System and method for PID (proportion integration differentiation) hybrid control of tension of coiled material production line

文档序号:981590 发布日期:2020-11-06 浏览:25次 中文

阅读说明:本技术 卷材生产线张力pid混合控制的系统和控制方法 (System and method for PID (proportion integration differentiation) hybrid control of tension of coiled material production line ) 是由 曾昭奇 匡奕楠 丁爱国 于 2020-08-31 设计创作,主要内容包括:本发明提供卷材生产线张力PID混合控制的系统和控制方法,所述系统包括PID处理模块、频率控制模块和速度限制模块;所述速度限制模块用于向所述PID处理模块输入最高速度限制信号;所述PID处理模块用于根据张力偏差信号和所述最高速度限制信号确定速度调整信号,并将所述速度调整信号输出至所述频率控制模块;所述张力偏差信号为输入所述系统的给定张力输入信号与受控对象反馈的实际张力信号之间构成的偏差;所述频率控制模块用于在接收所述PID处理模块发出的所述速度调整信号后,根据所述速度调整信号输出速度控制信号至所述受控对象以控制所述受控对象的运行速度,有利于使整个系统在调整过程中出现的震荡较小,在快速反应调整的同时不出现超调的现象。(The invention provides a system and a control method for tension PID mixed control of a coil production line, wherein the system comprises a PID processing module, a frequency control module and a speed limiting module; the speed limiting module is used for inputting a highest speed limiting signal to the PID processing module; the PID processing module is used for determining a speed adjusting signal according to the tension deviation signal and the highest speed limiting signal and outputting the speed adjusting signal to the frequency control module; the tension deviation signal is a deviation formed between a given tension input signal input into the system and an actual tension signal fed back by the controlled object; the frequency control module is used for outputting a speed control signal to the controlled object according to the speed adjusting signal after receiving the speed adjusting signal sent by the PID processing module so as to control the running speed of the controlled object, so that the oscillation of the whole system in the adjusting process is small, and the phenomenon of overshoot is avoided while the adjustment is quickly responded.)

1. The system for tension PID hybrid control of the coil production line is characterized by comprising a PID processing module, a frequency control module and a speed limiting module;

the speed limiting module is used for inputting a highest speed limiting signal to the PID processing module;

the PID processing module is used for determining a speed adjusting signal according to the tension deviation signal and the highest speed limiting signal and outputting the speed adjusting signal to the frequency control module;

the tension deviation signal is a deviation formed between a given tension input signal input into the system and an actual tension signal fed back by the controlled object;

and the frequency control module is used for outputting a speed control signal to the controlled object according to the speed adjusting signal after receiving the speed adjusting signal sent by the PID processing module so as to control the running speed of the controlled object.

2. The system for PID hybrid control of coil production line tension according to claim 1, wherein the highest speed in the highest speed limit signal is according to the relation V1=r×(Km+Ki) Determining, wherein, the V1Is the maximum speed, r is a preset speed of the controlled object, KmFor mechanical gear ratios, said KiIs a coiled material with no deformation coefficient。

3. The system for PID hybrid control of web production line tension according to claim 2,

the frequency control module is further used for judging whether the torque is larger than a torque preset value or not according to the detected torque of the controlled object, if so, switching to a torque vector control mode, and if not, switching to a speed vector control module;

the frequency control module is configured to output a speed control signal to the controlled object according to the speed adjustment signal after receiving the speed adjustment signal sent by the PID processing module, so as to control the operating speed of the controlled object, and specifically includes:

the frequency control module is used for outputting a speed control signal to the controlled object according to the speed adjustment signal to control the running speed of the controlled object after receiving the speed adjustment signal sent by the PID processing module when switching to the speed vector control mode;

the frequency control module is further used for determining a moment speed control signal according to a moment deviation signal when the controlled object is switched to the moment vector control mode, and sending the moment speed control signal to the controlled object to control the running speed of the controlled object; the moment deviation signal is a deviation formed between a given moment input signal input into the system and an actual moment signal fed back by the frequency control module.

4. The system for PID hybrid control of web production line tension according to any one of claims 2 or 3,

the PID processing module is used for determining a speed adjusting signal according to the tension deviation signal and the maximum speed limiting signal, and specifically comprises the following steps:

the PID processing module is used for processing the relationDetermining the kth speed adjustmentA whole signal, wherein k is more than or equal to 1, u (k) is the speed adjusting signal of the k time, u (k) is the initial speed adjusting signal of the k time determined by the PID processing module according to the tension deviation signal, and V is1For the highest speed in the highest speed limit signal, the V2And adjusting the initial speed of the k time corresponding to the initial speed of the k time adjusting signal u (k).

5. A tension hybrid control method for a coil production line is characterized by being applied to a PID processing module and comprising the following steps:

determining a speed adjusting signal according to the tension deviation signal and a highest speed limiting signal input by a speed limiting module, and outputting the speed adjusting signal to a frequency control module, so that the frequency control module outputs a speed control signal to a controlled object according to the speed adjusting signal after receiving the speed adjusting signal to control the running speed of the controlled object;

the tension deviation signal is a deviation formed between a given tension input signal input from the outside and an actual tension signal fed back by the controlled object.

6. A tension hybrid control method for a coil production line is characterized by being applied to a speed limiting module and comprising the following steps of: the PID processing module of claim 5 is input with a maximum speed limit signal.

7. The method of web manufacturing line tension compounding control of claim 6, wherein a highest speed in the highest speed limit signal is according to the relation V1=r×(Km+Ki) Determining, wherein, the V1Is the maximum speed, r is the preset linear speed of the production line, KmFor mechanical gear ratios, said KiThe coil material has no deformation coefficient.

8. A tension hybrid control method for a coil production line is characterized by being applied to a frequency control module and comprising the following steps:

after receiving the speed adjustment signal sent by the PID processing module according to claim 5, outputting a speed control signal to the controlled object according to the speed adjustment signal to control the operation speed of the controlled object.

9. The method for hybrid web line tension control as recited in claim 8, wherein the steps further comprise:

detecting the torque of a controlled object, judging whether the torque is greater than a torque preset value, if so, switching to a torque vector control mode, and if not, switching to a speed vector control module;

when the controlled object is switched to the torque vector control mode, determining a torque speed control signal according to a torque deviation signal, and sending the torque speed control signal to the controlled object to control the running speed of the controlled object; the moment deviation signal is a deviation formed between a given moment input signal input from the outside and an actual moment signal fed back by the moment deviation signal;

outputting a speed control signal to the controlled object according to the speed adjusting signal to control the running speed of the controlled object, specifically:

and when the speed vector control mode is switched, outputting a speed control signal to the controlled object according to the speed adjusting signal so as to control the running speed of the controlled object.

Technical Field

The invention relates to the field of production line control, in particular to a system and a method for PID (proportion integration differentiation) hybrid control of tension of a coil production line.

Background

Generally utilize many synchronous machine pulling coiled materials to carry out batch production and processing on the coiled material production line, can generally adopt tension sensor to monitor production process between two synchronous machine, open at the production line and stop or add the acceleration and deceleration in-process, asynchronous rate between the motor can increase to lead to the tensile deformation of coiled material or shrink, just so need tension sensor's data to monitor the production of coiled material this moment.

The existing production line usually adopts a PID control system to control and adjust the running speed of a synchronous motor, but is still difficult to adapt to the requirements of a coiled material production line, particularly, the existing PID control system usually has the overshoot condition in order to quickly adjust the motor according to the data of a tension sensor, the whole PID control process has oscillation, and the whole control process is unstable.

Disclosure of Invention

The invention aims to overcome at least one defect of the prior art and provides a system and a control method for tension PID mixed control of a coil production line, which are used for solving the problem that the existing PID control system is unstable or vibrates when reacting quickly according to tension data.

The technical scheme adopted by the invention is as follows:

a tension PID hybrid control system for a coil production line comprises a PID processing module, a frequency control module and a speed limiting module; the speed limiting module is used for inputting a highest speed limiting signal to the PID processing module; the PID processing module is used for determining a speed adjusting signal according to the tension deviation signal and the highest speed limiting signal and outputting the speed adjusting signal to the frequency control module; the tension deviation signal is a deviation formed between a given tension input signal input into the system and an actual tension signal fed back by the controlled object; and the frequency control module is used for outputting a speed control signal to the controlled object according to the speed adjusting signal after receiving the speed adjusting signal sent by the PID processing module so as to control the running speed of the controlled object.

The invention generally realizes the production of coiled materials by a plurality of synchronous motors or synchronous devices on a coiled material production line, thereby the invention adopts a PID processing module and a frequency control module to control a controlled object, the PID control processing is that a control deviation is formed according to a given value and an actual output value, the deviation forms a control quantity by linear combination according to proportion, integral and differential, and the controlled object is controlled, the PID processing module is applied to the technical proposal that the control deviation is formed according to a given tension input signal and an actual output signal, the actual output signal is a signal fed back by the controlled object, the PID processing module outputs an adjusting signal to the frequency control module through the differential, integral and proportional function according to the formed deviation, thereby adjusting the controlled object, and the deviation between the given input signal and the actual output signal can be reduced under the influence of the adjusting signal, so as to achieve the purpose of controlling the synchronous device.

Because the adjusting signal output by the PID processing module can possibly cause the frequency control module to generate an overshoot phenomenon during the fast reaction control when the frequency of the frequency control module is lower, the speed of the controlled object needs to be adjusted downwards again after the overshoot, the frequency adjusting process is oscillated, and the frequency adjusting process can be stable within a certain time, the system provided by the invention is added with the speed limiting module to limit the adjusting signal output by the PID processing module, the highest speed limiting signal inputs the highest speed limiting signal to the PID processing module, the PID processing module outputs a final speed adjusting signal to the frequency control module by combining the highest speed limiting signal after obtaining the adjusting signal according to the original processing formed by the deviation, the frequency control module outputs the speed control signal according to the signal to control the running speed of the controlled object, so that the oscillation generated in the whole adjusting process is smaller, the overshoot phenomenon does not occur while the fast response adjustment is carried out.

Further, the highest speed in the highest speed limit signal is according to the relation V1=r×(Km+Ki) Determining, wherein, the V1Is the maximum speed, r is a preset speed of the controlled object, KmFor mechanical gear ratios, said KiThe coil material has no deformation coefficient. The preset speed of the controlled object is also the moving speed of the whole production line when the coiled materials are produced, and the speed of the controlled object is consistent with the moving speed of the production line. The maximum speed mainly ensures that the coiled material cannot deform due to the fact that the running speed of the controlled object is too high, and therefore parameters such as a mechanical transmission ratio, a coiled material non-deformation coefficient and the like are added for limiting.

Further, the frequency control module is further configured to determine whether the torque is greater than a torque preset value according to the detected torque of the controlled object, if so, switch to a torque vector control mode, and if not, switch to a speed vector control module;

the frequency control module is configured to output a speed control signal to the controlled object according to the speed adjustment signal after receiving the speed adjustment signal sent by the PID processing module, so as to control the operating speed of the controlled object, and specifically includes: the frequency control module is used for outputting a speed control signal to the controlled object according to the speed adjustment signal to control the running speed of the controlled object after receiving the speed adjustment signal sent by the PID processing module when switching to the speed vector control mode;

the frequency control module is further used for determining a moment speed control signal according to a moment deviation signal when the controlled object is switched to the moment vector control mode, and sending the moment speed control signal to the controlled object to control the running speed of the controlled object; the moment deviation signal is a deviation formed between a given moment input signal input into the system and an actual moment signal fed back by the frequency control module.

The frequency control module controls a controlled object according to a speed adjusting signal input by the PID processing module, and monitors the moment of the whole production line, mainly aiming at preventing a slipping phenomenon from occurring in the operation of a synchronous motor or a synchronous device, which causes the situation that the tension of the device at the front end or the rear end of the synchronous device is increased to cause the stretching deformation of a coiled material or the contraction of a product, so that the frequency control module has two control modes, namely a speed vector control module and a moment vector control mode. And when the detected torque is smaller than the torque preset value, the speed vector mode is switched, and in the speed vector mode, the speed adjusting signal sent by the PID processing module is received and output to the controlled object to control the running speed of the controlled object. The speed of the controlled object is controlled by using two modes, so that the product is prevented from tensile deformation in the production process, and the quality of the produced product is stable.

Further, the PID processing module is configured to determine a speed adjustment signal according to the tension deviation signal and the maximum speed limit signal, specifically: the PID processing module is used for processing the relationDetermining a speed adjusting signal of the kth time, wherein k is more than or equal to 1, u (k) is the speed adjusting signal of the kth time, u (k) is an initial speed adjusting signal of the kth time determined by the PID processing module according to the tension deviation signal, and V1For the highest speed in the highest speed limit signal, the V2And adjusting the initial speed of the k time corresponding to the initial speed of the k time adjusting signal u (k).

PID processing module receivingAfter the tension deviation signal and the maximum speed limiting signal input by the speed limiting module are processed according to the relational expressionDetermining a kth speed adjusting signal, wherein the kth initial speed adjusting signal u (k) is an initial speed adjusting signal obtained by a PID processing module after the PID processing module performs conventional processing only by using a tension deviation signal when the PID processing module does not receive a maximum speed limiting signal, and the initial speed adjusting signal corresponds to an initial speed V for adjusting a controlled object2

The kth speed adjusting signal u (k) 'is a speed adjusting signal obtained by the PID processing module after receiving the highest speed limiting signal and processing the highest speed limiting signal and the initial speed adjusting signal, and the speed adjusting signal u (k)' passes through the highest speed V1And an initial velocity V2The ratio of the speed value u (k) to the initial speed adjustment signal u (k) of the kth time is multiplied to obtain the ratio, and the calculation mode can reduce the speed corresponding to the speed adjustment signal u (k) of the kth time, so that overshoot does not occur in the whole speed adjustment process, and meanwhile, the speed adjustment method can quickly respond to the maximum extent.

The technical scheme adopted by the invention is as follows:

a tension hybrid control method for a coil production line is applied to a PID processing module and comprises the following steps:

determining a speed adjusting signal according to the tension deviation signal and a highest speed limiting signal input by a speed limiting module, and outputting the speed adjusting signal to a frequency control module, so that the frequency control module outputs a speed control signal to a controlled object according to the speed adjusting signal after receiving the speed adjusting signal to control the running speed of the controlled object;

the tension deviation signal is a deviation formed between a given tension input signal input from the outside and an actual tension signal fed back by the controlled object.

Based on the method applied to the PID processing module, the technical scheme adopted by the invention is also a tension hybrid control method of a coil production line, which is applied to a speed limiting module and comprises the following steps: and inputting a maximum speed limit signal to the PID processing module.

Based on the method applied to the PID processing module, the technical scheme adopted by the invention is also a tension hybrid control method of a coiled material production line, which is applied to a frequency control module and comprises the following steps: and after receiving the speed adjusting signal sent by the PID processing module, outputting a speed control signal to the controlled object according to the speed adjusting signal so as to control the running speed of the controlled object.

Compared with the prior art, the invention has the beneficial effects that:

(1) the adjusting signal output by the PID processing module is limited through the highest speed limiting signal, so that the output speed adjusting signal can enable the frequency control module to quickly respond to the maximum extent without overshooting, and the stability of the whole system is kept;

(2) the frequency control module keeps monitoring the torque of the controlled object and switches to the torque vector control mode when the torque exceeds a preset value to ensure that the produced product does not have tensile deformation or shrinkage, and the speed vector control mode is still kept when the torque does not exceed the preset value to ensure the normal production of the produced product.

Drawings

Fig. 1 is a schematic structural diagram of a system in embodiment 1 of the present invention in a velocity vector only mode.

Fig. 2 is a schematic structural diagram of the system according to embodiment 1 of the present invention in a mode including both a velocity vector mode and a torque vector mode.

Detailed Description

The drawings are only for purposes of illustration and are not to be construed as limiting the invention. For a better understanding of the following embodiments, certain features of the drawings may be omitted, enlarged or reduced, and do not represent the size of an actual product; it will be understood by those skilled in the art that certain well-known structures in the drawings and descriptions thereof may be omitted.

9页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种复合PVC地板的下料机构

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!