基于脑电信号特征的大脑异常放电检测方法及系统

文档序号:977590 发布日期:2020-11-06 浏览:1次 >En<

阅读说明:本技术 基于脑电信号特征的大脑异常放电检测方法及系统 (Brain abnormal discharge detection method and system based on electroencephalogram signal characteristics ) 是由 董芳 刘俊飙 吴端坡 孙乐 于 2020-08-07 设计创作,主要内容包括:本发明提供一种基于脑电信号特征的大脑异常放电检测方法及系统,该方法包括:采集原始脑电信号并进行数据处理;提取预处理后的脑电信号中的多域特征和棘波特征,多域特征包括时频特征和非线性特征;基于提取时频特征和非线性特征采用已训练完成的随机森林模型来得到脑电信号异常放电的第一检测结果;基于提取的棘波特征中棘波比和设定阈值的关系来获得脑电信号异常放电的第二检测结果;融合第一检测结果和第二检测结果以得到最终的大脑异常放电检测结果。(The invention provides a brain abnormal discharge detection method and system based on electroencephalogram signal characteristics, wherein the method comprises the following steps: collecting original electroencephalogram signals and performing data processing; extracting multi-domain features and spike wave features in the preprocessed electroencephalogram signals, wherein the multi-domain features comprise time-frequency features and nonlinear features; obtaining a first detection result of abnormal discharge of the electroencephalogram signal by adopting a trained random forest model based on the extracted time-frequency characteristics and nonlinear characteristics; obtaining a second detection result of abnormal discharge of the electroencephalogram signal based on the relation between the spike ratio in the extracted spike characteristics and a set threshold; and fusing the first detection result and the second detection result to obtain a final abnormal cerebral discharge detection result.)

基于脑电信号特征的大脑异常放电检测方法及系统

技术领域

本发明涉及计算机领域,且特别涉及一种基于脑电信号特征的大脑异常放电检测方法及系统。

背景技术

大脑异常放电类疾病是大脑神经元突发性异常放电,导致短暂的大脑功能障碍的一种慢性疾病,癫痫就是一种由大脑异常放电引起的典型疾病。在全球超过六千五百万人患有癫痫病,中国的癫痫患者约有九百万人,并且这个数字还在以每年40万的速度增加。癫痫发作具有突发性、反复性和难预测性,并且在任何年龄段都有可能发病。

脑电图(Electroencephalogram,EEG)是通过精密的电子仪器,从头皮上将脑部的自发性生物电位加以放大记录而获得的图形,是通过电极记录下来的脑细胞群的自发性、节律性电活动。在临床医学中,EEG仍然是诊断某些脑疾病的重要工具,而且还可以为某些脑疾病提供有效的治疗手段,并在由大脑异常放电引起的疾病的检测方面发挥着重要的作用。

棘波是典型的大脑异常放电特征波形,通常被记录在脑电图中,相对于背景波形,棘波波形尖锐,具有高幅和瞬变的特性。目前临床上癫痫脑电的检查主要是通过人工检测来识别脑电信号中的棘波,但其效率低、主观性强,不能保证结果的准确性,为此棘波自动检测技术近年来受到越来越多的关注。经过近几年对棘波检测的研究,已经出现很多基于阈值的棘波自动检测方法,但在阈值选择上仍然存在困难;阈值过低,误检率会偏高;阈值过高,又会漏检很多棘波。

发明内容

本发明为了克服现有大脑异常放电检测方法主观性强且准确率低的问题,提供一种检测效率和精度均很高的基于脑电信号特征的大脑异常放电检测方法及系统。

为了实现上述目的,本发明提供一种基于脑电信号特征的大脑异常放电检测方法,其包括:

采集原始脑电信号并进行数据处理;

提取预处理后的脑电信号中的多域特征和棘波特征,多域特征包括时频特征和非线性特征;

基于提取时频特征和非线性特征采用已训练完成的随机森林模型来得到脑电信号异常放电的第一检测结果;

基于提取的棘波特征中棘波比和设定阈值的关系来获得脑电信号异常放电的第二检测结果;

融合第一检测结果和第二检测结果以得到最终的大脑异常放电检测结果。

根据本发明的一实施例,提取预处理后的脑电信号中的多域特征包括:

对脑电信号进行统计分析以得到时域特征,时域特征包括波形的线长、峰度、偏度、最大值、最小值、均值和方差特征;

采用小波包变换从脑电信号提取出不同的节律波,同时将脑电信号分解成五个频段并将不同的节律波与五个频段相互对应以建立时频关系,五个频段分别为:0.5Hz~4Hz的δ波,4Hz~8Hz的θ波,8H~12Hz的α波,12Hz~23Hz的β1波以及23Hz~30Hz的β2波;

采用赫斯特指数计算大脑异常放电波形非线性特征。

根据本发明的一实施例,不同的节律波与五个频段之间建立时频关系的步骤包括:

首先,选择db6作为小波基函数并定义每个epoch为5秒,;

其次,通过小波包变换从每个epoch中提取不同的节律波,其公式如下:

其中,Φ(t)为尺度函数;为小波基函数;i(0,1,2,...,2j-1)为小波包变换的节点数;j为分解层;h(n)和g(n)=(-1)1-nh(1-n)为一对正交的图像滤波器;为基于双尺度的小波基函数;n为滤波器的长度;

令第j层的第k个节点的脑电信号x(t)的小波包系数如下:

Figure BDA0002623005000000036

其中分别为第j层的第k个节点的小波包分解的细节系数和近似系数;

之后,将五个频段的小波包系数归一化,公式如下:

Figure BDA0002623005000000039

其中,Kl(r)为每个频段的小波包系数,pl(r)为归一化小波包系数;N为小波包系数的长度;l为频段数;

最后,对进行L层小波包分解,会产生2L个节点;在第j层分解时,信号会被分解成高频部分和低频部分,继续对分解后的高频部分和低频部分进行分解,得到新的高频部分和低频部分;重复上述分解,直到匹配五个频段所对应的节律波。

根据本发明的一实施例,采用赫斯特指数计算大脑异常放电波形非线性特征的步骤包括:

采用R/S分析法进行估计,用X=[x1;x2;:::;xC]表示脑电信号的epoch中的一个通道,R/S分析法计算公式如下:

其中H为赫斯特指数;R为最大距离,即X最大值与最小值之间的差值;S为X的标准差;C为X的长度。

根据本发明的一实施例,在提取时频特征和非线性特征后采用线性判别分析减小特征参数的维数后再采用已训练完成的随机森林模型来得到脑电信号异常放电的第一检测结果。

根据本发明的一实施例,使用形态学滤波器提取棘波特征,其步骤包括:

首先,由于棘波的形状近似于三角形,因此选择三角形结构元素g(k),其公式表示如下:

Figure BDA0002623005000000042

其中A为结构元素的中心高度,D为结构元素的宽度的一半;k为一个时间序列中的采样点数;

接着,将脑电信号的每个通道都分割成一定长度的脑电片段,使用形态学滤波器将每个脑电片段中的几何特征与预设的结构元素进行匹配。

根据本发明的一实施例,使用形态学滤波器将每个脑电片段中的几何特征与预设的结构元素进行匹配的过程如下:

首先,使用所选取的结构元素,对每个脑电片段信号进行开-闭和闭-开操作,公式如下:

其中,Y(k)表示背景信号,X(k)表示每个脑电片段信号;k为一个脑电片段中的采样点数;

接着,计算背景信号和每个脑电片段信号之间的差值,计算所得结果即为棘波信号,公式如下:

Z(k)=X(k)-Y(k) 公式八

其中,Z(k)为背景信号和每个脑电片段信号之间的差值;

Figure BDA0002623005000000051

其中,SR是棘波比,用棘波信号Z(k)的均值表示;numj(i)表示第j个通道第i个epoch中的棘波数量,t表示每个脑电信号片段的时长,k为一个脑电片段中的采样点数。

根据本发明的一实施例,当第一检测结果和第二检测结果均表征检测到的脑电信号处于异常放电时,则两者融合后的最终的结果为异常放电。

根据本发明的一实施例,在进行数据预处理时,使用频率范围为0.5Hz~32Hz的5阶巴特沃斯带通滤波器来去除EEG信号中的噪声和伪迹。

相对应的,本发明还提供一种基于脑电信号特征的大脑异常放电检测系统,其包括数据采集处理模块、特征提取模块、第一检测模块、第二检测模块以及融合模块。数据采集处理模块采集原始脑电信号并进行数据处理。特征提取模块提取预处理后的脑电信号中的多域特征和棘波特征,多域特征包括时频特征和非线性特征。第一检测模块基于提取时频特征和非线性特征采用已训练完成的随机森林模型来得到脑电信号异常放电的第一检测结果。第二检测模块基于提取的棘波特征中棘波比和设定阈值的关系来获得脑电信号异常放电的第二检测结果。融合模块融合第一检测结果和第二检测结果以得到最终的大脑异常放电检测结果。

综上所述,本发明提供的基于脑电信号特征的大脑异常放电检测方法及系统是基于多域特征和棘波特征的检测,该检测方法在基于棘波特征的第二检测结果的基础上融合了基于多域特征的第一检测结果,两个检测结果相融合后形成最终的大脑异常放电的检测结果。基于多域特征的第一检测结果的融合弱化了现有基于阈值的棘波自动检测方法中对于阈值选择的关联度,从而大大提高检测的精度。

为让本发明的上述和其它目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明如下。

附图说明

图1所示为本发明一实施例提供的基于脑电信号特征的大脑异常放电检测方法的流程图。

图2所示为图1中提取预处理后的脑电信号中的多域特征的流程图。

图3所示为采用小波包变换以建立不同的节律波与五个频段之间时频关系的流程图。

图4所示为随机森林模型生成的流程图。

图5所示为用形态学滤波器提取棘波特征的流程图。

图6所示为本发明一实施例提供的基于脑电信号特征的大脑异常放电检测系统的原理框图。

具体实施方式

如图1所示,本实施例提供的基于基于脑电信号特征的大脑异常放电检测方法包括:采集原始脑电信号并进行数据处理(步骤S1)。提取预处理后的脑电信号中的多域特征和棘波特征,多域特征包括时频特征和非线性特征(步骤S2)。基于提取时频特征和非线性特征采用已训练完成的随机森林模型来得到脑电信号异常放电的第一检测结果(步骤S3)。基于提取的棘波特征中棘波比和设定阈值的关系来获得脑电信号异常放电的第二检测结果(步骤S4)。融合第一检测结果和第二检测结果以得到最终的大脑异常放电检测结果(步骤S5)。以下将结合图1至图5来详细介绍本实施提供的基于脑电信号特征的大脑异常放电检测方法的工作原理。

本实施例提供的基于脑电信号特征的大脑异常放电检测方法始于步骤S1,在该步骤中,使用多导脑电图仪采集患者长程监测脑电信号,采样频率为256Hz,电极分布采用国际10~20脑电采集标准,共采集8通道脑电数据。在数据处理时,采用5阶巴特沃斯带通滤波器滤除32Hz以上、0.5Hz以下的频率分量,减少噪声和伪迹的干扰。

之后,执行步骤S2,该步骤包含多域特征的提取和棘波特征的提取。对于多域特征的提取,其具体过程如下:

步骤S21,对脑电信号进行统计分析以得到时域特征,时域特征包括波形的线长、峰度、偏度、最大值、最小值、均值和方差特征。

步骤S22,采用小波包变换从脑电信号提取出不同的节律波,同时将脑电信号分解成五个频段并将不同的节律波与五个频段相互对应以建立时频关系,所述五个频段分别为:0.5Hz~4Hz的δ波,4Hz~8Hz的θ波,8H~12Hz的α波,12Hz~23Hz的β1波以及23Hz~30Hz的β2波。

在该步骤中,不同的节律波与五个频段之间建立时频关系的步骤包括:

步骤S221,选择尺度函数和小波基函数。具体而言,选择db6作为小波基函数并定义每个epoch为5秒;

步骤S222,通过小波包变换从每个epoch中提取不同的节律波,其公式如下:

其中,Φ(t)为尺度函数;为小波基函数;i(0,1,2,...,2j-1)为小波包变换的节点数;j为分解层;h(n)和g(n)=(-1)1-nh(1-n)为一对正交的图像滤波器;为基于双尺度的小波基函数;n为滤波器的长度;

令第j层的第k个节点的脑电信号x(t)的小波包系数如下:

Figure BDA0002623005000000081

其中

Figure BDA0002623005000000082

分别为第j层的第k个节点的小波包分解的细节系数和近似系数;

步骤S223,将脑电信号分解成五个频段,分别为:0.5Hz~4Hz的δ波,4Hz~8Hz的θ波,8H~12Hz的α波,12Hz~23Hz的β1波以及23Hz~30Hz的β2波。

步骤S224,将五个频段的小波包系数归一化,公式如下:

其中Kl(r)为每个频段的小波包系数,pl(r)为归一化小波包系数;N为小波包系数的长度;l为频段数;

步骤S225,对每层的小波包提取出的节律波进行分解,找出其对应的频段。具体而言,对第L层脑电信号进行小波包分解,会产生2L个节点;在第j层分解时,信号会被分解成高频部分和低频部分,继续对分解后的高频部分和低频部分进行分解,得到新的高频部分和低频部分;重复上述分解,直到匹配五个频段所对应的节律波。

步骤S23,采用赫斯特指数计算大脑异常放电波形非线性特征。赫斯特指数是脑电信号的非线性量度,其计算采用R/S分析法进行估计,用X=[x1;x2;:::;xC]表示脑电信号的epoch中的一个通道,R/S分析法计算公式如下:

Figure BDA0002623005000000085

其中H为赫斯特指数;R为最大距离,即X最大值与最小值之间的差值;S为X的标准差;C为X的长度。

在提取时频特征和非线性特征后执行步骤S24,采用线性判别分析减小特征参数的维数。由于最终检测结果为发作和不发作两类,因此将维度降低成2维。然而,本发明对此不作任何限定。

在步骤S2中,使用形态学滤波器提取棘波特征,其步骤包括:

步骤S24,选择结构元素。由于棘波的形状近似于三角形,因此选择三角形结构元素g(k),其公式表示如下:

其中A为结构元素的中心高度,D为结构元素的宽度的一半,k为一个时间序列中的采样点数。

通常情况下,棘波的宽度为20毫秒至70毫秒;当采样频率为256Hz时,2L的值为2到9。因此,当D的值为5时,可以有效提取出脑电信号中的特征。

步骤S25,将脑电信号的每个通道都分割成一定长度的脑电片段。于本实施例中,每个脑电片段的长度为1秒。然而,本发明对此不作任何限定。

步骤S26,使用形态学滤波器将每个脑电片段中的几何特征与预设的结构元素进行匹配。具体而言,如图5所示,使用形态学滤波器将每个脑电片段中的几何特征与预设的结构元素进行匹配的过程如下:

步骤S261,使用步骤S24所选取的结构元素,对每个脑电片段信号进行开-闭和闭-开操作,公式如下:

其中,Y(k)表示背景信号,X(k)表示每个脑电片段信号;k为一个脑电片段中的采样点数;

步骤S262,计算背景信号和每个脑电片段信号之间的差值,计算所得结果即为棘波信号,公式如下:

Z(k)=X(k)-Y(k) 公式八

其中,Z(k)为背景信号和每个脑电片段信号之间的差值;

最后根据如下公式九计算得到棘波比SR:

其中,SR是棘波比,用棘波信号Z(k)的均值表示;numj(i)表示第j个通道第i个epoch中的棘波数量,t表示每个脑电信号片段的时长,k为一个脑电片段中的采样点数。

虽然本实施例以序号的形式对每个步骤进行编号,但是步骤22~步骤23的多域特征提取与步骤24~步骤26的棘波特征提取是并列,对两者的执行顺序不作任何限定。

在步骤S2特征提取完成后,执行步骤S3和步骤S4;同样的,本发明对步骤S3和步骤S4的执行顺序不作任何限定。对于步骤S3而言,基于提取时频特征和非线性特征采用已训练完成的随机森林模型来得到脑电信号异常放电的第一检测结果。以下将结合图4详细介绍本实施例中随机森林模型的训练。为实现随机森林模型的训练,首先需要建立样本数据库。首先,采用步骤S1中的方法采集大量不同性别,不同年龄的实验体的脑电信号,从而形成训练样本集。之后,经专业医生对多个脑电信号样本进行标记,将脑电信号每个通道中的异常放电波形标记出来。之后对脑电信号进行滤波处理并执行步骤S2提取每个脑电信号样本中的多域特征,形成特征向量。以每个脑电信号中异常放电波形中的多域特征为输入对随机森林模型进行训练,其训练步骤如下:

首先,在训练样本集中有放回地抽取与训练集样本数相同的新训练集。

然后,从新训练集中随机且无放回地抽样每个样本的特征向量,形成待选特征向量集。

接着,使用基尼不确定性从待选特征向量中选取特征,生成一个节点,计算每个节点的最佳***方式并进行***,直到该节点无法***,记为一个叶子节点。

之后,重复上述***步骤,将记录的叶子节点添加入决策树中。

重复上述步骤,不断将叶子节点添加入决策树中并存储生成的决策树,直到决策树的数据达到生成随机森林的要求。

步骤S3中,将步骤S2中获得的多域特征输入已经训练完成的随机森林模型进行预测,以获得脑电信号异常放电的第一检测结果。

在步骤S4中,计算棘波比和设定阈值以形成第二检测出结果。具体而言,当棘波比大于阈值时,判断为大脑异常放电;反之,则不是异常放电。

最后执行步骤S5,融合第一检测结果和第二检测结果以得到最终的大脑异常放电检测结果。于本实施例中,当第一检测结果和第二检测结果均表示脑电信号处于异常放电时才认为该脑电信号处于异常放电。然而,本发明对融合的方式不作任何限定。于其它实施例中,也可为每一检测结果增加权重来进行融合。

相对应的,如图6所示,本实施例还提供一种基于脑电信号特征的大脑异常放电检测系统,其包括数据采集处理模块1、特征提取模块2、第一检测模块3、第二检测模块4以及融合模块5。数据采集处理模块1采集原始脑电信号并进行数据处理。特征提取模块2提取预处理后的脑电信号中的多域特征和棘波特征,多域特征包括时频特征和非线性特征。第一检测模块3基于提取时频特征和非线性特征采用已训练完成的随机森林模型来得到脑电信号异常放电的第一检测结果。第二检测模块4基于提取的棘波特征中棘波比和设定阈值的关系来获得脑电信号异常放电的第二检测结果。融合模块融合5第一检测结果和第二检测结果以得到最终的大脑异常放电检测结果。

本实施例提供的基于脑电信号特征的大脑异常放电检测系统的工作原理如上述步骤S1至步骤S5所述,在此不作赘述。

综上所述,本发明提供的基于脑电信号特征的大脑异常放电检测方法及系统是基于多域特征和棘波特征的检测,该检测方法在基于棘波特征的第二检测结果的基础上融合了基于多域特征的第一检测结果,两个检测结果相融合后形成最终的大脑异常放电的检测结果。基于多域特征的第一检测结果的融合弱化了现有基于阈值的棘波自动检测方法中对于阈值选择的关联度,从而大大提高检测的精度。

虽然本发明已由较佳实施例揭露如上,然而并非用以限定本发明,任何熟知此技艺者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,因此本发明的保护范围当视权利要求书所要求保护的范围为准。

16页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种神经电生理男性性功能检测装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!