远侧部分226充当近侧调谐元件218与同轴馈电电缆202的远端214之间的间隔物。在一些实施方案(未示出)中,介电材料208可终止于同轴馈电电缆202的远端214,并且可将单独的间隔物提供在同轴馈电电缆202的远端214与近侧调谐元件218之间。介电间隔物228在辐射尖端212中提供在近侧调谐元件218与远侧调谐元件222之间。介电间隔物228是具有中心通道从中延伸穿过的圆柱形介电材料件。因此,介电间隔物228可为介电材料管。内导体204的远侧部分214延伸穿过介电间隔物228中的通道。介电间隔物228的近侧面与近侧调谐元件218接触,并且介电间隔物228的远侧面与远侧调谐元件222接触。介电间隔物228具有与近侧调谐元件218和远侧调谐元件222近似相同的外径。

沿着同轴馈电电缆202传送的微波能量可沿着内导体204的远侧部分216的长度辐射,以消融靶组织。下文针对图8论述了电外科器械200的辐射剖面。

辐射尖端212还包括提供在辐射尖端212的外部上的外护套230。外护套230覆盖介电间隔物228以及近侧调谐元件218和远侧调谐元件222以形成辐射尖端212的外表面。外护套230可用于使辐射尖端212绝缘并且保护该辐射尖端免于环境的影响。保护性护套230的外径与同轴馈电电缆202的外径基本上相同,使得器械具有平滑外表面。具体地,护套230的外表面可在界面215处与同轴馈电电缆202的外表面齐平。外护套230在其近端处固定到保护性护套210的远端。可在外护套230与保护性护套210之间形成密封以防止流体在同轴馈电电缆202与辐射尖端212之间的界面处泄漏到器械中。在一些实施方案(未示出)中,外护套230可为同轴馈电电缆202的保护性护套210的延续部。

外护套230包括覆盖辐射尖端212的远端的尖的远侧尖端232。远侧尖端232连接到外护套230的覆盖介电间隔物228的外表面的套筒部分231。因此,外护套230围绕辐射尖端212外部形成帽盖。远侧尖端232可为尖的,以便有利于将辐射尖端212***到靶组织中。然而,在其他实施方案(未示出)中,远侧尖端可为圆化的或平坦的。

总之,介电材料208的介电间隔物228和远侧部分226可形成辐射尖端212的介电主体。外护套230(包括远侧尖端232)与辐射尖端的介电主体分开地形成。具体地,外护套230不(例如,经由粘合剂或其他方式)附连到辐射尖端的介电主体。外护套也可能不固定到近侧调谐元件218或远侧调谐元件222。外护套230因此经由其与保护性护套210的连接并经由外护套230与辐射尖端212的介电主体之间的摩擦力而保持在辐射尖端212上。因此,在外护套230与辐射尖端212的介电主体之间的少量的相对运动和挠曲可能是可能的。外护套230与介电主体之间的相对运动的范围可取决于外护套和介电主体的相对刚度(柔韧性)。

介电主体挠曲的能力可有利于辐射尖端212弯曲,因为外护套230相对于介电主体的运动可使得外护套230中的应力(可能例如在辐射尖端212弯曲时发生)能够被缓和。例如,外护套230可能围绕辐射尖端212中的弯曲部的内侧“聚成一团”,和/或围绕辐射尖端212中的弯曲部的内侧变得与介电主体间隔开。另外地,通过允许外护套230与辐射尖端212的介电主体之间的相对运动,可避免在介电主体与外护套230之间的界面处的应力。

外护套230由具有比辐射尖端212的介电主体低的熔化温度的介电材料制成。例如,外护套230可由FEP制成,而介电间隔物228可由PTFE制成。外护套可通过将外护套230的介电材料熔化或收缩在介电主体上方来形成。例如,外护套230可由某个长度的热收缩管形成。以此方式,外护套230可直接地形成于辐射尖端212的介电主体上,同时确保外护套230在制造期间不会与介电主体融合。外护套230可一体地形成为单一件,即,套筒部分231和远侧尖端232可形成为单一部分。可选地,套筒部分231和远侧尖端232可分开地形成,并且随后组装在一起。

图3示出了作为本发明的另一个实施方案的电外科器械300的横截面侧视图。电外科器械300被配置用于单独地或同时地将微波和RF能量两者递送到靶组织中。电外科器械的远端可例如对应于上文论述的远侧组件118。

电外科器械300包括同轴馈电电缆302,该同轴馈电电缆可在其近端处连接到发生器(诸如发生器102)以便传送微波能量和RF能量。同轴馈电电缆302包括由介电材料308隔开的内导体304和外导体306。同轴馈电电缆还包括围绕外导体306设置来保护同轴馈电电缆302的柔性保护性护套310。同轴馈电电缆302可类似于上文描述的同轴馈电电缆202。

辐射尖端312形成于同轴馈电电缆302的远端处。辐射尖端312被布置成接收由同轴馈电电缆302传送的微波能量和RF能量,并且将能量递送到生物组织中。辐射尖端312包括位于辐射尖端312的近端附近的近侧电极314,以及位于辐射尖端312的远端附近的远侧电极316。近侧电极314是围绕辐射尖端312的外表面形成暴露环的中空圆柱形导体。近侧电极214电连接到同轴馈电电缆302的外导体306。例如,近侧电极314可焊接或钎焊到外导体306。近侧电极314可通过物理接触区域电连接到外导体306,该物理接触区域围绕外导体306的整个圆周延伸,以便确保连接的轴向对称性。外导体206终止于近侧电极314,即,该外导体不会在远侧方向上延伸超出近侧电极314。在一些实施方案(未示出)中,近侧电极可为外导体306的暴露远侧部分。

远侧电极316也是围绕辐射尖端312的外表面形成暴露环的中空圆柱形导体。类似于近侧电极314,远侧电极316与同轴馈电电缆302同轴地布置。近侧电极314和远侧电极316可具有基本上相同的形状和大小。远侧电极316在电外科器械300的纵向方向上与近侧电极314间隔开。近侧电极314和远侧电极316具有与同轴馈电电缆302的外径相同的外径,使得电外科器械300具有平滑外表面。这可防止组织绊住近侧电极314和远侧电极316。

近侧电极314限定内导体304的远侧突出部分从中穿过的通路。以此方式,内导体304延伸到辐射尖端312中,在那里,该内导体电连接到远侧电极316。内导体304经由从内导体306径向地(即,向外)延伸的导体318电连接到远侧电极316。导体318可包括绕内导体304的轴线对称地布置的一个或多个分支(例如,导线或其他柔性导电元件)。可选地,导体318可包括围绕内导体304安装并连接在内导体304与远侧电极316之间的导电盘或环。在内导体304与远侧电极316之间的连接优选地绕由内导体204限定的轴线为对称的。这可有利于围绕辐射尖端312形成对称场形状。

同轴馈电电缆302的介电材料308的远侧部分还延伸超出外导体306的远端并且经由近侧电极314所限定的通路延伸到辐射尖端312中。内导体304和近侧电极314因此由介电材料308隔离。介电材料308的远侧部分形成辐射尖端312的介电主体。调谐元件320位于辐射尖端312的介电主体的中间部分322中,位于近侧电极314与远侧电极316之间。调谐元件320是在近侧电极314与远侧电极316之间电连接到内导体304以引入容抗的导电元件。在此示例中,导电调谐元件320是圆柱形形状,并且与内导体304同轴地布置。调谐元件320可用于在以微波频率操作器械时提高耦合效率(即,减小反射信号)。

在近侧电极314和远侧电极316分别电连接到外导体306和内导体304时,这两个电极可用作双极RF切割电极。例如,远侧电极316可充当有源电极,并且近侧电极314可充当沿着同轴馈电电缆302传送的RF能量的返回电极。以此方式,可经由上文论述的机构使用RF能量来切割和/或凝结设置在辐射尖端312周围的靶组织。

另外地,当沿着同轴馈电电缆302传送微波能量时,辐射尖端312可起到微波偶极天线的作用。具体地,近侧电极314和远侧电极316可在微波频率下充当偶极天线的辐射元件。因此,辐射尖端结构使得射频能量和微波能量两者都能够被递送到靶组织中。取决于传送到辐射尖端的EM能量的类型,这使得靶组织能够使用射频和微波能量来消融和/或凝结。近侧电极314和远侧电极316的圆柱形形状可用于产生绕器械300的纵向轴线对称的辐射剖面。

辐射尖端312包括外护套324。外护套324覆盖介电材料308的在近侧电极314与远侧电极316之间的中间部分322的外表面。外护套324与近侧电极314和远侧电极316的暴露表面齐平,使得辐射尖端312具有平滑外表面。外护套324可用于保护辐射尖端312的在近侧电极314与远侧电极316之间的部分并且使该部分绝缘。外护套324与介电材料308分开地形成。具体地,外护套324不(例如,经由粘合剂或其他方式)附连到介电材料308。外护套324可通过近侧电极314和远侧电极316保持在辐射尖端312上,该近侧电极和该远侧电极可阻止外护套324在纵向方向上移动(因为近侧电极314、远侧电极316和外护套324全都具有相同的外径)。外护套324还可通过外护套324与介电材料308之间的摩擦力而保持到适当位置。因此,在外护套324与介电材料308的中间部分322之间的少量的运动和挠曲可能是可能的。外护套324与中间部分322之间的相对运动的范围可取决于外护套324和中间部分322的相对刚度(柔韧性)。辐射尖端312还在其远端处包括远侧尖端326。远侧尖端是尖的,以有利于将辐射尖端312***到靶组织中。

类似于器械200,外护套324的这种配置可有利于辐射尖端312弯曲。具体地,通过允许外护套324与介电材料308的中间部分322之间的某种运动,外护套324中在辐射尖端弯曲时可能产生的应力可被缓和。还可避免在中间部分322与外护套324之间的界面处的应力。

外护套324可以与上文论述的外护套230类似的方式形成。例如,外护套324可由熔化或收缩在介电材料208的中间部分322周围的FEP制成。介电材料208的中间部分322可由具有比FEP高的熔化温度的材料(例如,PTFE)制成,使得该中间部分在外护套324形成期间不会熔化。

电外科器械的辐射尖端的柔韧性还可通过修改辐射尖端中的介电材料的形状来提高。具体地,一个或多个空腔可形成于辐射尖端的介电材料中以有利于弯曲。

图4a示出了作为本发明的实施方案的电外科器械400的横截面图。电外科器械400类似于上文描述的电外科器械200,不同之处在于该电外科器械的介电间隔物包括从中延伸穿过的环形内腔。对应于图2中使用的那些的附图标记在图4a中用来指示电外科器械400的对应于上文针对图2描述的特征的特征。

电外科器械400在其辐射尖端212中在近侧调谐元件218与远侧调谐元件222之间包括介电间隔物401。介电间隔物401类似于电外科器械200的介电间隔物228,不同之处在于该介电间隔物包括从中延伸穿过的环形内腔402。环形内腔402在纵向方向上沿着介电间隔物401的长度延伸。图4b示出了电外科器械400的介电间隔物401的在垂直于电外科器械400的纵向方向的平面中的横截面图。如图可见,环形内腔402具有包围内导体204的远侧部分216的环形(例如,圆形)横截面。环形内腔402形成于以下两者之间:介电间隔物401的内部分404,内导体的远侧部分216延伸穿过该内部分;以及介电间隔物401的外部分406,该外部分围绕内部分404形成套筒。环形内腔402围绕内导体204的远侧部分216同轴地布置。换句话说,环形内腔402绕内导体204的纵向轴线为基本上对称的。

环形内腔402在介电间隔物401内形成空腔(或空隙),即,该环形内腔在介电间隔物401内形成不存在介电间隔物401的介电材料的管状区域。环形内腔402可例如用空气填充。因此,(例如,与电外科器械200的介电间隔物228相比较)减少了介电间隔物401中的材料的量。具体地,如图4b所示,介电间隔物401的包括介电材料的横截面积减小了对应于环形内腔402的横截面积的量。一般而言,主体的刚度与形成该主体的材料的横截面积成比例。因此,通过在介电间隔物228中形成环形内腔402,可减小介电间隔物401的刚度,这可有利于介电间隔物401沿着其长度弯曲。由于环形内腔402绕器械的纵向轴线对称地设置,因此介电间隔物401的刚度可绕纵向轴线为基本上对称的。因此,可能有利于在位于垂直于纵向轴线的平面内的所有方向上弯曲介电间隔物401。

除了图4a和图4b所示的环形内腔402之外,不同类型的内腔或空腔也可用于提高辐射尖端的柔韧性。图5a至图5c示出了有不同形状的内腔从中延伸穿过的介电间隔物的横截面图(处于垂直于纵向轴线的平面)。图5a至图5c所示的介电间隔物可例如替换电外科器械400中的介电间隔物401。

图5a示出了介电间隔物500的横截面图。介电间隔物500包括中心通道502,内导体204的远侧部分216可延伸穿过该中心通道。介电间隔物500还包括围绕中心通道502设置的三个内腔504、506、508。内腔504、506、508被布置成使得内腔绕纵向轴线为基本上旋转地对称的。内腔504、506、508可在纵向方向上沿着介电间隔物500的长度延伸。内腔504、506、508可用空气填充。类似于环形内腔402,内腔504、506、508用于减小介电间隔物500的刚度,以提高辐射尖端的柔韧性。

图5b示出了另一个介电间隔物510的横截面图。介电间隔物510包括中心通道512,内导体204的远侧部分216可延伸穿过该中心通道。中心通道512可具有比内导体204的远侧部分216大的横截面,使得在中心通道512的壁与远侧部分216之间形成某个空间。因此,中心通道512可充当介电间隔物500内的空腔,以减小该介电间隔物的刚度。介电间隔物510还包括形成于其外表面上的一系列开放内腔514至524(或沟槽)。开放内腔514至524被布置成使得该开放内腔绕纵向轴线为基本上旋转地对称的。开放内腔514至524可减小介电间隔物510的刚度。空气可借助于形成于介电间隔物的外表面上方的外护套(例如,外护套230)而被捕集在开放内腔中。

图5c示出了另一个介电间隔物526的横截面图。介电间隔物526类似于介电间隔物510,因为该介电间隔物包括:中心通道528,内导体204的远侧部分216可延伸穿过该中心通道;以及一系列开放内腔530至536,该一系列开放内腔布置在该介电间隔物的外表面上。开放内腔530至536被布置成使得该开放内腔绕纵向轴线为基本上旋转地对称的。

空腔或内腔不需要沿着介电间隔物的整个长度延伸。例如,内腔或空腔可仅沿着介电间隔物的一部分延伸,或者可具有从中横跨穿过的一个或多个径向支撑臂。在一些情况下,可提供多个内腔或空腔,该多个内腔或空腔沿着介电间隔物的不同部分延伸。可将不同类型的空腔或内腔组合在介电间隔物内。在期望辐射尖端能够在特定方向上优先弯曲的情况下,空腔或内腔可设置在介电间隔物的对应侧上,以减小间隔物在那一侧上的刚度。在一些实施方案(未示出)中,内腔可形成于介电材料208的远侧部分226中,以提高辐射尖端212的在与同轴馈电电缆202形成的界面附近的柔韧性。上文论述的空腔或内腔可被并入其他电外科器械中以提高辐射尖端的柔韧性。例如,上文论述的电外科器械300可被改造成使得介电材料308的中间部分322包括从中延伸穿过的一个或多个内腔。

图6示出了作为本发明的另一个实施方案的电外科器械600的横截面图。电外科器械600类似于上文描述的电外科器械200,不同之处在于该电外科器械的介电间隔物包括被成形来提高其柔韧性。对应于图2中使用的那些的附图标记在图6中使用来指示电外科器械600的对应于上文针对图2描述的特征的特征。

电外科器械600在其辐射尖端212中在近侧调谐元件218与远侧调谐元件222之间包括介电间隔物602。介电间隔物602具有大体上圆柱形形状。介电间隔物602包括穿过其中心的通道603,内导体204的远侧部分216在该通道中延伸。第一环形沟槽604和第二环形沟槽606形成于介电间隔物602的外表面中。第一沟槽604和第二沟槽606各自围绕介电间隔物602的外表面形成圈。图7a示出了介电间隔物602的透视图,并且图7b示出了介电间隔物602的侧视图。第一沟槽604和第二沟槽606在介电间隔物602中形成介电间隔物602的横截面积被减小(例如,与介电间隔物602的远离沟槽的面积相比较)的区域。介电间隔物602因此可在沟槽604、606中具有比该沟槽外部低的刚度,使得在沟槽604、606处有利于介电间隔物602弯曲。第一沟槽604和第二沟槽606因此可充当介电间隔物的弯曲点或挠曲部。第一沟槽604和第二沟槽606因此可用于提高辐射尖端212的柔韧性。

外护套230的套筒部分231覆盖介电间隔物602的外表面。以此方式,第一沟槽604和第二沟槽606被外护套230覆盖,使得辐射尖端212具有平滑外表面。空气可通过外护套被捕集在第一沟槽604和第二沟槽606中。

在其他实施方案(未示出)中,可在介电间隔物的外表面中提供大量沟槽以为介电间隔物提供另外的弯曲点。沟槽还可形成于介电间隔物的内表面上,例如,形成于内导体204的远侧部分216从中延伸穿过的通道603的壁上,以进一步提高介电间隔物的柔韧性。在所示的示例中,第一沟槽604和第二沟槽606具有矩形剖面,即,该沟槽具有彼此平行的侧壁608、610,以及垂直于侧壁608、610的内壁612(参见图7b)。然而,也可使用其他形状的沟槽。例如,侧壁608、610相对于彼此可成斜角。在一些情况下,沟槽可具有三角形剖面、或圆化剖面。具有不同剖面的沟槽的组合可用于同一介电间隔物上。在一些实施方案(未示出)中,沟槽可形成于介电材料208的远侧部分226中,以提高辐射尖端212的在与同轴馈电电缆202形成的界面附近的柔韧性。在介电间隔物的表面中形成沟槽或凹陷的概念可被并入其他电外科器械中以提高辐射尖端的柔韧性。例如,电外科器械300可被改造成使得沟槽形成于介电材料308的中间部分322中,以在辐射尖端312中提供弯曲点。

图8示出了电外科器械200的在靶组织中的模拟辐射剖面。使用有限元分析软件针对5.8GHz的微波频率模拟了辐射剖面。辐射剖面指示了由微波能量消融的所得的组织体积。如图8中可见,辐射剖面集中在辐射尖端周围,并且限定近似球形的区域。

图9示出了电外科器械600的在靶组织中的模拟辐射剖面。使用有限元分析软件针对5.8GHz的微波频率模拟了辐射剖面。类似于图8所示的辐射剖面,电外科器械600的辐射剖面集中在辐射尖端周围,并且限定近似球形的区域。电外科器械600的辐射剖面的形状不会明显地受到介电间隔物602中第一沟槽604和第二沟槽606的存在的影响。因此,第一沟槽604和第二沟槽606可提高辐射尖端的柔韧性,而不会显著影地响辐射尖端的辐射剖面。

图10示出了作为本发明的另一个实施方案的电外科器械700的横截面图。电外科器械700类似于上文描述的电外科器械200,不同之处在于该电外科器械的介电间隔物是波纹的,以提高其柔韧性。对应于图2中使用的那些的附图标记在图10中使用来指示电外科器械700的对应于上文针对图2描述的特征的特征。

电外科器械700在其辐射尖端212中在近侧调谐元件218与远侧调谐元件222之间包括介电间隔物702。介电间隔物702由某个长度的波纹(或旋绕)管形成。该长度的波纹管可例如由PTFE或PFA制成。介电间隔物702限定通道(或通路),内导体204的远侧部分延伸穿过该通道。在介电间隔物702的外表面上的波纹限定一系列规律地间隔开的峰(例如,峰704、706)以及位于峰之间的谷(例如,谷708)。波纹外表面中的谷对应于介电间隔物702的外表面上的沟槽或凹陷,即,对应于介电间隔物具有较小外径的区域(例如,与峰所位于的区域相比较)。同样地,谷(沟槽)可起到介电主体702的弯曲点或挠曲部的作用。因此,介电间隔物702的波纹外表面提供一系列规律地间隔开的弯曲点,这可有利于介电间隔物702沿着其长度弯曲。这可带来高度柔性的辐射尖端212。

外护套230覆盖介电间隔物702的波纹外表面,使得辐射尖端212具有平滑外表面。空气通过外护套230被捕集在波纹中。在一些实施方案(未示出)中,介电间隔物的外表面可为平滑的,并且波纹可替代地形成于介电间隔物的内表面上(例如,形成于内导体204的远侧部分216从中延伸穿过的通道的壁上)。在辐射尖端中使用波纹介电材料来提高辐射尖端的柔韧性的概念可被并入其他电外科器械中。例如,电外科器械300可被改造成使得介电材料308的中间部分322具有波纹表面,以为辐射尖端312提供一系列弯曲点。

图11a和图11b示出了可用于作为本发明的实施方案的电外科器械中的介电间隔物800的透视图。例如,介电间隔物800可替换电外科器械200中的介电间隔物228。介电间隔物800具有由柔性介电材料(例如,PTFE)制成的形成为线圈的螺旋主体802。螺旋主体802限定通路804,该通路沿着螺旋主体的轴线延伸,并且细长导体(例如,内导体208的远侧部分216)可延伸穿过该通路。由于介电间隔物800的螺旋形状,该介电间隔物可表现得类似于螺旋弹簧。具体地,介电间隔物800的螺旋形状可有利于介电间隔物800相对于其纵向轴线弯曲。通过将介电间隔物800并入电外科器械的辐射尖端中,由此可有利于辐射尖端弯曲。介电间隔物的螺旋形状还可增强介电间隔物800的回弹性。介电间隔物800可用于在辐射尖端已被弯曲之后使辐射尖端伸直。例如,在使辐射尖端弯曲以通过蜿蜒的通路之后,介电间隔物800的回弹性可用于使辐射尖端伸直。以此方式,辐射尖端可在被弯曲之后自动地返回至其原始(例如,笔直)配置。

在一些实施方案(未示出)中,介电间隔物的仅一部分可具有螺旋形状。在辐射尖端中使用螺旋地成形的介电材料以有利于辐射尖端弯曲的概念可被并入其他电外科器械中。例如,电外科器械300可被改造成使得介电材料308的中间部分322包括螺旋部分,以有利于辐射尖端312弯曲。

30页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:用于对身体的组织进行治疗的装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!