一种轻质复合装甲及其制造方法

文档序号:1001103 发布日期:2020-10-23 浏览:6次 >En<

阅读说明:本技术 一种轻质复合装甲及其制造方法 (Light composite armor and manufacturing method thereof ) 是由 王鹏 王海岩 黄�俊 周泳 于 2020-07-10 设计创作,主要内容包括:本发明属于防弹材料技术领域,具体涉及一种轻质复合装甲,从内到外依次包括内层、过渡层和外层;过渡层分别与内层和外层通过环氧树脂固接;内层为碳纤维与环氧树脂复合而成;过渡层包括波纹形的陶瓷板以及围绕在陶瓷板外侧的超高分子量聚乙烯纤维布;陶瓷板与超高分子量聚乙烯纤维布之间的空隙内设置中空橡胶微球,并填充环氧树脂;外层为改性碳化硼陶瓷板;改性碳化硼陶瓷板按照重量份数是将50-60份碳化硼纤维、1-2份氧化铈、30-40份碳化硅、6-12份石墨烯混合后放入研磨机中研磨58-65min,再将研磨后的混合物压制成型,并通过热压烧结制得。本发明的轻质复合装甲能够用于坦克、装甲车,能有效防御或降低炮弹的穿透力,从而对坦克、装甲车及提供有效的保护。(The invention belongs to the technical field of bulletproof materials, and particularly relates to a light composite armor which sequentially comprises an inner layer, a transition layer and an outer layer from inside to outside; the transition layer is fixedly connected with the inner layer and the outer layer through epoxy resin respectively; the inner layer is formed by compounding carbon fibers and epoxy resin; the transition layer comprises a corrugated ceramic plate and ultrahigh molecular weight polyethylene fiber cloth surrounding the outer side of the ceramic plate; hollow rubber microspheres are arranged in gaps between the ceramic plate and the ultra-high molecular weight polyethylene fiber cloth, and epoxy resin is filled in the gaps; the outer layer is a modified boron carbide ceramic plate; the modified boron carbide ceramic plate is prepared by mixing 50-60 parts by weight of boron carbide fibers, 1-2 parts by weight of cerium oxide, 30-40 parts by weight of silicon carbide and 6-12 parts by weight of graphene, grinding the mixture in a grinding machine for 58-65min, pressing and molding the ground mixture, and sintering the mixture in a hot pressing manner. The light composite armor can be used for tanks and armored vehicles, and can effectively defend or reduce the penetrating power of shells, thereby effectively protecting the tanks and the armored vehicles.)

一种轻质复合装甲及其制造方法

技术领域

本发明属于复合装甲技术领域,特别涉及一种轻质复合装甲及其制造方法。

背景技术

复合装甲(composite armour)系由两层以上不同性能的防护材料组成的非均质坦克装甲,一般来说,是由一种或者几种物理性能不同的材料,按照一定的层次比例复合而成,依靠各个层次之间物理性能的差异来干扰来袭弹丸(射流)的穿透,消耗其能量,并最终达到阻止弹丸(射流)穿透的目的。

陶瓷材料因具有高熔点、高硬度、高耐磨性、耐氧化等良好的动态力学性能,被广泛应用于复合装甲的设计,但陶瓷材料也存在成型塑性差、断裂强度低等不足,使陶瓷不能作为均质防弹材料单独应用,必须有背板对其支撑,就产生了由陶瓷面板和纤维增强树脂基复合材料背板复合而成的陶瓷复合装甲。

陶瓷复合装甲一般由面板层、底板层和中间层组成,面板层是硬度很高的合金钢,底板层是韧性很强的合金钢,中间层是陶瓷板和纤维增强树脂基复合材料,三层之间填充了玻璃纤维增强树脂。其防弹机理为:一颗穿甲弹穿过外层的面板层时,弹头已经变钝,还消耗了大量能量。接着,中间层更强硬的陶瓷板又分解消散了弹头的主要冲击力,最后,失去极大部分能量的穿甲弹撞到高韧度的内层的底板层上时,已经没有什么穿甲能力。

现有的陶瓷复合装甲中的陶瓷层,在受到穿甲弹的撞击时,由于其较高的硬度和较低的断裂强度,特别容易破碎而形成大量的小颗粒,当受到多次撞击时,复合装甲就会承受不住穿甲弹的冲击,从而使陶瓷复合装甲的防弹能力不足。

发明内容

(一)要解决的技术问题

为了解决上述技术问题,本发明提供一种轻质复合装甲及其制造方法。

(二)技术方案

为了达到上述目的,本发明采用的主要技术方案包括:

一种轻质复合装甲,从内至外依次包括内层、过渡层和外层;所述过渡层分别与内层和外层通过环氧树脂固接;

所述内层为碳纤维与环氧树脂复合而成;

所述过渡层包括波纹形的陶瓷板以及包覆在陶瓷板外侧的超高分子量聚乙烯纤维布;所述陶瓷板与超高分子量聚乙烯纤维布之间的空隙内设置中空橡胶微球,并填充环氧树脂,以将中空橡胶微球固结在空隙内;

所述外层为改性碳化硼陶瓷板;所述改性碳化硼陶瓷板按照重量份数是将50-60份碳化硼纤维、1-2份氧化铈、30-40份碳化硅、6-12份石墨烯混合后放入研磨机中研磨58-65min,再将研磨后的混合物压制成型,并通过热压烧结制得。

可选地,所述内层的厚度为2-4mm;所述过渡层的厚度为9-12mm;所述外层的厚度为7-10mm。

可选地,所述碳纤维与环氧树脂复合具体为:将碳纤维浸渍在液态的环氧树脂内进行热压而成,碳纤维与环氧树脂的质量比为2:0.8-1.2。

可选地,所述超高分子量聚乙烯纤维布的厚度为2-3mm。

可选地,所述超高分子量聚乙烯纤维布的聚乙烯的分子量为350-600万。

可选地,所述波纹形的陶瓷板为碳化硅陶瓷或者碳化硼陶瓷,陶瓷板的厚度为2-3mm。

本发明还提供一种轻质复合装甲的制备方法,包括以下步骤:

S1:将超高分子量聚乙烯纤维布至少围绕一层于波纹形的陶瓷板的外面,并在陶瓷板与超高分子量聚乙烯纤维布之间的空隙内填充中空橡胶微球,然后填充环氧树脂胶液后固化,构成过渡层;或者,

将中空橡胶微球和环氧树脂调制均匀的浆料,然后灌入陶瓷板与超高分子量聚乙烯纤维布之间的空隙内;

S2:在过渡层的内侧涂敷环氧树脂胶液,将由碳纤维与环氧树脂复合组成的内层与过渡层固定;

S3:在过渡层的外侧涂敷环氧树脂胶液,将由改性碳化硼陶瓷板组成的外层与过渡层固定。

可选地,所述步骤S3中,改性碳化硼陶瓷板的制备步骤包括:按照重量份数将50-60份碳化硼纤维、1-2份氧化铈、30-40份碳化硅、6-12份石墨烯混合后放入研磨机中研磨58-65min,然后压制成型,并在真空下于1h内由300℃逐步升温到1550-1570℃,烧结0.5-1.5h后冷却至室温制得。

可选地,所述烧结时的真空度为10-3-10-4Pa。

(三)有益效果

本发明的有益效果是:本发明提供的轻质复合装甲能够用于坦克、装甲车,能有效防御或降低穿甲弹、破甲弹、炮弹、导弹和火箭弹等的穿透力,从而对坦克、装甲车及提供有效的保护。

本发明由于过渡层采用波纹形的陶瓷板以及在陶瓷板的外部设置超高分子量聚乙烯纤维布,其可以提高复合装甲的抗弹性能。在超高分子量聚乙烯纤维布与陶瓷板之间的空隙内填充中空的橡胶微球,并且通过环氧树脂固结,在遇到炮弹撞击时,由于超高分子量聚乙烯纤维布的保护,以及填充的橡胶微球和环氧树脂,就算陶瓷板破碎,也避免了破碎的陶瓷板飞散崩落,而且橡胶微球还可以起到极强的缓冲作用。波纹形的陶瓷板还有利于环氧树脂和中空的橡胶微球的灌入和填充。此外,波纹形的陶瓷板可设置两层,两层具有间距,内填充环氧树脂和中空的橡胶微球。

本发明由于采用改性碳化硼陶瓷板作为外层,并且过渡层内设置中空橡胶微球,能够减轻轻质复合装甲的重量。通过环氧树脂对过渡层及内、外层进行粘接,使整个轻质复合装甲更加牢固,结构强度高。

附图说明

图1为本发明一种轻质复合装甲的结构示意图。

【附图标记说明】

1:内层;

2:过渡层;21:陶瓷板;22:超高分子量聚乙烯纤维布;23:中空橡胶微球。

3:外层。

具体实施方式

为了更好的解释本发明,以便于理解,下面通过具体实施方式,对本发明作详细描述。

本发明提供一种轻质复合装甲,参照图1,从内至外依次包括内层1、过渡层2和外层3;过渡层2分别与内层1和外层3通过环氧树脂固接。

本发明通过环氧树脂对过渡层及内、外层进行粘接,使整个轻质复合装甲更加牢固,结构强度高。

其中,内层1为碳纤维与环氧树脂复合而成。碳纤维与环氧树脂复合具体为:将碳纤维浸渍在液态的环氧树脂内进行热压而成,碳纤维与环氧树脂的质量比为2:0.8-1.2。

本发明内层采用碳纤维与环氧树脂复合而成,可以提高内层的强度,防止内层在受到撞击时产生破裂。

过渡层2包括波纹形的陶瓷板21以及围绕在陶瓷板21外侧的超高分子量聚乙烯纤维布22;陶瓷板21与超高分子量聚乙烯纤维布22之间的空隙内设置中空橡胶微球23,并填充环氧树脂,以将中空橡胶微球23固结在空隙内。中空橡胶微球23的直径小于1mm。

本发明通过在波纹形的陶瓷板21与超高分子量聚乙烯纤维布22之间的空隙内设置中空橡胶微球23,并填充环氧树脂,可以吸收炮弹撞击的能量,由于设置的中空橡胶微球23具有弹性,起到缓冲及分散冲击力的作用,而且橡胶微球为中空设计,还可以减轻复合装甲的整体重量;在中空橡胶微球23之间填充环氧树脂,能够保护陶瓷板21不容易被崩散,并且能够抵抗多次炮弹的撞击。

具体实施时,还可以将中空橡胶微球23和环氧树脂调制成均匀的浆料,然后从垂直于图1示面的一端灌入陶瓷板21与超高分子量聚乙烯纤维布22之间的空隙内。这样操作,有利于中空橡胶微球23和环氧树脂能够混合均匀,然后通过环氧树脂将中空橡胶微球23固结在陶瓷板21与超高分子量聚乙烯纤维布22之间。

本发明还可以在超高分子量聚乙烯纤维布22围成的空间内设置两层波纹形的陶瓷板21,两层陶瓷板21具有间距,两层陶瓷板21之间也填充环氧树脂和中空橡胶微球23。这样设计,可以提高过渡层2的抗弹性能,有效抵挡炮弹的打击。

外层3为改性碳化硼陶瓷板;改性碳化硼陶瓷板按照重量份数是将50-60份碳化硼纤维、1-2份氧化铈、30-40份碳化硅、6-12份石墨烯混合后放入研磨机中研磨58-65min,再将研磨后的混合物压制成型,并通过热压烧结制得。

本发明的外层设置为改性碳化硼陶瓷板,具有较高的硬度和断裂韧性,能够满足复合装甲的生产要求。其中,碳化硼纤维中添加碳化硅能够提高外层的硬度,添加氧化铈能够使外层整体更加致密,添加石墨烯能够提高外层的断裂韧性。

具体地,内层1的厚度为2-4mm;过渡层2的厚度为9-12mm;外层3的厚度为7-10mm。本发明通过将复合装甲的三层的厚度设置在合理的范围内,使本发明制得的复合装甲具有更强的防弹性能,并且达到减轻重量的效果。

本发明采用外层3的厚度能够抵挡一般炮弹的打击;采用过渡层2的厚度能够对外层3起到支撑作用的同时,还能进一步抵挡炮弹的打击,吸收炮弹的打击能量;采用内层1的厚度能够大幅提高内层1受到冲击后的完整性,避免轻质复合装甲出现整体破坏。

超高分子量聚乙烯纤维布22的厚度为2-3mm,超高分子量聚乙烯纤维布22的聚乙烯的分子量为350-600万,纤维的纤度为300D-500D,断裂强度≥7.0CN/Dtex。超高分子量聚乙烯纤维的冲击吸收能比对位芳酰胺纤维高近一倍,耐磨性好,摩擦系数小。

本发明采用分子量为350-600万的超高分子量聚乙烯纤维,使其具有足够的强度,以及抗冲击能力。

陶瓷板21为碳化硅陶瓷或者碳化硼陶瓷,陶瓷板21的厚度为2-3mm。陶瓷板21为波纹形,能够进一步地提高抗弹性能。

本发明提供的轻质复合装甲能够用于坦克、装甲车,能有效防御或降低穿甲弹、破甲弹、炮弹、导弹和火箭弹等的穿透力,从而对坦克、装甲车及提供有效的保护。

一种轻质复合装甲的制备方法,包括以下步骤:

S1:将超高分子量聚乙烯纤维布至少包覆一层于波纹形的陶瓷板的外面,并在陶瓷板与超高分子量聚乙烯纤维布之间的空隙内填充中空橡胶微球,然后填充环氧树脂胶液后固化,构成过渡层;

S2:在过渡层的内侧涂敷环氧树脂胶液,将由碳纤维与环氧树脂复合组成的内层与过渡层固定;

S3:在过渡层的外侧涂敷环氧树脂胶液,将由改性碳化硼陶瓷板组成的外层与过渡层固定。

其中,步骤S3中,改性碳化硼陶瓷板的制备步骤包括:按照重量份数将50-60份碳化硼纤维、1-2份氧化铈、30-40份碳化硅、6-12份石墨烯混合后放入研磨机中研磨58-65min,然后压制成型,并在真空下于1h内由300℃逐步升温到1550-1570℃,烧结0.5-1.5h后冷却至室温制得。烧结时的真空度为10-3-10-4Pa。

其中,步骤S1中,也可以将中空橡胶微球和环氧树脂调制成均匀的浆料,然后灌入陶瓷板与超高分子量聚乙烯纤维布之间的空隙内。这样操作,有利于中空橡胶微球和环氧树脂能够混合均匀,然后通过环氧树脂将中空橡胶微球固结在陶瓷板与超高分子量聚乙烯纤维布之间。

以下结合具体实施例,说明本发明制备方法的特点和技术效果。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

实施例1-6

实施例1-6的轻质复合装甲的工艺参数条件见表1所示:

表1

Figure BDA0002579885030000071

实施例7:在超高分子量聚乙烯纤维布22围成的空间内设置两层波纹形的陶瓷板21,其他结构及参数与实施例4相同。

实施例性能测试

对实施例1-6制得的轻质复合装甲的性能进行测试,结果见表2所示。

表2

实施例 外层维氏硬度(GPa) 过渡层断裂韧性(MPa.m<sup>1/2</sup>) 子弹侵彻剩余厚度(mm)
1 66.3 15.6 3.4
2 48.5 16.9 4.2
3 62.8 16.5 5.1
4 65.9 16.2 4.5
5 66.2 17.2 5.6
6 49.8 15.9 4.3
7 65.9 16.7 4..9

从表2可以看出,实施例1-7所制得的轻质复合装甲的性能指标为:外层的维氏硬度48.5~66.3GPa,过渡层的断裂韧性15.6~17.2MPa.m1/2,子弹侵彻剩余厚度为3.4~5.6mm,整体性能优异,特别适合用于防弹领域,尤其实施例5得到的轻质复合装甲的性能最为优异。

实施例5中,通过往外层添加氧化铈可以使得防弹材料的孔隙率降低,提高致密度;通过添加石墨烯,由于石墨烯的层片状结构可以提升材料的韧性;通过添加碳化硅使得外层硬度提高。并且设置外层的厚度为9mm,过渡层的厚度为11mm,可以使子弹侵彻剩余厚度提高到5.6mm。

对比例1

对比例1与实施例5的其他条件都相同,不同之处在于所采用的外层原料只有碳化硼,并未掺杂其他物质。经检测,其烧结之后的硬度约为31.3GPa,断裂韧性3.1MPa.m1/2,整体轻质复合装甲的子弹侵彻剩余厚度为2.2mm。

对比例2

对比例2与实施例5的其他条件都相同,不同之处在于所采用的过渡层只是碳化硅陶瓷板。经检测,其烧结之后的硬度约为40.3GPa,断裂韧性3.3MPa.m1/2,整体轻质复合装甲的子弹侵彻剩余厚度为1.7mm。

对比例3

对比例3与实施例5的其他条件都相同,不同之处在于所采用的过渡层只是碳化硼陶瓷板。经检测,其烧结之后的硬度约为38.1GPa,断裂韧性3.5MPa.m1/2,整体轻质复合装甲的子弹侵彻剩余厚度为1.5mm。

由上述的对比例也可以看出,添加碳化硅后得到的外层与不添加碳化硅得到的外层相比,进一步地提高了外层的维氏硬度;添加石墨烯后得到的外层与不添加石墨烯得到的外层相比,进一步地提高了外层的断裂韧性。采用本发明的过渡层可以进一步提高复合装甲的子弹侵彻剩余厚度。

总之,采用本发明的各层厚度以及制作工艺,可以进一步地提高轻质复合装甲的抗弹性能。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行改动、修改、替换和变型。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种集照明、干扰与致盲于一体的激光系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!