废气处理用耐高温陶瓷纤维滤管

文档序号:101712 发布日期:2021-10-15 浏览:43次 >En<

阅读说明:本技术 废气处理用耐高温陶瓷纤维滤管 (High-temperature resistant ceramic fiber filter tube for waste gas treatment ) 是由 孙正庭 王魁 于 2021-08-11 设计创作,主要内容包括:本发明公开了废气处理用耐高温陶瓷纤维滤管,属于耐火纤维技术领域。且该耐高温陶瓷纤维滤管,通过以下步骤制成:步骤一、溶液c的制备;步骤二、浆料的制备;步骤三、陶瓷纤维滤管的抽滤和烧结。且本发明利用改性剂对硅溶胶进行了改性,增加了硅溶胶与有机粘结剂的相容性,提高烧结的陶瓷纤维滤管原料之间的粘结性;且所述的改性剂为改性聚倍半硅氧烷,使硅溶胶中二氧化硅颗粒表面修饰的为聚倍半硅氧烷结构,利用了聚倍半硅氧烷作为陶瓷前驱体所具有的结构特征,其与硅溶胶类似地起到高温烧结剂的作用,紧紧地粘合着莫来石纤维,提高了陶瓷纤维滤管的耐高温性能和机械性能。(The invention discloses a high-temperature resistant ceramic fiber filter tube for waste gas treatment, and belongs to the technical field of refractory fibers. The high-temperature resistant ceramic fiber filter tube is prepared by the following steps: step one, preparing a solution c; step two, preparing slurry; and step three, carrying out suction filtration and sintering on the ceramic fiber filter tube. In addition, the invention utilizes the modifier to modify the silica sol, increases the compatibility of the silica sol and the organic binder, and improves the caking property between the raw materials of the sintered ceramic fiber filter tube; the modifier is modified polysilsesquioxane, so that the surface of the silicon dioxide particles in the silica sol is modified to be a polysilsesquioxane structure, the structural characteristics of the polysilsesquioxane serving as a ceramic precursor are utilized, the polysilsesquioxane plays a role of a high-temperature sintering agent similar to the silica sol, mullite fiber is tightly bonded, and the high-temperature resistance and the mechanical property of the ceramic fiber filter tube are improved.)

废气处理用耐高温陶瓷纤维滤管

技术领域

本发明属于耐火纤维技术领域,具体地,涉及废气处理用耐高温陶瓷纤维滤管。

背景技术

工业废气不但温度高,而且含有大量的粉尘和有害气体。目前,高温除尘技术如袋式除尘、湿法除尘、静电除尘、旋风除尘等技术已在市场上获很多成功案例,但以上除尘技术在废气净化的应用过程中大都存在一些问题。首先,袋式收尘器受布袋耐温性限制,不能在250℃以上温度使用,通常必须先采用循环水激冷或空冷模式,将高温烟气降至250℃以下后再进行除尘,存在浪费水资源,造成水资源的二次污染问题;湿法除尘也要消耗大量的水资源,存在浪费水资源,造成水资源的二次污染问题;静电除尘器占地多,投资成本高,存在对粉尘的比电阻和气体成分等性质的敏感及电级的腐蚀等问题。

陶瓷纤维是一种纤维状轻质耐火材料,它的直径一般为2-5μm,长度多为30-250mm,纤维表面呈光滑圆柱形。由于其重量轻、耐高温、热稳定性好、导热率低、比热小及耐机械振动等优点,广泛应用于机械、冶金、化工、石油、陶瓷、玻璃、电子等行业。且由陶瓷纤维制成的过滤材料,与传统粒状滤料相比,具有比表面积大,较大的界面吸附能力,并能截留悬浮物,过滤效果更好的优点;与传统布袋等滤料相比,具有在高温甚至超高温(≤1400℃)环境下使用的特点;与多孔陶瓷以及金属过滤材料相比,具有阻力低节约能耗、化学稳定性和抗热震性好的特点。其中,短纤维陶瓷纤维过滤材料具有制造成本低、孔隙率高、过滤阻力小等优点,但也同时存在机械强度较低、高温下长期使用易脆性断裂等技术问题,不适宜于高压环境下气体过滤。

因此,本发明提供一种耐高温陶瓷纤维滤管,用于废气处理。

发明内容

本发明的目的在于提供废气处理用耐高温陶瓷纤维滤管,用以解决现有陶瓷纤维滤管机械强度低、高温下长期使用易脆性断裂的技术问题。

本发明的目的可以通过以下技术方案实现:

废气处理用耐高温陶瓷纤维滤管,通过以下步骤制成:

步骤一、将水和乳化剂按照比例进行混合,然后加入硅溶胶,搅拌下用盐酸调节溶液的pH为5-7,加入改性剂,室温搅拌12h后,获得溶液a;再将水、分散剂、有机粘结剂和硼酸按照比例混合均匀,得到混合溶液b;最后将溶液a和溶液b按照比例进行混合均匀,得溶液c;

步骤二、向溶液c中加入陶瓷纤维,以400-600r/min的速度搅拌70-100min,得到浆料;

步骤三、将浆料注入抽滤模具中进行真空抽滤,预成型后湿脱模,然后干燥固化,脱脂,然后高温烧结,得废气处理用耐高温陶瓷纤维滤管。

进一步地,步骤一中溶液a的制备过程中水、乳化剂、硅溶胶、改性剂的质量比为50-100:0.5-1.2:15-20:2.5-5。

进一步地,步骤一中溶液b的制备过程中水、分散剂、有机粘结剂和硼酸的质量比为80-100:0.5-1.5:2-4.5:10-15。

进一步地,步骤一中溶液a和溶液b的质量比为20-35:100。

进一步地,步骤二中陶瓷纤维的加入质量为溶液c质量的5-12%。

进一步地,所述陶瓷纤维为莫来石纤维。

进一步地,步骤三中抽滤压力0.06-0.08MPa,抽滤时间30-45min。

进一步地,步骤三中干燥固化时,干燥温度为70-120℃,干燥时间为12-24h。

进一步地,步骤三中高温烧结时,烧结温度为1100-1200℃,烧结时间3-5h。

进一步地,所述硅溶胶中二氧化硅的质量分数为30-45%,且二氧化硅的粒径为60-90nm。

进一步地,所述乳化剂为十二烷基硫酸钠、十二烷基磺酸钠中的一种。

进一步地,所述分散剂为羟乙基甲基纤维素、甲基纤维素中的一种。

进一步地,所述有机粘结剂为羟乙基甲基纤维素、甲基纤维素、聚乙烯吡咯烷酮中的任意一种。

进一步地,所述改性剂为改性聚倍半硅氧烷,其分子结构式如下所示:

在步骤一中,该改性剂中的Si-O键与二氧化硅颗粒表面的O-H键在酸性条件下发生缩合反应,形成Si-O-Si键,使硅溶胶中的二氧化硅颗粒表面修饰有聚倍半硅氧烷结构,将该改性硅溶胶加入浆料体系中,会引起以下几方面的改变或效果:一方面,聚倍半硅氧烷使得硅溶胶的水溶性减小,增加使其与有机粘结剂的相容性,提高烧结的陶瓷纤维滤管原料之间的粘结性,提高了陶瓷纤维滤管的机械强度;另一方面,在浆料中,改性硅溶胶裹覆于莫来石纤维表面,且聚倍半硅氧烷的结构为无机的Si-O-Si链节组成的封闭的笼状结构,在烧结后,残留物主要为硅质合物(SiO2、SiC、SiCO),都具有很高的耐热性,且其在高温下可转化成为SiO2、SiC等陶瓷结构,与硅溶胶类似地起到高温烧结剂的作用,紧紧地粘合着莫来石纤维,提高了陶瓷纤维滤管的抗压强度和耐高温性能。

进一步地,所述改性剂通过以下步骤制成:

S1、将无水乙醇和无水甲醇混合后,加热至40℃后,加入水,用盐酸调节溶液的pH为5-6,搅拌30min,滴加苯基三乙氧基硅烷和β-3,4-环氧环己基乙基三甲氧基硅烷,控制水与硅烷总的摩尔比为2:1,苯基三乙氧基硅烷和β-3,4-环氧环己基乙基三甲氧基硅烷是摩尔比为7-8:1,水解反应48h,用氢氧化钠水溶液调节反应液的pH至中性,减压旋蒸去除溶剂,多次洗涤,无水硫酸钠干燥,过滤,得环氧基POSS;

S2、将环氧基POSS、氨丙基三乙氧基硅烷、三乙胺和冰醋酸混合后,加热到72℃,反应7h,旋蒸去除冰醋酸,得改性聚倍半硅氧烷,其中,环氧基POSS、氨丙基三乙氧基硅烷、三乙胺的摩尔比为1:1.1-1.3:1.3-1.5,在该反应过程中利用了氨基和环氧基的反应,使得环氧基POSS被氨丙基三乙氧基硅烷硅氧偶联剂接枝改性。

本发明的有益效果:

本发明利用改性剂对硅溶胶进行了改性,减小了硅溶胶的水溶性,增加了硅溶胶与有机粘结剂的相容性,提高了陶瓷纤维滤管原料之间的粘结性,提高了陶瓷纤维滤管的机械强度;

且所述的改性剂为改性聚倍半硅氧烷,改性剂使硅溶胶中二氧化硅颗粒表面修饰的为聚倍半硅氧烷结构,在烧结后,利用了聚倍半硅氧烷作为陶瓷前驱体所具有的结构特征,烧结后残留物主要为硅质合物(SiO2、SiC、SiCO),具有优异的耐高温性能,且在高温下可转化成为SiO2、SiC等陶瓷结构,其与硅溶胶类似地起到高温烧结剂的作用,紧紧地粘合着莫来石纤维,提高了陶瓷纤维滤管的抗压强度和耐高温性能,进而解决陶瓷纤维滤管在长期高温条件下的脆性断裂等问题。

综上所述,本发明提供的陶瓷纤维滤管具有良好的机械性能和耐高温性能。

具体实施方式

下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

实施例1:

改性剂:改性聚倍半硅氧烷,通过以下步骤制成:

S1、将30mL无水乙醇和30mL无水甲醇混合后,加热至40℃后,加入0.16mol水,用盐酸调节溶液的pH为5.6,搅拌30min,滴加0.07mol苯基三乙氧基硅烷和0.01molβ-3,4-环氧环己基乙基三甲氧基硅烷,滴加速度为1滴/秒,水解反应48h,用氢氧化钠水溶液调节反应液的pH至中性,减压旋蒸去除溶剂,洗涤2次,无水硫酸钠干燥,过滤,得环氧基POSS;

S2、将0.1mol环氧基POSS、0.11mol氨丙基三乙氧基硅烷、0.13mol三乙胺和冰醋酸混合后,加热到72℃,反应7h,旋蒸去除冰醋酸,得改性聚倍半硅氧烷。

实施例2:

改性剂:改性聚倍半硅氧烷,通过以下步骤制成:

S1、将30mL无水乙醇和30mL无水甲醇混合后,加热至40℃后,加入0.16mol水,用盐酸调节溶液的pH为6,搅拌30min,滴加0.07mol苯基三乙氧基硅烷和0.01molβ-3,4-环氧环己基乙基三甲氧基硅烷,滴加速度为1滴/秒,水解反应48h,用氢氧化钠水溶液调节反应液的pH至中性,减压旋蒸去除溶剂,洗涤2次,无水硫酸钠干燥,过滤,得环氧基POSS;

S2、将0.1mol环氧基POSS、0.13mol氨丙基三乙氧基硅烷、0.15mol三乙胺和冰醋酸混合后,加热到72℃,反应7h,旋蒸去除冰醋酸,得改性聚倍半硅氧烷。

实施例3:

废气处理用耐高温陶瓷纤维滤管,通过以下步骤制成:

步骤一、将水和乳化剂混合均匀,然后加入硅溶胶,搅拌下用0.1M盐酸调节溶液的pH为5,加入实施例1制备的改性剂,室温搅拌12h后,获得溶液a,其中,水、乳化剂、硅溶胶、改性剂的质量比为50:0.5:15:2.5;再将水、分散剂、有机粘结剂和硼酸按照质量比为80:0.5:2:10进行混合均匀,得到混合溶液b;最后将溶液a和溶液b按照质量比20:100进行混合均匀,得溶液c;

步骤二、向溶液c中加入陶瓷纤维,以400r/min的速度搅拌70min,得到浆料,控制陶瓷纤维的加入质量为溶液c质量的5%;

步骤三、将浆料注入抽滤模具中,并在压力为0.06MPa下,抽滤30min,预成型后湿脱模,然后70℃下干燥固化12h,脱脂,然后在1100℃下,烧结5h,得废气处理用耐高温陶瓷纤维滤管。

其中,所述硅溶胶中二氧化硅的质量分数为30%,且二氧化硅的粒径为60nm;所述乳化剂为十二烷基硫酸钠;所述分散剂为羟乙基甲基纤维素;所述有机粘结剂为羟乙基甲基纤维素。

实施例4:

废气处理用耐高温陶瓷纤维滤管,通过以下步骤制成:

步骤一、将水和乳化剂混合均匀,然后加入硅溶胶,搅拌下用0.1M盐酸调节溶液的pH为5.4,加入实施例2制备的改性剂,室温搅拌12h后,获得溶液a,其中,水、乳化剂、硅溶胶、改性剂的质量比为60:0.8:17:3.5;再将水、分散剂、有机粘结剂和硼酸按照质量比90:1:3:12进行混合均匀,得到混合溶液b;最后将溶液a和溶液b按照质量比25:100进行混合均匀,得溶液c;

步骤二、向溶液c中加入陶瓷纤维,以500r/min的速度搅拌80min,得到浆料,控制陶瓷纤维的加入质量为溶液c质量的8%;

步骤三、将浆料注入抽滤模具中,并在压力为0.08MPa下,抽滤35min,预成型后湿脱模,然后90℃下干燥固化18h,脱脂,然后在1100℃下,烧结4h,得废气处理用耐高温陶瓷纤维滤管。

其中,所述硅溶胶中二氧化硅的质量分数为35%,且二氧化硅的粒径为70nm;所述乳化剂为十二烷基磺酸钠;所述分散剂为甲基纤维素;所述有机粘结剂为甲基纤维素。

实施例5:

废气处理用耐高温陶瓷纤维滤管,通过以下步骤制成:

步骤一、将水和乳化剂混合均匀,然后加入硅溶胶,搅拌下用盐酸调节溶液的pH为7,加入实施例1制备的改性剂,室温搅拌12h后,获得溶液a,其中,水、乳化剂、硅溶胶、改性剂的质量比为100:1.2:20:5;再将水、分散剂、有机粘结剂和硼酸按照质量比100:1.5:4.5:15进行混合均匀,得到混合溶液b;最后将溶液a和溶液b按照质量比35:100进行混合均匀,得溶液c,溶液a和溶液b的;

步骤二、向溶液c中加入陶瓷纤维,以600r/min的速度搅拌100min,得到浆料,控制陶瓷纤维的加入质量为溶液c质量的12%;

步骤三、将浆料注入抽滤模具中,并在压力为0.08MPa下,抽滤45min,预成型后湿脱模,然后120℃下干燥固化24h,脱脂,然后在1200℃下,烧结3h,得废气处理用耐高温陶瓷纤维滤管。

其中,所述硅溶胶中二氧化硅的质量分数为45%,且二氧化硅的粒径为90nm;所述乳化剂为十二烷基磺酸钠;所述分散剂为羟乙基甲基纤维素;所述有机粘结剂为聚乙烯吡咯烷酮。

对比例1:

废气处理用耐高温陶瓷纤维滤管,通过以下步骤制成:

步骤一、将水和乳化剂混合均匀,然后加入硅溶胶,搅拌下用0.1M盐酸调节溶液的pH为5,加入β-3,4-环氧环己基乙基三甲氧基硅烷,室温搅拌12h后,获得溶液a,其中,水、乳化剂、硅溶胶、改性剂的质量比为50:0.5:15:2.5;再将水、分散剂、有机粘结剂和硼酸按照质量比80:0.5:2:10进行混合均匀,得到混合溶液b;最后将溶液a和溶液b按照质量比20:100混合均匀,得溶液c;

步骤二、向溶液c中加入陶瓷纤维,以400r/min的速度搅拌70min,得到浆料,控制陶瓷纤维的加入质量为溶液c质量的5%;

步骤三、将浆料注入抽滤模具中在压力为0.06MPa下,抽滤时间30min,预成型后湿脱模,然后70℃下干燥固化12h,脱脂,然后在1100℃下,烧结5h,得废气处理用耐高温陶瓷纤维滤管。

其中,所述硅溶胶中二氧化硅的质量分数为30%,且二氧化硅的粒径为60nm;所述乳化剂为十二烷基硫酸钠;所述分散剂为羟乙基甲基纤维素;所述有机粘结剂为羟乙基甲基纤维素。

对比例2:

废气处理用耐高温陶瓷纤维滤管,通过以下步骤制成:

步骤一、将水和乳化剂混合均匀,然后加入硅溶胶,获得溶液a,其中,水、乳化剂、硅溶胶的质量比为60:0.8:17;再将水、分散剂、有机粘结剂和硼酸按照质量比90:1:3:12进行混合均匀,得到混合溶液b;最后将溶液a和溶液b按照质量比25:100混合均匀,得溶液c;

步骤二、向溶液c中加入陶瓷纤维,以500r/min的速度搅拌80min,得到浆料,控制陶瓷纤维的加入质量为溶液c质量的8%;

步骤三、将浆料注入抽滤模具中在压力为0.08MPa下,抽滤时间35min,预成型后湿脱模,然后90℃下干燥固化18h,脱脂,然后在1100℃下,烧结4h,得废气处理用耐高温陶瓷纤维滤管。

其中,所述硅溶胶中二氧化硅的质量分数为35%,且二氧化硅的粒径为70nm;所述乳化剂为十二烷基磺酸钠;所述分散剂为甲基纤维素;所述有机粘结剂为甲基纤维素。

对比例3:

公开号为CN109665764A的中国专利中的实施例1记载的陶瓷纤维滤管。

实施例6:

测得实施例3-5和对比例1-3获得的陶瓷纤维滤管的管壁厚度,以及将实施例3-5和对比例1-3获得的陶瓷纤维滤管进行以下性能测试:

孔径性能:孔径采用气泡实验法测试,气孔率采用吸水法测试,测试仪器采用贝士德仪器科技(北京)有限公司BSD-PB孔径分析仪,其中,孔径取孔径峰值,气孔率取气孔率峰值;

机械强度性能:测试径向抗压强度,采用电子万能试验机测试(WDW-50S,济南时代新光仪器有限公司);

过滤性能:过滤阻力为标准工况条件下1m/min风速时的压降(Pa);

测得数据如下表所示。

从上述数据可以看出,本发明提供陶瓷纤维滤管具有优异的抗压强度,同时气孔率在92%以上,气孔半径在168-189μm,透气阻力在146-143Pa。

在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种Li系尖晶石微波铁氧体材料及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!