一种微纳结构光散射式浊度检测传感器及其制备工艺

文档序号:969510 发布日期:2020-11-03 浏览:7次 >En<

阅读说明:本技术 一种微纳结构光散射式浊度检测传感器及其制备工艺 (Micro-nano structure light scattering type turbidity detection sensor and preparation process thereof ) 是由 金庆辉 姚灵 管轶华 王欣欣 王达 于 2020-07-27 设计创作,主要内容包括:一种基于光散射式测量法检测自来水中浊度的光学微纳传感器。基于MEMS技术,该传感器以硅片为衬底,基于硅的各向异性腐蚀特性制备检测光与参考光通道;采用散射式测量法,选择850nm的红外光作为光源,选择带有黑色蔽光罩的红外接收器作为探测器,以有效地减少自然光的干扰。本发明提出的浊度传感器具有如下显著优点:1)微型化,硅基微纳结构可以有效解决检测光和参考光光路的问题,大幅减小传感器的体积;2)批量制备、低成本、易集成,将浊度传感器的制备与MEMS工艺结合,实现浊度传感器的芯片化和批量制造。该设计实现浊度检测传感器的耐用性、高性能、小型化,可以结合采集电路模块和误差修正模块使其拥有更长的寿命与检测精度。(An optical micro-nano sensor for detecting the turbidity in tap water based on a light scattering measurement method. Based on MEMS technology, the sensor takes a silicon wafer as a substrate, and a detection light channel and a reference light channel are prepared based on the anisotropic corrosion characteristic of silicon; the scattering measurement method is adopted, 850nm infrared light is selected as a light source, and an infrared receiver with a black photomask is selected as a detector, so that the interference of natural light is effectively reduced. The turbidity sensor provided by the invention has the following remarkable advantages: 1) the miniaturization is realized, the problem of the light path of the detection light and the reference light can be effectively solved by the silicon-based micro-nano structure, and the volume of the sensor is greatly reduced; 2) the method has the advantages of batch preparation, low cost and easy integration, and combines the preparation of the turbidity sensor with the MEMS process to realize the chip and batch manufacture of the turbidity sensor. The design realizes the durability, high performance and miniaturization of the turbidity detection sensor, and the turbidity detection sensor can be combined with the acquisition circuit module and the error correction module to have longer service life and detection precision.)

一种微纳结构光散射式浊度检测传感器及其制备工艺

技术领域

本发明涉及一种自来水中浊度检测的传感器及制备方法,属传感器技术领域。

背景技术

浊度是表达水中不同大小和比重以及悬浮物和胶体物质、微生物等对光造成的效果的用语。国外的公共卫生协会等机构把它定义成:水的样本使光散射和吸收的光学性质的用语。其中没有直接说水样中的悬浮物,胶体物质,浮游生物和其他杂质的含量,浊度关系到食品,酿造,人类健康的重要性。在工业生产中,医药,纺织,印染,电力,水的浊度,将直接影响产品或生产过程中的质量。浊度测量在城市供水,饮用水,医药,环保,卫生防疫等行业和部门有着广泛的用途。浊度是确保供水质量的重要依据之一以及作为水厂评估水质量的一部分。

浊度测量水质检测工作一般由人工取样,如用比色法测定杂质的比重和一些其他的方法来获取这些信息,这些测量常常是随机的,离散的,有比较大误差。传统的测试方法已不能满足新的水净化流程自动化的要求。现代水净化技术和生产管理水平的提高,使得水质的连续测量成为可能,数据可被立即转换成电信号,实时联网,并保证水的质量分析工具的准确度和精度。

目前常用散射光浊度测量法对浊度进行检测:当一束特定波长的光射入水中的时候,会与水中的悬浮颗粒物相遇并产生散射,而散射光的强度与待测液的浊度成正比。因此,只要测得散射光的强度就可以得到待测液的浊度,而此类散射式浊度传感器则可以按照散射光探测器的位置即散射光与入射光的不同角度分为前向、后向,垂直三种方式。目前,此种九十度散射式浊度传感器使用最为广泛。前面已经提过,影响散射光的主要物质是水中的悬浮颗粒物,而不同大小尺寸的悬浮颗粒物对光的散射程度不同,但是入射光在照到悬浮颗粒物后在九十度方向上产生的散射光受悬浮颗粒物尺寸影响最小,产生的散射光也最为稳定。因此目前市面上大部分浊度传感器采用九十度散射光探测的方式就不难理解。九十度散射光测量法结构示意图如图1所示。

浊度传感器主要用于智能水表中检测自来水中的浊度。要求传感器检测精度高,能够精确地检测出浊度参数;体积小,可以在水表原有结构基本保持不变的情况下布置此传感器;成本低,可用于大范围铺设使用,进行大数据分析。传统的浊度检测传感器体积大,成本高,使用场合受限严重。同时光源在进行长期工作之后会有自衰减现象,导致检测到的数据产生偏差。

发明内容

针对现有技术存在的不足,本发明旨在提供一种基于微纳结构的散射式浊度传感器,可以克服上述所提及的问题并且达到所需的性能指标。通过硅各向异性湿法腐蚀处理硅基片,可以良好地构造检测光通道以及参考光通道。微纳结构光通道的构建可以极大缩短散射法测量浊度时的光程,使探测器可以获得更优秀的响应值,同时参考光通道的构建并通过单片微型控制器进行信号比对处理,可以有效排除光源自衰减带来的误差。同时通过MEMS技术可以实现浊度传感器的微型化和批量制造,大幅缩小了体积并极大地降低了成本。

为实现上述目的,本发明提供了如下的技术方案:

一种微纳结构光散射式浊度检测传感器,包括有基片,在基片表面通过KOH溶液湿法腐蚀刻蚀出一个半通通道与一个半通孔作为参考光通道与参考光检测槽,同时刻蚀出两个全通孔作为信号光通道与信号光检测槽。

作为本发明的改进,在所述基片的背面键合有一层高透玻璃。

一种制备上述微纳结构光散射式浊度检测传感器的制备工艺,包括有如下步骤:

1)、选择表面为(100)晶面、单面抛光并氧化的四寸硅片作为基片,其中,氧化层的厚度为1um,硅片表面平整度小于0.1um;

2)、将上述基片进行涂胶、前烘、光刻、显影、显影后后烘,在所述基片表面制备出氧化硅层窗口,再用BOE溶液湿法刻蚀裸露的氧化硅层,露出硅基,制备出光源槽、检测光槽、参考光槽和参考光通道的腐蚀窗口;

3)、重复(1)(2)两步骤在硅片背面形成光源槽和检测光槽的另一半腐蚀窗口;

4)、金属前去胶:在液态的溶液槽中进行该操作,溶液的成分是硫酸溶液加10-15mL的双氧水,利用强氧化性去胶,溶液槽保持恒温120℃,清洗时间为10min;

5)、KOH腐蚀:溶液采用30% KOH腐蚀液,当溶液温度为50℃时,30% KOH腐蚀Si速度为10.3 um/h,腐蚀SiO2速度为0.05-0.06 um/h,当溶液温度为40℃时,30% KOH腐蚀Si速度为5 um/h,本次在50℃条件下各向异性湿法刻蚀硅层,根据KOH对Si和SiO2腐蚀速度的差异,制备出光源槽、检测光槽、参考光槽和参考光通道;

6)、采用BOE溶液去除背面剩余氧化硅层;

7)、采用lift-off工艺在氧化层上制备金属焊盘;

8)、玻璃键合,在硅片的背面键合一层高透玻璃,该高透玻璃可以在不影响光路的情况下,保证在进行检测时,待测液体不会渗入传感器;

9)、光源/探测器焊接,将贴片式光源/探测器(具有双面焊点)的正面焊接到步骤(7)中的金属焊盘上,金属焊盘溅射在全通孔周围;焊盘在焊接完光源/探测器之后仍留有一定空间,后续可进行与信号处理电路的对接。

作为本发明的改进,在步骤2)中,涂胶工序选用的是正胶LC100A,涂胶速度为1000r*30s,涂胶层厚2.4um。

作为上述制备工艺的改进,在步骤7)中,所述lift-off工艺包括光刻工艺、磁控溅射工艺、超声剥离工艺中的至少一种或任意组合。

与现有技术相比,本发明的优点在于:发展并利用了一种基于微加工制造技术的浊度传感器制备方法,该制备方法将参考光的检测和信号光的检测集中到一块微芯片上,大大拓宽了此类传感器的使用场合的。并且可以由于其在制备完成后的检测中不会生成有害物质,可用于自来水管道等高安全等级要求的场合。该设计生产一种新型的水中浊度检测传感器微芯片,具有安全度高,可靠性高,体积小,使用寿命长、可批量化制备降低成本的显著优点,为浊度传感器在自来水监测领域的大规模应用提供支持。

附图说明

图1为现有技术中九十度散射光测量法结构示意图;

图2为本发明实施例中微纳硅结构基片的俯视图;

图3为浊度传感器加工工艺流程图。

具体实施方式

参照附图对本发明中微纳结构光散射式浊度检测传感器及其制备工艺的实施例做进一步说明。

如附图所示,本实施例为一种微纳结构光散射式浊度检测传感器,包括有基片1,在基片表面通过KOH溶液湿法腐蚀刻蚀出一个半通通道与一个半通孔作为参考光通道2与参考光检测槽3,同时刻蚀出两个全通孔作为信号光通道4与信号光检测槽5。此外,为了后续的传感器安装,在基片上覆盖有金属焊盘6。

一种制备上述余氯检测传感器的制备方法,包括有如下步骤:

1)选择表面为(100)晶面、单面抛光并氧化的四寸硅片作为基片,如图3-1,3-2所示,氧化层厚度为1um,硅片表面平整度小于0.1um;

2)将上述基片进行涂胶(正胶LC100A,1000r*30s,厚2.4um,如图3-3)、前烘(热板温度110℃,时间90s)、光刻(曝光时间为15s)、显影(FHD-320显影液,显影时间40s),显影后后烘(135℃,30min,作用是坚固胶薄膜)。制备出图3-4所示的氧化硅层窗口,再用BOE溶液液湿法刻蚀裸露的氧化硅层,露出硅基,制备出光源槽、检测光槽、参考光槽和参考光通道的腐蚀窗口,如图3-5所示;

3)重复(1)(2)两步骤在硅片背面形成光源槽和检测光槽的另一半腐蚀窗口,如图3-6,3-7,3-8,3-9(由于参考光槽和参考光通道不需要经过待测物,因此无需双面腐蚀形成通孔);

4)金属前去胶(在液态的溶液槽中进行该操作);成分是硫酸溶液加10-15mL的双氧水溶液,原理是利用强氧化性去胶,溶液槽恒温120℃,清洗时间10min,结果如图3-10所示;

5) KOH腐蚀:溶液采用30% KOH腐蚀液,当溶液温度为50℃时,30% KOH腐蚀Si速度为10.3 um/h,腐蚀SiO2速度为0.05-0.06 um/h。当溶液温度为40℃时,30% KOH腐蚀Si速度为5 um/h,本次在50℃条件下各向异性湿法刻蚀硅层,根据KOH对Si和SiO2腐蚀速度的差异,制备出光源槽、检测光槽、参考光槽和参考光通道,如图3-11所示;

6)采用BOE溶液去除背面剩余氧化硅层,如图3-12所示;

7)采用lift-off工艺(工艺包括:光刻工艺、磁控溅射工艺、超声剥离工艺)在氧化层上制备金属焊盘,如图3-13所示;

8)玻璃键合,在硅片的背面键合一层高透玻璃,在尽量不影响光路的情况下,以保证在进行检测时,待测液体不会渗入传感器,如图3-14所示;

9)光源/探测器焊接,将贴片式光源/探测器(具有双面焊点)的正面焊接到(7)在通孔周围所溅射的金属焊盘上(放置光源/探测器进行焊接时,其发光/感光部分均可以探入通孔),焊盘在焊接完光源/探测器之后仍留有一定空间,后续可进行与信号处理电路的对接。

本发明所要解决的技术关键是自来水中浊度的检测,设计核心是基于MEMS技术构建的分光微纳结构,并选用微型光源与探测器,提出了一种微型化、性能高、价格低的浊度传感器制备方法,弥补市场的空缺。其要点在于:基于(100)硅片氢氧化钾湿法腐蚀在硅基片的参考光、检测光和信号光通道制备;

采用氢氧化钾湿法腐蚀工艺,选择表面为(100)晶面的双面抛光氧化硅片作为基片,采用湿法腐蚀刻蚀一个半通通道与一个半通孔作为参考光通道与参考光检测槽,同时刻蚀出两个全通孔作为信号光通道与信号光检测槽。采用微纳工艺在极小的尺寸就可同时实现信号光的检测和参考光的检测。

制备完成的器件经划片、打线、封装后,即完成整个传感器的制备,可以用于实际的实验测试和应用。

本发明所具有的有益效果:发展并利用了一种基于微加工制造技术的浊度传感器制备方法,该制备方法将参考光的检测和信号光的检测集中到一块微芯片上,大大拓宽了此类传感器的使用场合的。并且可以由于其在制备完成后的检测中不会生成有害物质,可用于自来水管道等高安全等级要求的场合。该设计生产一种新型的水中浊度检测传感器微芯片,具有安全度高,可靠性高,体积小,使用寿命长、可批量化制备降低成本的显著优点,为浊度传感器在自来水监测领域的大规模应用提供支持。

以上所述使本发明的优选实施方式,对于本领域的普通技术人员来说不脱离本发明原理的前提下,还可以做出若干变型和改进,这些也应视为本发明的保护范围。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种简便定量测量煤中镜质组含量的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!