脉搏波传播时间测量装置以及血压测量装置

文档序号:1008622 发布日期:2020-10-23 浏览:13次 >En<

阅读说明:本技术 脉搏波传播时间测量装置以及血压测量装置 (Pulse wave propagation time measuring device and blood pressure measuring device ) 是由 川端康大 藤井健司 松村直美 藤田丽二 伊藤晃人 于 2019-02-22 设计创作,主要内容包括:本发明提供一种用户容易佩戴的脉搏波传播时间测量装置。一个方式的脉搏波传播时间测量装置具有:带部,卷绕于用户的被测量部位;心电图获取部,包括设置于所述带部的多个电极,使用所述多个电极获取所述用户的心电图;脉搏波信号获取部,包括设置于所述带部的脉搏波传感器,使用所述脉搏波传感器获取表示所述用户的脉搏波的脉搏波信号;以及脉搏波传播时间计算部,基于所述心电图的波形特征点与所述脉搏波信号的波形特征点之间的时间差来计算脉搏波传播时间。(The invention provides a pulse wave propagation time measuring device which is easy to wear by a user. One embodiment of a pulse wave propagation time measurement device includes: a band portion wound around a measurement site of a user; an electrocardiogram acquisition unit including a plurality of electrodes provided on the belt unit, the electrocardiogram of the user being acquired using the plurality of electrodes; a pulse wave signal acquisition unit including a pulse wave sensor provided on the belt unit, the pulse wave signal acquisition unit acquiring a pulse wave signal indicating a pulse wave of the user using the pulse wave sensor; and a pulse wave propagation time calculation unit that calculates a pulse wave propagation time based on a time difference between a waveform feature point of the electrocardiogram and a waveform feature point of the pulse wave signal.)

脉搏波传播时间测量装置以及血压测量装置

技术领域

本发明涉及非侵入性地测量脉搏波传播时间的脉搏波传播时间测量装置、以及使用了脉搏波传播时间测量装置的血压测量装置。

背景技术

已知脉搏波在动脉上的两点间传播所需的时间即脉搏波传播时间(PTT:PulseTransit Time)与血压之间存在相关关系。

在专利文献1中公开了利用上述的相关关系来测量血压的血压测量装置。该血压测量装置基于ECG(Electro Cardio Graphic)传感器的输出和PPG(Photo PlethysmoGraphic)传感器的输出来计算脉搏波传播时间,使用计算出的脉搏波传播时间和表示上述的相关关系的关系式来计算血压值。ECG传感器安装在用户的躯体上,PPG传感器安装在用户的耳朵上。

现有技术文献

专利文献

专利文献1:日本专利第5984088号公报

发明内容

发明所要解决的课题

在专利文献1所公开的血压测量装置中,需要将两个设备佩戴于用户,对于用户而言佩戴麻烦。

本发明是着眼于上述情况而提出,其目的在于,提供一种用户容易佩戴的脉搏波传播时间测量装置以及血压测量装置。

用于解决课题的技术方案

本发明为了解决上述课题,采用以下的结构。

一个方式的脉搏波传播时间测量装置,包括:带部,卷绕于用户的被测量部位;心电图获取部,包括设置于所述带部的多个电极,使用所述多个电极获取所述用户的心电图;脉搏波信号获取部,包括设置于所述带部的脉搏波传感器,使用所述脉搏波传感器获取表示所述用户的脉搏波的脉搏波信号;以及脉搏波传播时间计算部,基于所述心电图的波形特征点与所述脉搏波信号的波形特征点之间的时间差来计算脉搏波传播时间。

通过上述结构,电极和脉搏波传感器均设置于带部。由此,通过将带部卷绕于用户,能够将电极以及脉搏波传感器安装于用户。因此,用户容易佩戴。而且,基于心电图的波形特征点和与被测量部位相关的脉搏波信号的波形特征点的时间差来计算脉搏波传播时间。在该情况下,脉搏波传播时间相当于脉搏波传播从心脏到被测量部位的长距离所需的时间,其与测量被测量部位中的两点间的脉搏波传播时间的情况相比,成为较大的值。换言之,确保长的脉搏波传播距离。因此,在计算心电图的波形特征点与脉搏波信号的波形特征点之间的时间差时产生的误差对脉搏波传播时间的影响变小,从而能够准确地测量脉搏波传播时间。

在一个方式中,所述脉搏波传感器也可以配置于所述带部中的、在所述带部卷绕于所述用户的所述被测量部位的状态下位于末梢侧的部分。通过该结构,能够确保更长的脉搏波传播距离,从而能够更准确地测量脉搏波传播时间。

在一个方式中,所述多个电极也可以配置于所述带部中的、在所述带部卷绕于所述用户的所述被测量部位的状态下位于中枢侧的部分。通过该结构,能够以更高的信噪比(SN比)获取表示心脏的电活动的信号,能够在心电图中更准确地检测波形特征点的时间。其结果,能够更准确地测量脉搏波传播时间。

在一个方式中,所述多个电极也可以是至少四个电极,所述心电图获取部也可以获取所述多个电极中的两个第一电极间的第一电位差,获取所述多个电极中的与所述两个第一电极不同的两个第二电极间的第二电位差,并获取所述第一电位差与所述第二电位差之差作为第三电位差,基于所述第三电位差生成所述心电图。

通过上述结构,有时在第一电位差中叠加了因用户的身体动作而产生的体动噪声。由于在第二电位差中也叠加了相同程度的体动噪声,因此,通过计算所述第一电位差与所述第二电位差之差,能够去除或降低体动噪声。能够获得去除了或降低了体动噪声的心电图,能够在心电图中更准确地检测波形特征点的时间。其结果,能够更准确地测量脉搏波传播时间。

在一个方式中,所述脉搏波传播时间测量装置也可以还具有:判定部,基于所述脉搏波传播时间,判定是否满足推荐测量所述用户的血压的条件;以及指示部,响应于所述判定部判定为满足所述条件,输出指示执行血压测量的信息。

通过上述结构,在满足条件的情况下,例如向用户提示催促执行血压测量的消息。因此,在血压急剧上升时等推荐血压测量的状况下执行血压测量。

在一个方式中,所述被测量部位也可以是上臂。通过该结构,能够将脉搏波传播时间测量装置佩戴在衣服之下,从而能够使佩戴了脉搏波传播时间测量装置的情况不显眼。

一个方式的血压测量装置,具有:上述的脉搏波传播时间测量装置;以及血压值计算部,基于所述计算出的脉搏波传播时间来计算血压值。

根据上述结构,能够通过一个设备进行基于脉搏波传播时间的血压测量(得到每次心搏的血压值的连续血压测量)。

一方式的血压测量装置,具有:上述的脉搏波传播时间测量装置;第一血压值计算部,基于计算出的脉搏波传播时间和血压计算式来计算第一血压值;按压袖带,设置于所述带部;流体供给部,向所述按压袖带供给流体;压力传感器,检测所述按压袖带内的压力;第二血压值计算部,基于所述压力传感器的输出信号来计算出第二血压值;以及校正部,基于由所述脉搏波传播时间测量装置得到的脉搏波传播时间和由所述第二血压值计算部计算出的第二血压值,进行所述血压计算式的校正。

通过上述结构,能够利用一个设备进行基于脉搏波传播时间的血压测量、能够进行更准确的测量的袖带式的血压测量、以及血压计算式的校正。

发明效果

根据本发明,能够提供一种用户容易佩戴的脉搏波传播时间测量装置以及血压测量装置。

附图说明

图1是例示一实施方式的血压测量装置的图。

图2是例示图1所示的血压测量装置的外观的图。

图3是例示图1所示的血压测量装置的外观的图。

图4是例示图1所示的血压测量装置的截面的图。

图5是例示图1所示的血压测量装置的控制系统的硬件结构的框图。

图6是例示图1所示的血压测量装置的软件结构的框图。

图7是说明图6所示的脉搏波传播时间计算部计算脉搏波传播时间的方法的图。

图8是例示图1所示的血压测量装置进行基于脉搏波传播时间的血压测量的动作的流程图。

图9是例示图1所示的血压测量装置指示基于示波法的血压测量的执行的动作的流程图。

图10是例示图1所示的血压测量装置进行基于示波法的血压测量的动作的流程图。

图11是表示基于示波法的血压测量中的袖带压和脉搏波信号的变化的图。

图12是例示一实施方式的心电图获取部的硬件结构的框图。

具体实施方式

以下,参照附图对本发明的实施方式进行说明。

(应用例)

参照图1,对应用本发明的场景的一例进行说明。图1例示了一实施方式的血压测量装置10。血压测量装置10是可穿戴设备,佩戴于作为用户的被测量部位的上臂。血压测量装置10具有带部20、第一血压测量部30、第二血压测量部40、判定部50、以及指示部60。

带部20具有带21和主体22。带21是指卷绕上臂而安装的带状的构件,有时也被称为带或袖带等其他的名称。带21具有内周面和外周面。内周面是在用户佩戴血压测量装置10的状态(以下,简称为“佩戴状态”)下与用户的上臂接触的表面,外周面是内周面的相反一侧的表面。

主体22安装于带21。主体22与操作部221和显示部222一起容纳后述的控制部501(图5所示)等结构构件。操作部221是能够供用户输入针对血压测量装置10的指示的输入装置。在图1的例子中,操作部221包括多个按压式按钮。显示部222是显示催促执行血压测量的消息、血压测量结果等信息的显示装置。作为显示装置,例如能够使用液晶显示装置(LCD)或OLED(Organic Light Emitting Diode:有机发光二极管)显示器。也可以使用兼具显示装置及输入装置的触摸屏。在主体22中也可以设置有扬声器或压电声响器等发声体。在主体22中也可以设置有麦克风,以使用户能够通过声音输入指示。

第一血压测量部30非侵入性地测量用户的脉搏波传播时间,并基于测量出的脉搏波传播时间来计算血压值。第一血压测量部30能够进行得到每次心搏的血压值的连续血压测量。第二血压测量部40以与第一血压测量部30不同的方式进行血压测量。第二血压测量部40基于例如示波法或柯氏法,在特定的时机,响应于例如用户的操作来进行血压测量。第二血压测量部40无法进行连续血压测量,但相比第一血压测量部30能够更准确地测量血压。

第一血压测量部30包括心电图获取部31、脉搏波信号获取部32、脉搏波传播时间计算部33以及血压值计算部34。

心电图获取部31具有多个电极,使用这些电极获取用户的心电图(ECG:ElectroCardio Gram)。心电图表示心脏的电活动。电极设置于带部20。例如,电极配置在带21的内周面,由此,在安装状态下电极与用户的上臂的皮肤接触。

脉搏波信号获取部32具有脉搏波传感器,使用脉搏波传感器获取表示用户的脉搏波的脉搏波信号。脉搏波传感器设置于带部20。例如,脉搏波传感器配置在带21的内周面,由此,在佩戴状态下脉搏波传感器与用户的上臂的皮肤接触。此外,在基于后述的电波法的脉搏波传感器等几个类型的脉搏波传感器中,不需要在佩戴状态下与用户的上臂的皮肤接触。

脉搏波传播时间计算部33基于由心电图获取部31获取的心电图的波形特征点与由脉搏波信号获取部32获取的脉搏波信号的波形特征点之间的时间差来计算脉搏波传播时间。例如,脉搏波传播时间计算部33计算心电图的波形特征点与脉搏波信号的波形特征点之间的时间差,并将计算出的时间差作为脉搏波传播时间输出。在本实施方式中,脉搏波传播时间相当于脉搏波从心脏到上臂(具体而言是配置脉搏波传感器的位置)在动脉中传播所需的时间。

血压值计算部34基于由脉搏波传播时间计算部33计算出的脉搏波传播时间和血压计算式来计算血压值。血压计算式是表示脉搏波传播时间与血压之间的相关关系的关系式。以下示出血压计算式的一例。

SBP=A1/PTT2+A2…(1)

其中,SBP表示收缩期血压,PTT表示脉搏波传播时间,A1、A2是参数。上述的相关关系按每个个人而不同。因此,需要对用户进行血压计算式的校正。血压计算式的校正(具体而言,参数A1、A2的确定)基于由第二血压测量部40得到的血压值进行。以下描述关于血压计算式的校正。

脉搏波传播时间计算部33能够计算每次心搏的脉搏波传播时间,因此,血压值计算部34能够计算每次心搏的血压值。

判定部50监视由第一血压测量部30连续地得到的血压值,并判定是否满足推荐测量用户的血压的条件。例如,在发生急剧的血压上升时,期望执行基于第二血压测量部40的准确的血压测量。因此,条件例如被规定为检测发生了急剧的血压上升。

指示部60响应于判定部50判定为满足了条件,输出指示由第二血压测量部40执行血压测量的信息。例如,指示部60通过发声体输出通知音(例如旋律),并且使显示部222显示“请执行血压测量”这一消息。当用户响应于来自指示部60的指示按下规定的按钮时,执行基于第二血压测量部40的血压测量。关于第二血压测量部40的血压测量将在后面叙述。

如上所述,在血压测量装置10中,用于获取心电图的多个电极和用于获取脉搏波信号的脉搏波传感器均设置于带部20。由此,通过仅将带部20卷绕于上臂,就能够将电极以及脉搏波传感器安装于用户。因此,用户容易佩戴,从而能够降低用户对血压测量装置10的佩戴的拒绝感。

进而,计算心电图的波形特征点和与上臂的脉搏波信号有关的波形特征点之间的时间差作为脉搏波传播时间。与在上臂中的两点间测量脉搏波传播时间的情况相比,由血压测量装置10得到的脉搏波传播时间成为较大的值。换言之,确保更长的脉搏波传播距离。因此,在计算心电图的波形特征点与脉搏波信号的波形特征点之间的时间差时产生的误差对脉搏波传播时间的影响变小,从而能够准确地测量脉搏波传播时间。其结果,通过基于脉搏波传播时间的血压测量而得到的血压值的可靠性提高。

以下,更具体地说明血压测量装置10。

(结构例)

(硬件结构)

参照图2至图6,对本实施方式的血压测量装置10的硬件结构的一例进行说明。

图2和图3是例示血压测量装置10的外观的俯视图。具体而言,图2示出了在展开了带21的状态下从带21的外周面211侧观察的血压测量装置10,图3示出了在展开了带21的状态下从带21的内周面212侧观察的血压测量装置10。图4示出了佩戴状态下的血压测量装置10的截面。

带21具有能够使带21相对于上臂装卸的安装构件。在图2及图3所示的例子中,安装构件是具有环面213和钩面214的面钩扣,所述环面213具有多个环,所述钩面214具有多个钩。环面213配置在带21的外周面211上且配置在带21的长度方向的端部215A。长度方向在安装状态下与上臂的周向对应。钩面214配置在带21的内周面212上且配置在带21的长度方向的端部215B。端部215B在带21的长度方向上与端部215A相对。若将环面213和钩面214相互按压,则环面213和钩面214结合。另外,通过以使环面213和钩面214相互分离的方式拉拽环面213和钩面214,环面213和钩面214分离。

如图3所示,在带21的内周面212配置有用于测量心电图的电极组311。在图3的例子中,电极组311具有在带21的长度方向上以一定间隔排列的六个电极312。电极312之间的间隔例如被设定为设想的手臂最细的用户的上臂周长的四分之一。在该配置中,如图4所示,对于设想的手臂最细的用户,在佩戴状态下六个电极312中的四个与上臂70接触,在上臂的周向上等间隔地配置,剩余的两个电极312与传送带111的外周面接触。在图4中,示出了上臂骨71和上臂动脉72。对于设想的手臂最粗用户,在佩戴状态下,六个电极312与上臂70接触。

此外,电极312的数量不限于六个,也可以是两个~五个或者七个以上。在两个或三个电极312与上臂接触的情况下,有时因佩戴状态无法很好地测量心电图。在不能很好地测量心电图的情况下,需要在显示部222上显示消息等,让用户重新佩戴血压测量装置10。为了避免无法测量心电图的情况,期望在佩戴状态下至少四个电极312与上臂接触。

在佩戴状态下电极312越位于心脏的附近,使用电极312得到的表示心脏的电活动的信号越大,即信噪比(SN比)越高。优选地,如图3所示,电极312配置于带21的中枢侧部分217A。中枢侧部分217A是在安装状态下相比中心线216更靠中枢侧(肩侧)的部分。更优选地,电极312配置于带21的中枢侧端部218A。中枢侧端部218A是在安装状态下位于中枢侧的端部,中枢侧端部218A的宽度例如是带21的整个宽度的三分之一。

在带21的内周面212上还配置有用于测量脉搏波的脉搏波传感器321的传感器部322。在图3的例子中,传感器部322包括用于对上臂通电的一对电极323A、323D和用于检测电压的一对电极323B、323C。电极323A、323B、323C、323D按照该顺序在带111的宽度方向上排列。带111的宽度方向是在安装状态下沿着上臂动脉72的方向。

另外,在佩戴状态下,传感器部322越位于远离心脏的位置,脉搏波传播距离越长,脉搏波传播时间的测量值越大。因此,在计算心电图的波形特征点与脉搏波信号的波形特征点之间的时间差时产生的误差相对于脉搏波传播时间相对变小,从而能够准确地测量脉搏波传播时间。优选地,传感器部322配置于带21的末梢侧部分217B。末梢侧部分217B是在安装状态下相比中心线216更靠末梢侧(肘侧)的部分。更优选地,传感器部322配置于带21的末梢侧端部218C。末梢侧端部218C是在安装状态下位于末梢侧的端部,末梢侧端部218C的宽度例如是带21的整个宽度的三分之一。中枢侧端部218A与末梢侧端部218C之间的部分218B称为中间部。

如图4所示,带21包括:内布210A、外布210B、以及设置于内布210A与外布210B之间的按压袖带401。按压袖带401是以能够包围上臂的方式在带21的长度方向上较长的带状体。例如,按压袖带401使能够伸缩的两片聚氨酯片在厚度方向上相对并将它们的周缘部熔接而构成为流体袋。电极组311和传感器部322以在安装状态下位于按压袖带401与上臂70之间的方式设置于内布210A。

图5例示了本实施方式的血压测量装置10的控制系统的硬件结构的一例。在图5的例子中,除了上述的操作部221以及显示部222以外,在主体22上还搭载有控制部501、存储部505、电池506、开关电路313、减法电路314、模拟前端(AFE)315、压力传感器402、泵403、阀404、振荡电路405以及泵驱动电路406。脉搏波传感器321除了具有上述的传感器部322以外,还具有通电及电压检测电路324。在该例子中,通电及电压检测电路324搭载于带21。

控制部501包括CPU(Central Processing Unit:中央处理单元)502、RAM(RandomAccess Memory:随机存取存储器)503、ROM(Read OnlyMemory:只读存储器)504等,根据信息处理进行各结构构件的控制。存储部505例如是硬盘驱动器(HDD)、半导体存储器(例如,闪存)等辅助存储装置,非易失性地存储由控制部501执行的程序(例如,包括脉搏波传播时间测量程序和血压测量程序)、为了执行程序所需的设定数据、血压测量结果等。存储部505所具有的存储介质是以能够读取记录有计算机及其他装置、机械等的程序等信息的方式,通过电、磁、光学、机械或化学作用存储该程序等信息的介质。此外,程序的一部分或全部也可以存储在ROM504中。

电池506向控制部501等结构构件供给电力。电池506例如是可充电的电池。

电极组311所包含的电极312分别与开关电路313的输入端子连接。开关电路313的两个输出端子分别与减法电路314的两个输入端子连接。开关电路313从控制部501接收开关信号,将由开关信号指定的两个电极312与减法电路314连接。减法电路314从由一个输入端子输入的电位中减去由另一个输入端子输入的电位。减法电路314将表示所连接的两个电极312间的电位差的电位差信号向AFE135输出。减法电路314例如是仪表放大器。AFE135例如包括低通滤波器(LPF)、放大器以及模拟数字转换器。电位差信号由LPF滤波,由放大器放大,由模拟数字转换器转换为数字信号。转换为数字信号的电位差信号被提供给控制部501。控制部501获取从AFE315按时间序列输出的电位差信号作为心电图。

通电及电压检测电路324使高频恒定电流在电极323A、323D之间流动。例如,电流的频率为50kHz,电流值为1mA。通电及电压检测电路324在向电极323A、323D之间通电的状态下,检测电极323B、323C间的电压,生成检测信号。检测信号表示在电极323B、323C相对的动脉的部分传播的脉搏波所引起的电阻抗的变化。通电及电压检测电路324对检测信号实施包含整流、放大、滤波以及模拟数字转换在内的信号处理,并将检测信号提供给控制部501。控制部501获取从通电及电压检测电路324按时间序列输出的检测信号作为脉搏波信号。

压力传感器402经由配管407与按压袖带401连接,泵403以及阀404经由配管408与按压袖带401连接。配管407、408也可以是共用的一个配管。泵403例如是压电泵,为了提高按压袖带401内的压力,通过配管408向按压袖带401供给作为流体的空气。阀404搭载于泵403,构成为伴随泵403的动作状态(开启/关闭)而控制开闭。具体而言,当泵403被开启时,阀404变为关闭状态,当泵403被关闭时,阀404变为打开状态。在阀404为打开状态时,按压袖带401与大气连通,按压袖带401内的空气被排出到大气中。此外,阀404具有止回阀的功能,空气不会逆流。泵驱动电路406基于从控制部501接收的控制信号来驱动泵403。

压力传感器402检测按压袖带401内的压力(也称为袖带压),生成表示袖带压的电信号。袖带压例如是以大气压为基准的压力。压力传感器402例如是压电电阻式压力传感器。振荡电路405基于来自压力传感器402的电信号进行振荡,将具有与电信号对应的频率的频率信号向控制部501输出。在该例子中,压力传感器402的输出用于控制按压袖带401的压力,以及通过示波法计算血压值(包括收缩期血压和舒张期血压)。

按压袖带401也可以用于调整电极312或脉搏波传感器321的传感器部322与上臂的接触状态。例如,在执行基于脉搏波传播时间的血压测量时,按压袖带401被保持为容纳了一定程度的空气的状态。由此,电极312以及脉搏波传感器321的传感器部322与上臂可靠地接触。

在图2至图5所示的例子中,电极组311、开关电路313、减法电路314以及AFE315相当于图1所示的第一血压测量部30的心电图获取部31,脉搏波传感器321(电极323以及通电及电压检测电路324)相当于第一血压测量部30的脉搏波信号获取部32。另外,按压袖带401、压力传感器402、泵403、阀404、振荡电路405、泵驱动电路406以及配管407、408相当于第二血压测量部40。

此外,关于血压测量装置10的具体的硬件结构,能够根据实施方式适当地省略、置换以及追加结构构件。例如,控制部501也可以包括多个处理器。血压测量装置10也可以具有用于与用户的便携终端(例如智能手机)等外部装置进行通信的通信部507。通信部507包括有线通信模块和/或无线通信模块。作为无线通信方式,例如能够采用Bluetooth(注册商标)、BLE(Bluetooth Low Energy:蓝牙低功耗)等。

(软件结构)

参照图6,对本实施方式的血压测量装置10的软件结构的一例进行说明。图6例示了本实施方式的血压测量装置10的软件结构的一例。在图6的例子中,血压测量装置10具有心电图测量控制部601、心电图存储部602、脉搏波测量控制部603、脉搏波信号存储部604、脉搏波传播时间计算部605、血压值计算部606、血压值存储部607、判定部608、指示部609、血压测量控制部610、血压值存储部611、显示控制部612、指示输入部613以及校正部614。心电图测量控制部601、脉搏波测量控制部603、脉搏波传播时间计算部605、血压值计算部606、判定部608、指示部609、血压测量控制部610、显示控制部612、指示输入部613以及校正部614通过血压测量装置10的控制部501执行存储于存储部505的程序来执行下述处理。在控制部501执行程序时,控制部501将程序在RAM503中展开。然后,控制部501通过CPU502对在RAM503中展开的程序进行解释及执行,对各结构构件进行控制。心电图存储部602、脉搏波信号存储部604、血压值存储部607以及血压值存储部611通过存储部505来实现。

心电图测量控制部601控制开关电路313,以获取心电图。具体而言,心电图测量控制部601生成用于选择六个电极312中的两个电极312的开关信号,并将该开关信号提供给开关电路313。心电图测量控制部601获取使用所选择的两个电极312获得的电位差信号,并且将所获得的电位差信号的时间序列数据作为心电图存储于心电图存储部602。

在用户将血压测量装置10佩戴于上臂时,心电图测量控制部601确定最适合于获取心电图的电极对。例如,心电图测量控制部601针对所有的电极对获取心电图,并且将提供R波的振幅最大的心电图的电极对确定为最佳电极对。然后,心电图测量控制部601使用最佳电极对测量心电图。

脉搏波测量控制部603为了获取脉搏波信号而控制通电及电压检测电路324。具体而言,脉搏波测量控制部603指示通电及电压检测电路324使电流流过电极323A、D间,获取表示在电极323A、D间流动电流的状态下检测出的电极323B、323C间的电压的检测信号。脉搏波测量控制部603将检测信号的时间序列数据作为脉搏波信号存储于脉搏波信号存储部604。

脉搏波传播时间计算部605从心电图存储部602读出心电图,从脉搏波信号存储部604读出脉搏波信号,基于心电图的波形特征点与脉搏波信号的波形特征点之间的时间差,计算脉搏波传播时间。例如,如图7所示,脉搏波传播时间计算部605从心电图中检测与R波对应的波峰点的时间(时刻),根据脉搏波信号检测上升点的时间(时刻),计算从上升点的时间减去波峰点的时间而得到的差作为脉搏波传播时间。

此外,脉搏波传播时间计算部605也可以基于排血前期(PEP:Pre EjectionPeriod)来校正上述时间差,并将校正后的时间差作为脉搏波传播时间输出。例如,排血前期视为一定,脉搏波传播时间计算部605也可以通过从上述时间差减去规定值来计算脉搏波传播时间。

与R波对应的波峰点是心电图的波形特征点的一例。心电图的波形特征点可以是与Q波对应的波峰点,也可以是与S波对应的波峰点。由于R波相比Q波或S波显现出更清楚的波峰,因此,能够更准确地确定R波波峰点的时间。因此,优选使用R波波峰点作为心电图的波形特征点。另外,上升点是脉搏波信号的波形特征点的一例。脉搏波信号的波形特征点也可以是波峰点。由于脉搏波信号缓慢地随时间变化,因此,在脉搏波信号中确定波形特征点的时间时容易产生误差。

参照图6,血压值计算部606基于由脉搏波传播时间计算部605计算出的脉搏波传播时间和血压计算式来计算血压值。血压值计算部606例如使用上述的式(1)作为血压计算式。血压值计算部606将计算出的血压值与时间信息相关联地存储在血压值存储部607中。

此外,血压计算式不限于上述式(1)。血压计算式例如也可以是下述的式。

SBP=B1/PTT2+B2/PTT+B3×PTT+B4…(2)

其中,B1、B2、B3、B4是参数。

判定部608相当于图1所示的判定部50。判定部608基于由脉搏波传播时间计算部605计算出的脉搏波传播时间,判定是否满足了推荐测量用户的血压的条件。在一例中,判定部608判定血压变化率是否超过阈值。血压变化率例如是单位时间内的血压值的变化量。具体而言,判定部608判定从最新的血压值减去单位时间前的血压值而得到的差是否超过了阈值。若将最新的收缩期血压的值设为SBP0,将单位时间前的收缩期血压的值设为SBP1,将阈值设为Vth,则判定部608判定是否满足SBP0-SBP1>Vth的条件式。单位时间例如为30秒,阈值例如为20[mmHg]。若将最新的脉搏波传播时间的值设为PTT0,将单位时间前的脉搏波传播时间的值设为PTT1,则上述的条件式若使用式(1)而变形,变为A1(1/PTT0 2-1/PTT1 2)>Vth。即,判定部608可以使用脉搏波传播时间本身,也可以使用基于脉搏波传播时间计算出的血压值。此外,判定部608也可以判定从最新的血压值减去规定心搏前(例如30次搏动前)的血压值而得到的差是否超过了阈值。在其他例子中,判定部608判定最新的收缩期血压的值是否超过阈值(例如150[mmHg])。该阈值可以是固定的,也可以是可变的。例如,用户的平均血压越高,则阈值被设定为越高的值。

指示部609相当于图1所示的指示部60。指示部609响应于判定部608判定为满足条件,输出指示执行血压测量的信息。例如,指示部609向显示控制部612提供指示信号,以使显示部222显示催促执行血压测量的消息。并且,为了产生通知音,指示部609输出对驱动发声体的驱动电路进行控制的控制信号。此外,指示部609也可以经由通信部507向用户的便携终端发送指示信号,由此,通过便携终端催促用户执行血压测量。

指示输入部613接收用户使用操作部221输入的指示。例如,当进行了指示执行血压测量的操作时,指示输入部613将血压测量的开始指示提供给血压测量控制部610。

血压测量控制部610为了执行血压测量而控制泵驱动电路406。血压测量控制部610若接收到来自指示输入部613的血压测量的开始指示,则经由泵驱动电路406驱动泵403。由此,开始向按压袖带401供给空气。按压袖带401膨胀,由此,用户的上臂被压迫。血压测量控制部610使用压力传感器402来监视袖带压。血压测量控制部610在向按压袖带401供给空气的加压过程中,基于从压力传感器402输出的压力信号,通过示波法计算血压值。血压值包括收缩期血压(SBP)和舒张期血压(DBP),但并不限定于此。血压测量控制部610将计算出的血压值与时间信息相关联地存储在血压值存储部611中。血压测量控制部610能够在计算血压值的同时计算脉搏数。血压测量控制部610在血压值的计算完成时,经由泵驱动电路406使泵403停止。由此,使空气从按压袖带401通过阀404排出。

显示控制部612控制显示部222。例如,显示控制部612接收来自指示部609的指示信号,使显示部222显示指示信号中包含的消息。另外,显示控制部612在由血压测量控制部610完成血压测量后,使血压测量结果显示于显示部222。

校正部614基于由脉搏波传播时间计算部605得到的脉搏波传播时间和由血压测量控制部610得到的血压值,进行血压计算式的校正。脉搏波传播时间与血压值之间的相关关系因人而异。另外,相关关系根据血压测量装置10佩戴于用户的上臂的状态而变化。例如,即使是相同的用户,在血压测量装置10配置于更靠肩侧时和血压测量装置10配置于更靠肘侧时,相关关系也发生变化。为了反映这样的相关关系的变化,进行血压计算式的校正。血压计算式的校正例如在用户佩戴血压测量装置10时执行。校正部614例如得到多个脉搏波传播时间的测量结果与血压的测量结果的组合,基于脉搏波传播时间的测量结果与血压的测量结果的多个组合来确定参数A1、A2。校正部614为了确定参数A1、A2,例如使用最小二乘法或者最大似然法这样的拟合法。

此外,在本实施方式中,对血压测量装置10的功能均由通用的处理器实现的例子进行了说明。但是,功能的一部分或全部也可以通过一个或多个专用的处理器来实现。

(动作例)

(用于获取心电图的电极对的选择)

当用户佩戴血压测量装置10时,首先,执行选择用于获取心电图的电极对的处理。在该处理中,控制部501作为脉搏波测量控制部603进行动作。在此,设电极组311具有四个电极312,为了区别这四个电极312而标记为电极312-1、312-2、312-3、312-4。控制部501将用于选择电极312-1、312-2的开关信号提供给开关电路313,使用一对电极312-1、312-2而得到心电图。接着,控制部501将用于选择电极312-1、312-3的开关信号提供给开关电路313,使用一对电极312-1、312-3而得到心电图。同样地,控制部501使用一对电极312-1、312-4、一对电极312-2、312-3、一对电极312-2、312-4、以及一对电极312-3、312-4而得到心电图。控制部501将得到R波的振幅最大的心电图的电极对确定为用于得到心电图的电极对。

(基于脉搏波传播时间的血压测量中使用的血压计算式的校正)

接着,执行血压计算式的校正。在该处理中,控制部501作为校正部614进行动作。若将血压计算式中包含的参数的数量设为N,则脉搏波传播时间的测量值与血压的测量值的组合需要N组以上。上述的血压计算式(1)具有两个参数A1、A2。在该情况下,例如,控制部501在用户安静时,获取脉搏波传播时间的测量值以及血压的测量值的组合,接着,使用户进行运动,在运动后获取脉搏波传播时间的测量值以及血压的测量值的组合。由此,获取两组脉搏波传播时间的测量值与血压的测量值的组合。控制部501基于所获取的脉搏波传播时间的测量值和血压的测量值的两个组合来确定参数A1、A2。在校正结束后,能够执行基于脉搏波传播时间的血压测量。

(基于脉搏波传播时间的血压测量)

图8示出了血压测量装置10进行基于脉搏波传播时间的血压测量时的动作流程。

在图8的步骤S11中,控制部501开始基于脉搏波传播时间的血压测量。例如,控制部501从操作部221接收表示用户指示了基于脉搏波传播时间的血压测量的开始的操作信号,并响应于此而开始血压测量。另外,控制部501也可以响应于血压计算式的校正完成而开始基于脉搏波传播时间的血压测量。

在步骤S12中,控制部501作为心电图测量控制部601进行动作,使用在上述处理中确定的两个电极312来获取心电图。在步骤S13中,控制部501作为脉搏波测量控制部603进行动作,使用脉搏波传感器321获取脉搏波信号。并行执行步骤S11的处理和步骤S12的处理。

在步骤S14中,控制部501作为脉搏波传播时间计算部605进行动作,计算心电图的R波波峰点与脉搏波信号的上升点之间的时间差作为脉搏波传播时间。在步骤S15中,控制部501作为血压值计算部606进行动作,使用上述的血压计算式(1),根据在步骤S14中计算出的脉搏波传播时间来计算血压值。控制部501将计算出的血压值与时刻信息相关联地记录在存储部505中。

在步骤S16中,控制部501判定是否从操作部221接收到表示用户指示了基于脉搏波传播时间的血压测量的结束的操作信号。重复步骤S12至S15的处理,直到控制部501接收到操作信号为止。由此,记录每次心搏的血压值。当接收到操作信号时,控制部501结束基于脉搏波传播时间的血压测量。

根据基于脉搏波传播时间的血压测量,能够在用户的身体负担轻的状态下长期连续地测量血压。

(基于示波法的血压测量的执行的指示)

图9示出了血压测量装置10指示执行基于示波法的血压测量时的动作流程。图9所示的处理在执行基于脉搏波传播时间的血压测量的期间中执行。

在图9的步骤S21中,控制部501通过基于与图8相关联地说明的脉搏波传播时间的血压测量来获取血压的测量值。

在步骤S22中,控制部501作为判定部608进行动作,基于在步骤S21中获取的最新的测量值,判定是否满足推荐测量用户的血压的条件。例如,控制部501判定从最新的血压值减去单位时间前的血压值而得到的血压值差是否超过了阈值。在血压值差为阈值以下的情况下,返回到步骤S21,控制部501获取下一个测量值。在血压值差超过阈值的情况下,进入步骤S23。

在步骤S23中,控制部501作为指示部609进行动作,指示执行血压测量。例如,控制部501通过发声体产生通知音,并且使显示部222显示催促执行血压测量的消息。

这样,控制部501在产生了推荐准确的血压测量的状况时,向用户指示基于示波法的血压测量的执行。

(基于示波法的血压测量)

图10示出了血压测量装置10进行基于示波法的血压测量时的动作流程。在基于示波法的血压测量中,按压袖带401被逐渐加压,然后被减压。在这样的加压或减压过程中,无法正确地测量脉搏波传播时间。因此,在基于示波法的血压测量的执行中,也可以暂时停止基于图8所示的脉搏波传播时间的血压测量。

在图10的步骤S31中,控制部501开始基于示波法的血压测量。例如,控制部501从操作部221接收表示用户指示了基于示波法的血压测量的执行的操作信号,并响应于此而开始血压测量。

在步骤S32中,控制部501作为血压测量控制部610进行动作,进行用于血压测量的初始化。例如,控制部501对处理用存储区域进行初始化。然后,控制部501经由泵驱动电路406使泵403停止。伴随于此,阀404打开,按压袖带401内的空气被排出。控制部501将压力传感器402的当前时刻的输出值设定为基准值。

在步骤S33中,控制部501作为血压测量控制部610进行动作,进行对按压袖带401加压的控制。例如,控制部501经由泵驱动电路406驱动泵403。伴随于此,阀404关闭,空气被供给到按压袖带401。由此,按压袖带401膨胀,并且如图11所示,袖带压Pc逐渐升高。控制部501使用压力传感器402监视袖带压Pc,获取表示动脉容积的变动成分的脉搏波信号Pm。

在步骤S34中,控制部501作为血压测量控制部610进行动作,基于在该时刻获取的脉搏波信号Pm来尝试计算血压值(包括SBP和DBP)。在该时刻由于数据不足而仍然无法计算出血压值的情况下(在步骤S35中为“否”),只要袖带压Pc没有达到上限压力,就反复进行步骤S33、S34的处理。从安全性的观点出发,上限压力被预先确定。上限压力例如为300mmHg。

在能够计算出血压值的情况下(在步骤S35中为“是”),进入步骤S36。在步骤S36中,控制部501作为血压测量控制部610进行动作,通过泵驱动电路406使泵403停止。伴随于此,阀404打开,按压袖带401内的空气被排出。

在步骤S37中,控制部501使显示部222显示血压测量结果,并且记录于存储部505。

此外,图8、图9或图10所示的处理顺序为例示,能够适当变更处理顺序或各处理的内容。例如,在基于示波法的血压测量中,血压值的计算也可以在使空气从按压袖带401排出的减压过程中执行。

(效果)

如上所述,在本实施方式的血压测量装置10中,电极组311和脉搏波传感器321的传感器部322都设置于带21。因此,仅通过将带21卷绕于上臂,电极组311和脉搏波传感器321两者都被安装于用户。因此,用户能够容易地佩戴血压测量装置10。由于用户仅佩戴一个设备即可,因此,用户对血压测量装置10的佩戴的拒绝感减少。

而且,由于基于心电图和与上臂相关地得到的脉搏波信号来计算脉搏波传播时间,因此,可以得到与从心脏到上臂的长距离相关的脉搏波传播时间。由此,针对计算心电图的波形特征点与脉搏波信号的波形特征点之间的时间差时产生的误差的鲁棒性(Robustness)提高。而且,电极组311配置于带21的中枢侧部分217A,脉搏波传感器321的传感器部322配置于带21的末梢侧部分217B。在该配置中,确保更长的脉搏波传播距离,并且获取高SN比的心电图。由此,鲁棒性进一步提高。其结果,能够准确地测量脉搏波传播时间,基于脉搏波传播时间计算出的血压值的可靠性提高。

在第一血压测量部30中使用的血压计算式基于由第二血压测量部40得到的血压值而被校正。需要基于由与第一血压测量部30不同的测量系统得到的血压值来进行校正。在本实施方式中,第二血压测量部40与第一血压测量部30一体化,基于由第二血压测量部40得到的血压值来校正血压计算式。由此,能够单独进行血压测量装置10的血压计算式的校正。因此,能够容易地进行血压计算式的校正。

另外,判定是否满足基于第一血压测量部30的连续血压测量的结果推荐测量用户的血压的条件,在满足条件的情况下,向用户报告应该执行基于第二血压测量部40的血压测量的意思。因此,能够在推荐血压测量的状况下使用户执行准确的血压测量。

由于能够用一个设备进行基于脉搏波传播时间的血压测量和基于示波法的血压测量,因此,对于用户而言便利性高。

由于血压测量装置10佩戴于上臂,因此,以与心脏大致相同的高度进行血压测量。由此,不需要对所获取的血压测量结果进行高度修正。另外,在血压测量装置10为上臂式的情况下,能够用衣服的袖子隐藏血压测量装置10,从而能够使佩戴血压测量装置10的情况不显眼。

(变形例)

在用于测量心电图的电极组具有四个以上的电极的情况下,为了从心电图中去除或降低体动噪声,也可以使用除为了测量最佳的心电图而使用的两个电极以外的电极中的两个。体动噪声是因用户的体动而产生的噪声。体动噪声难以通过低通滤波器等滤波器有效地降低。

图12例示了一实施方式的血压测量装置内的心电图获取部的硬件结构的一例。在图12中,对与图5所示的结构构件相同的结构构件标注相同的附图标记,并省略对这些结构构件的说明。在图12的例子中,电极312分别与开关电路316的输入端子连接。开关电路316由控制部501控制。控制部501将用于选择用于心电图测量的两个电极的第一开关信号和用于选择用于体动噪声降低的两个电极的第二开关信号提供给开关电路316。开关电路316的第一以及第二输出端子与减法电路314连接,减法电路314将表示由第一开关信号指定的两个电极间的电位差的第一电位差信号向减法电路318输出。开关电路316的第三以及第四输出端子与减法电路317连接,减法电路317向减法电路318输出表示由第二开关信号指定的两个电极间的电位差的第二电位差信号。减法电路318通过从第一电位差信号减去第二电位差信号而生成第三电位差信号,并将第三电位差信号向AFE135输出。由于在第一电位差信号以及第二电位差信号上分别叠加有相同程度的体动噪声,因此,能够去除或者降低体动噪声。

在上述的实施方式中,脉搏波传感器采用对伴随动脉的容积变化的阻抗的变化进行检测的阻抗法。此外,脉搏波传感器也可以采用光电法、压电法或电波法等其他测量法。在采用光电法的实施方式中,脉搏波传感器具有向通过被测量部位的动脉照射光的发光元件、检测该光的反射光或透射光的光检测器,检测伴随动脉的容积变化的光强度的变化。在采用压电法的实施方式中,脉搏波传感器具有以与被测量部位接触的方式设置于带的压电元件,检测伴随动脉的容积变化的压力的变化。在采用电波法的实施方式中,具有向通过被测量部位的动脉发送电波的发送元件和接收该电波的反射波的接收元件,检测伴随动脉的容积变化的发送波与反射波之间的相位偏移。

血压测量装置10还可以具有:按压袖带,用于调整电极312与上臂的接触状态;泵,向该按压袖带供给空气;泵驱动电路,驱动该泵;以及压力传感器,检测该按压袖带内的压力。该按压袖带设置于带21的中枢侧端部218A。在该情况下,按压袖带401例如设置于带21的中间部218B。

血压测量装置10还可以具有:用于对脉搏波传感器321的传感器部322与上臂的接触状态进行调整的按压袖带;向该按压袖带供给空气的泵;驱动该泵的泵驱动电路;以及检测该按压袖带内的压力的压力传感器。该按压袖带设置于带21的末梢侧端部218C。在该情况下,按压袖带401例如设置于带21的中间部218B。

与脉搏波传播时间的测量相关的部分也可以作为单独的装置来实现。在一个实施方式中,提供一种脉搏波传播时间测量装置,该脉搏波传播时间测量装置具有带部20、心电图获取部31、脉搏波信号获取部32以及脉搏波传播时间计算部33。该脉搏波传播时间测量装置还可以具有判定部50以及指示部60。为了将电极312和脉搏波传感器321按压在上臂上,脉搏波传播时间测量装置还可以具有按压袖带、泵以及泵驱动电路。

血压测量装置10也可以不具有第二血压测量部40。在血压测量装置10不具有第二血压测量部40的实施方式中,为了进行血压计算式的校正,需要将通过利用其他血压计进行测量而得到的血压值输入到血压测量装置10。

被测量部位不限于上臂,也可以是手腕、大腿、脚踝等其他部位。

本发明并不限定于上述实施方式,在实施阶段能够在不脱离其主旨的范围内对结构构件进行变形而具体化。另外,能够通过上述实施方式所公开的多个结构构件的适当组合来形成各种发明。例如,也可以从实施方式所示的全部结构构件中删除几个结构构件。而且,也可以适当组合不同实施方式的结构构件。

附图标记的说明:

10:血压测量装置

20:带部

21:带

22:主体

30:第一血压测量部

31:心电图获取部

32:脉搏波信号获取部

33:脉搏波传播时间计算部

34:血压值计算部

40:第二血压测量部

50:判定部

60:指示部

210A:内布

210B:外布

213:环面

214:钩面

221:操作部

222:显示部

311:电极组

312:电极

313:开关电路

314:减法电路

315:模拟前端

321:脉搏波传感器

322:传感器部

323A~323D:电极

324:通电及电压检测电路

401:按压袖带

402:压力传感器

403:泵

404:阀

405:振荡电路

406:泵驱动电路

407、408:配管

501:控制部

502:CPU

503:RAM

504:ROM

505:存储部

506:电池

507:通信部

601:心电图测量控制部

602:心电图存储部

603:脉搏波测量控制部

604:脉搏波信号存储部

605:脉搏波传播时间计算部

606:血压值计算部

607:血压值存储部

608:判定部

609:指示部

610:血压测量控制部

611:血压值存储部

612:显示控制部

613:指示输入部

614:校正部

28页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:血压测量系统和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!