基板处理装置、半导体装置的制造方法和程序

文档序号:1027002 发布日期:2020-10-27 浏览:24次 >En<

阅读说明:本技术 基板处理装置、半导体装置的制造方法和程序 (Substrate processing apparatus, method of manufacturing semiconductor device, and program ) 是由 原大介 八幡橘 筱崎贤次 山崎一彦 于 2019-03-11 设计创作,主要内容包括:本发明提供一种技术,具有:处理基板的处理室,具备填充并加热第一气体的多个气罐且对处理室内的基板供给第一气体的第一气体供给系统,和控制部,该控制部构成为控制第一气体供给系统,从而能够在切换多个气罐的同时对处理室内的基板供给第一气体。(The present invention provides a technique comprising: a processing chamber for processing a substrate is provided with a first gas supply system for supplying a first gas to the substrate in the processing chamber by filling and heating a plurality of gas tanks for the first gas, and a control unit for controlling the first gas supply system so that the first gas can be supplied to the substrate in the processing chamber while switching the plurality of gas tanks.)

基板处理装置、半导体装置的制造方法和程序

技术领域

本公开涉及基板处理装置、半导体装置的制造方法和程序。

背景技术

作为半导体装置的制造工序之一,有时要进行这样的基板处理,即,将基板搬入基板处理装置的处理室内,使用等离子体使供给至处理室内的原料气体、反应气体等活性化,在基板上形成绝缘膜、半导体膜、导体膜等各种膜,或将各种膜除去。

现有行技术文献

专利文献

专利文献1:日本特开2011-216906号公报

发明内容

发明要解决的课题

但是,作为原料气体的反应性气体的饱和蒸气压低,向装置的供给压就低。因此,不能实现流量控制器的大流量化,难以提高成膜速率、改善膜质。

本公开的目的在于提供一种能够对基板进行均匀处理的技术。

解决课题的方法

根据本公开的一个方案,提供一种技术,具有:处理基板的处理室,具备填充并加热第一气体的多个气罐并对上述处理室内的上述基板供给上述第一气体的第一气体供给系统,以及控制部,该控制部构成为控制上述第一气体供给系统,从而能够在切换上述多个气罐的同时对上述处理室内的上述基板供给上述第一气体。

发明效果

根据本公开,能够提供能够均匀处理基板的技术。

附图说明

[图1]是本公开的实施方式中适宜使用的基板处理装置的纵型处理炉的概略构成图,是以纵截面图显示处理炉部分的图。

[图2]是本公开的实施方式中适宜使用的基板处理装置的纵型处理炉的概略构成图,是以图1的A-A线截面图显示处理炉部分的图。

[图3](a)是用于对本公开的实施方式中适宜使用的基板处理装置的缓冲区结构进行说明的横截面扩大图,(b)是用于对本公开的实施方式中适宜使用的基板处理装置的缓冲区结构进行说明的示意图。

[图4]是本公开的实施方式中适宜使用的基板处理装置的控制器的概略构成图,是以框图显示控制器的控制系统的图。

[图5]是本公开的实施方式涉及的基板处理工序的流程图。

[图6]是显示本公开的实施方式涉及的基板处理工序中的气体供给的时刻点的图。

[图7]是本公开的实施方式中适宜使用的基板处理装置的原料气体供给管线的概略构成图。

[图8]是用于对本公开的实施方式中适宜使用的基板处理装置的原料气体供给管线的变形例1进行说明的概略构成图。

[图9]是用于对本公开的实施方式中适宜使用的基板处理装置的原料气体供给管线的变形例2进行说明的概略构成图。

具体实施方式

<本公开的实施方式>

以下,参照图1至图7对本公开的一个实施方式进行说明。

(1)基板处理装置的构成(加热装置)

如图1所示,处理炉202是能够在垂直方向上多级地容纳基板的所谓纵型炉,具有作为加热装置(加热机构)的加热器207。加热器207为圆筒形状,由作为保持板的加热器基座(未图示)支撑而垂直安装。加热器207还可以作为后述那样用热来使气体活性化(激发)的活性化机构(激发部)来发挥作用。

(处理室)

在加热器207的内侧与加热器207同心圆状地设置有反应管203。反应管203例如由石英(SiO2)或碳化硅(SiC)等耐热材料构成,形成为上端闭塞下端开口的圆筒形状。在反应管203的下方,与反应管203同心圆状地设置有集管(入口法兰)209。集管209例如由不锈钢(SUS)等金属构成,形成为上端和下端开口的圆筒形状。集管209的上端部构成为与反应管203的下端部衔接,支撑反应管203。在集管209与反应管203之间设置有作为密封构件的O型圈220a。通过集管209由加热器基座支撑,反应管203成为垂直安装的状态。处理容器(反应容器)主要由反应管203和集管209构成。在作为处理容器的内侧的筒中空部,形成有处理室201。处理室201构成为能够容纳多枚作为基板的晶圆200。需说明的是,处理容器不限于上述构成,有时也仅将反应管203称为处理容器。

在处理室201内设置有喷嘴249a,249b以贯通集管209的侧壁。喷嘴249a,249b分别与气体供给管232a,232b连接。

在气体供给管232a,232b中,从气体流的上游侧开始依次分别设置有作为流量控制器(流量调整器)的质量流量控制器(MFC)241a,241b和作为开关阀的阀门243a,243b。在气体供给管232a,232b的比阀门243a,243b更下游侧,分别与供给非活性气体的气体供给管232c,232d连接。在气体供给管232c,232d中,从气体流的上游侧开始依次分别设置有MFC241c,241d和阀门243c,243d。

如图7所示,在气体供给管232a的上游侧设置有第一气罐331a、第二气罐331b、测定第一气罐331a的压力的第一压力计332a、测定第二气罐331b的压力的第二压力计332b、控制从第一气罐331a经由气体供给管232a向MFC241a供给气体的第一阀门333a和控制从第二气罐331b经由气体供给管232a向MFC241a供给气体的第二阀门333b。在第一气罐331a的上游侧设置有控制从调压用调节器335向第一气罐331a供给气体的第一气动阀334a,在第二气罐331b的上游侧设置有控制从调压用调节器335向第二气罐331b供给气体的第二气动阀334b。需说明的是,将第二气动阀334b、第二气罐331b、第二压力计332b和第二阀门333b是作用于供给小流量的原料气体的小流量管线而设置的。第一气罐331a与第二气罐331b具有相同的容积,也可以具有不同容积。

如图2所示,喷嘴249a设置为,在反应管203的内壁和晶圆200之间的空间中,从反应管203内壁的下部向着上部,沿着晶圆200的堆积方向向上竖立。即,喷嘴249a在排列(载置)晶圆200的晶圆排列区域(载置区域)的侧方的在水平方向上包围晶圆排列区域的区域中,沿着晶圆排列区域设置。即,喷嘴249a在搬入到处理室201内的各晶圆200的端部(周缘部)的侧方以垂直于晶圆200表面(平坦面)的方向设置。在喷嘴249a的侧面设置有供给气体的气体供给孔250a。气体供给孔250a向着反应管203的中心开口,能够向着晶圆200供给气体。气体供给孔250a从反应管203的下部直至上部设置多个,分别具有相同的开口面积,进而以相同的开口间距来设置。

气体供给管232b的前端部与喷嘴249b连接。喷嘴249b设置在作为气体分散空间的缓冲室237内。如图2所示,缓冲室237在反应管203的内壁与晶圆200之间的俯视时为圆环状的空间中,并在从反应管203的内壁的下部向着上部的部分中,沿着晶圆200的堆积方向设置。即,缓冲室237在晶圆配列区域的侧方的水平包围晶圆配列区域的区域中沿着晶圆配列区域由缓冲区结构300形成。缓冲区结构300由作为石英或SiC等耐热材料的绝缘物构成,在缓冲区结构300的形成为圆弧状的壁面上,形成有供给气体的气体供给口302,304。如图2和图3所示,气体供给口302,304在与后述的棒状电极269,270间、棒状电极270,271间的等离子体生成区域224a,224b相对的位置上分别向着反应管203的中心开口,能够向晶圆200供给气体。气体供给口302,304从反应管203的下部直至上部设置多个,分别具有相同的开口面积,进而以相同的开口间距来设置。

喷嘴249b设置为从反应管203的内壁的下部向着上部,沿着晶圆200的堆积方向向上竖立。即,喷嘴249b在缓冲区结构300的内侧,即排列晶圆200的晶圆排列区域的侧方的在水平方向上包围晶圆排列区域的区域中,沿着晶圆排列区域设置。即,喷嘴249b在搬入到处理室201内的晶圆200的端部的侧方以垂直于晶圆200表面的方向设置。在喷嘴249b的侧面设置有供给气体的气体供给孔250b。气体供给孔250b向着相对于缓冲区结构300的形成为圆弧状的壁面而在径方向上形成的壁面开口,能够向着壁面供给气体。由此,反应气体会在缓冲室237内分散,不直接吹向棒状电极269~271,能够抑制颗粒的产生。气体供给孔250b与气体供给孔250a同样地,从反应管203的下部直至上部设置多个。

这样,在本实施方式中,经由喷嘴249a,249b和缓冲室237来搬送气体,所述喷嘴249a,249b和缓冲室237配置在由反应管203的侧壁的内壁与排列在反应管203内的多枚晶圆200的端部所定义的俯视时为圆环状的纵长的空间内,即,圆筒状的空间内。并且,从在喷嘴249a,249b和缓冲室237上分别开口的气体供给孔250a,250b、气体供给口302,304,在晶圆200附近最初向反应管203内喷出气体。并且,在反应管203内中的气体的主要流动是与晶圆200的表面平行的方向,即,水平方向。通过这样的构成,能够对各晶圆200均匀地供给气体,能够提高在各晶圆200上形成的膜的膜厚均匀性。在晶圆200表面上流过的气体,即,反应后的残余气体向着排气口,即,后述的排气管231的方向流动。只是,该残余气体的流动方向,可以根据排气口的位置来适当确定,不限于垂直方向。

从气体供给管232a,将作为含有预定元素的原料,例如,含有作为预定元素的硅(Si)的硅烷原料气体(第一气体)经由MFC241a、阀门243a、喷嘴249a供给至处理室201内。

原料气体是指气体状态的原料,例如,是将常温常压下为液体状态的原料进行气化而得到的气体、常温常压下为气体状态的原料等。本说明书中在使用“原料”这样的术语时,有时意味着“液体状态的液体原料”,有时意味着“气体状态的原料气体”,或有时意味着这两者的含义。

作为硅烷原料气体,可以使用例如含有Si和卤素的原料气体,即,卤硅烷原料气体。卤硅烷原料是含有卤基的硅烷原料。卤素包括从由氯(Cl)、氟(F)、溴(Br)、碘(I)组成的组中选择的至少1种。即,卤硅烷原料包含从由氯基、氟基、溴基、碘基组成的组中选择的至少1种卤基。卤硅烷原料也可称为卤化物的一种。

作为卤硅烷原料气体,可以使用例如含有Si和Cl的原料气体,即,氯硅烷原料气体。作为氯硅烷原料气体,可以使用例如二氯硅烷(SiH2Cl2,简称:DCS)气体。

构成为从气体供给管232b将作为含有与上述预定元素不同的元素的反应物(反应体)的例如作为反应气体的含氮(N)气体(第二气体)经由MFC241b、阀门243b、喷嘴249b供给至处理室201内。作为含N气体,例如,可以使用氮化氢系气体。氮化氢系气体也可以说是仅由N和H这2种元素构成的物质,作为氮化气体,即,N源来发挥作用。作为氮化氢系气体,例如,可以使用氨(NH3)气体。

从气体供给管232c,232d将作为非活性气体的例如氮(N2)气体分别经由MFC241c,241d、阀门243c,243d、气体供给管232a,232b、喷嘴249a,249b供给至处理室201内。

作为第一气体供给系统的原料供给系统主要由气体供给管232a、MFC241a、阀门243a构成。作为第二气体供给系统的反应体供给系统(反应物供给系统)主要由气体供给管232b、MFC241b、阀门243b构成。非活性气体供给系统主要由气体供给管232c,232d、MFC241c,241d、阀门243c,243d构成。也可将原料供给系统、反应体供给系统和非活性气体供给系统简单地总称为气体供给系统(气体供给部)。

(等离子体生成部)

如图2和图3所示,在缓冲室237内,从反应管203的下部直至上部沿着晶圆200的堆积方向配设有由导电体构成的具有细长结构的3根棒状电极269,270,271。棒状电极269,270,271分别设置为与喷嘴249b平行。棒状电极269,270,271各自从上部直至下部被电极保护管275覆盖来保护。棒状电极269,270,271中,在两端配置的棒状电极269,271分别经由整合器272与高频电源273连接,棒状电极270与作为基准电位的大地连接,从而接地。即,与高频电源273连接的棒状电极与接地的棒状电极交替配置,配置在与高频电源273连接的棒状电极269,271之间的棒状电极270,作为接地的棒状电极,相对于棒状电极269,271而共通使用。换而言之,以接地的棒状电极270被相邻的与高频电源273连接的棒状电极269,271夹持而配置,棒状电极269和棒状电极270成对,棒状电极271与棒状电极270同样成对的方式来构成,生成等离子体。即,对于与棒状电极270相邻的2根与高频电源273连接的棒状电极269,271,接地的棒状电极270被共通地使用。并且,通过从高频电源273对棒状电极269,271施加高频(RF)电力,在棒状电极269,270间的等离子体生成区域224a、棒状电极270,271间的等离子体生成区域224b生成等离子体。作为等离子体源的等离子体生成部(等离子体生成装置)主要由棒状电极269,270,271、电极保护管275构成。也可以考虑将整合器272、高频电源273纳入等离子体源。如后所述,等离子体源作为将气体等离子体激发,即,激发(活性化)至等离子体状态的等离子体激发部(活性化机构)来发挥作用。

电极保护管275是能够使棒状电极269,270,271分别以与缓冲室237内的气氛隔离的状态***缓冲室237内的结构。电极保护管275内部的O2浓度如果是与外气(大气)的O2浓度同等程度,则分别***到电极保护管275内的棒状电极269,270,271会因加热器207的热而被氧化。因此,通过向电极保护管275内部填充N2气体等非活性气体或使用非活性气体吹扫机构用N2气体等非活性气体吹扫电极保护管275内部,从而能够降低电极保护管275内部的O2浓度,防止棒状电极269,270,271的氧化。

在反应管203内设置有对处理室201内的气氛进行排气的排气管231。排气管231经由作为检测处理室201内的压力的压力检测器(压力检测部)的压力传感器245和作为排气阀门(压力调整部)的APC(Auto Pressure Controller,压力自动调节器)阀门244而与作为真空排气装置真空泵246连接。APC阀门244是已以如下方式构成的阀门:通过在使真空泵246工作的状态下开关阀,能够进行对处理室201内的真空排气和真空排气停止,进而,通过在使真空泵246工作的状态下,基于由压力传感器245检测的压力信息来调节阀开度,能够调整处理室201内的压力。排气系统主要由排气管231、APC阀门244、压力传感器245构成。也可考虑将真空泵246纳入排气系统。排气管231不限于设置在反应管203内的情形,也可以与喷嘴249a,249b同样设置在集管209内。

在集管209的下方,设置有作为炉口盖体的密封帽219,其能够将集管209的下端开口气密地闭塞。密封帽219构成为从垂直方向下侧与集管209的下端抵接。密封帽219例如由SUS等金属材料构成,形成为圆盘状。在密封帽219的上表面,设置有与集管209的下端抵接的作为密封构件的O型圈220b。在密封帽219的与处理室201的相反侧,设置有使后述的晶圆盒217旋转的旋转机构267。旋转机构267的旋转轴255贯通密封帽219而与晶圆盒217连接。旋转机构267构成为通过使晶圆盒217旋转而使晶圆200旋转。密封帽219构成为通过在反应管203的外部垂直设置的作为升降机构的晶圆盒升降机115而在垂直方向升降。晶圆盒升降机115构成为通过使密封帽219升降而能够将晶圆盒217搬入处理室201内和搬出处理室201外。晶圆盒升降机115构成为将晶圆盒217,即,晶圆200搬送到处理室201内外的搬送装置(搬送机构)。此外,在集管209的下方设置有作为炉口盖体的挡板219s,其在由晶圆盒升降机115将密封帽219降下期间,能够将集管209的下端开口气密地闭塞。挡板219s例如由SUS等金属构成,形成为圆盘状。在挡板219s的上表面设置有与集管209的下端抵接的作为密封构件的O型圈220c。挡板219s的开关动作(升降动作、旋转动作等)由挡板开关机构115s控制。

(基板支撑件)

如图1所示,作为支撑件的晶圆盒217构成为能够将多枚(例如25~200枚)晶圆200以水平姿态且相互中心对齐的状态在垂直方向上整齐排列并多级支撑,即,隔着预定的间隔而排列。晶圆盒217例如由石英、SiC等耐热材料构成。在晶圆盒217的下部,例如由石英、SiC等耐热材料构成的隔热体218被多级地支撑。

如图2所示,在反应管203的内部设置有作为温度检测器的温度传感器263。通过基于温度传感器263检测的温度信息调整对加热器207的通电量,能够使处理室201内的温度达到所希望的温度分布。温度传感器263与喷嘴249a,249b同样地沿着反应管203的内壁设置。

(控制装置)

接下来,使用图4对控制装置进行说明。图4所示,作为控制部(控制装置)的控制器121构成为具有CPU(Central Processing Unit,中央处理器)121a、RAM(Random AccessMemory,随机储存器)121b、存储装置121c和I/O接口121d的计算机。构成为RAM121b、存储装置121c、I/O接口121d能够经由内部总线121e与CPU121a进行数据交换。控制器121与作为例如触摸面板等而构成的输入输出装置122连接。

存储装置121c例如由闪存、HDD(Hard Disk Drive,硬盘驱动器)等构成。在存储装置121c内储存着控制基板处理装置的动作的控制程序,记载了后述成膜处理的过程、条件等的制程配方等,并能够读出。制程配方将后述的各种处理(成膜处理)中的各过程进行组合以使得由控制器121来执行并得到预定结果,作为程序来发挥功能。以下,也将制程配方、控制程序等简单地总称为程序。此外,也将制程配方简单地称为配方。本说明书中在使用“程序”这样的术语时,包括仅为单独制程配方的情形,包括仅为单独控制程序的情形,也包括其二者的情形。RAM121b构成为将由CPU121a读出的程序、数据等临时保存的存储区域(工作区域)。

I/O接口121d与上述的MFC241a~241d、阀门243a~243d、压力传感器245、APC阀门244、真空泵246、加热器207、温度传感器263、整合器272、高频电源273、旋转机构267、晶圆盒升降机115、挡板开关机构115s、第一气罐331a、第二气罐331b、第一压力计332a、第二压力计332b、第一阀门333a、第二阀门333b、第一气动阀334a、第二气动阀334b、调压用调节器345等连接。

CPU121a构成为从存储装置121c读出控制程序并执行,同时对应来自输入输出装置122的操作指令的输入等,从存储装置121c读出配方等。CPU121a还构成为按照读出的配方的内容,控制旋转机构267的控制、由MFC241a~241d进行的各种气体的流量调整动作、阀门243a~243d的开关动作、基于阻抗监视进行的高频电源273的调整动作、APC阀门244的开关动作和基于压力传感器245由APC阀门244进行的压力调整动作、真空泵246的起动和停止、基于温度传感器263的加热器207的温度调整动作、由旋转机构267进行的晶圆盒217的正逆旋转、旋转角度和旋转速度调节动作、由晶圆盒升降机115进行的晶圆盒217的升降动作、第一气罐331a和第二气罐331b的加热动作、基于第一压力计332a的第一阀门333a的开关动作、基于第二压力计332b的第二阀门333b的开关动作、第一气动阀334a和第二气动阀334b的开关动作、调压用调节器345的压力调整动作等。

控制器121可以通过将存储在外部存储装置(例如,硬盘等磁盘、CD等光盘、MO等光磁盘、USB存储器等半导体存储器)123中的上述程序安装到计算机中来构成。存储装置121c、外部存储装置123构成为计算机可读的记录介质。以下,也将这些简单地总称为记录介质。本说明书在使用“记录介质”这样的术语时,包括仅为单独的存储装置121c的情形,包括仅为单独的外部存储装置123的情形,或者包括其二者的情形。需说明的是,向计算机提供程序,可以不使用外部存储装置123,还可以利用互联网、专线通信方式来进行。

(2)基板处理工序

接着,使用基板处理装置100,作为半导体装置的制造工序的一个工序,对于在晶圆200上形成薄膜的工序,参照图5和图6进行说明。以下的说明中,构成基板处理装置的各部的动作由控制器121来控制。

其中,对于以下的例子进行说明:通过将供给作为原料气体的DCS气体的步骤和供给作为反应气体的被等离子体激发后的NH3气体的步骤非同时,即非同步地进行预定次数(1次以上),从而在晶圆200上形成作为含有Si和N的膜的氮化硅膜(SiN膜)的例子。此外,例如,在晶圆200上也可以形成事先预定的膜。此外,晶圆200或预定的膜中也可以形成事先预定的图案。

本说明书中,为了方便,有时也将图6所示的成膜处理的工艺流程如下所示。

Figure BDA0002676992980000101

本说明书中,在使用“晶圆”这样的术语时,包括意味着“晶圆自身”的情形、意味着“晶圆与在其表面形成的预定的层、膜等的层叠体”的情形。本说明书中,在使用“晶圆表面”这样的术语时,包括意味着“晶圆自身的表面”的情形、意味着“在晶圆上形成的预定层等的表面”的情形。本说明书中在记载“在晶圆上形成预定层”时,包括意味着“在晶圆自身的表面上”直接形成预定层的情形、意味着“在晶圆上形成的层等上形成预定层”的情形。本说明书中,在使用“基板”这样的术语时与使用“晶圆”这样的术语时的情形意思相同。

(搬入步骤:S1)

将多枚晶圆200装填于晶圆盒217(晶圆装载)后,由挡板开关机构115s移动挡板219s,使集管209的下端开口开放(打开挡板)。然后,如图1所示,支撑着多枚晶圆200的晶圆盒217被晶圆盒升降机115抬升,被搬入到处理室201内(晶圆盒搭载)。在该状态下,密封帽219成为经由O型圈220b使集管209的下端闭塞的状态。

(压力和温度调整步骤:S2)

由真空泵246进行真空排气(减压排气),使得处理室201内部,即,存在晶圆200的空间达到所希望的压力(真空度)。这时,处理室201内的压力由压力传感器245测定,基于该测定的压力信息对APC阀门244进行反馈控制。真空泵246至少在直至后述的成膜步骤结束为止的期间维持一直工作的状态。

此外,由加热器207进行加热,使得处理室201内的晶圆200达到所希望的温度。这时,基于由温度传感器263检测的温度信息对加热器207的通电量进行反馈控制,使得处理室201内达到所希望的温度分布。由加热器207对处理室201内的加热至少在直至后述的成膜步骤结束为止的期间持续进行。但是,成膜步骤在室温以下的温度条件下进行时,也可以不由加热器207进行处理室201内的加热。仅进行在这种温度下的处理时,不需要加热器207,可以在基板处理装置中不设置加热器207。这种情况下,能够简化基板处理装置的构成。

接下来,由旋转机构267开始晶圆盒217和晶圆200的旋转。由旋转机构267进行的晶圆盒217和晶圆200的旋转至少在直至成膜步骤结束为止的期间持续进行。

(原料气体供给步骤:S3,S4)

在步骤S3中,对处理室201内的晶圆200供给DCS气体。打开第一气动阀334a,向第一气罐331a内填充DCS气体并对其加热,打开第二气动阀334b向第二气罐331b内填充DCS气体并对其进行加热。即,在步骤S3中,在开始供给DCS气体时,第一气罐和第二气罐都处于DCS气体被填充了预定的规定量并已被加热的状态。然后,经过预定时间后,打开第一阀门333a将第一气罐331a内的DCS气体供给至MFC241a,在由第一压力计332a测定的压力达到预定的压力后,关闭第一阀门333a,打开第二阀门333b将第二气罐331b内的DCS气体供给至MFC241a,打开第一气动阀334a,向第一气罐331a填充DCS气体并对其加热。此外,在由第二压力计332b测定的压力达到预定的压力后,关闭第二阀门333b,打开第一阀门333a将第一气罐331内的DCS气体供给至MFC241a,打开第二气动阀334b,向第二气罐331b填充DCS气体并对其加热。通过重复这些动作,以大流量向MFC241a供给DCS气体。

打开阀门243a,向气体供给管232a内流入DCS气体。DCS气体由MFC241a进行流量调整,经由喷嘴249a从气体供给孔250a供给至处理室201内,由排气管231进行排气。与此同时,打开阀门243c,向气体供给管232c内流入N2气体。N2气体由MFC241c进行流量调整,与DCS气体一起供给至处理室201内,由排气管231进行排气。

此外,为了抑制DCS气体侵入喷嘴249b内,打开阀门243d,向气体供给管232d内流入N2气体。N2气体经由气体供给管232b、喷嘴249b供给至处理室201内,由排气管231进行排气。

由MFC241a控制的DCS气体的供给流量例如设为1sccm以上、6000sccm以下,优选为3000sccm以上、5000sccm以下范围内的流量。由MFC241c,241d控制的N2气体的供给流量例如分别设为100sccm以上、10000sccm以下范围内的流量。处理室201内的压力例如设为1Pa以上、2666Pa以下,优选为665Pa以上、1333Pa范围内的压力。晶圆200暴露于DCS气体的时间例如设为每1循环为20秒左右的时间。需说明的是,晶圆200暴露于DCS气体的时间根据膜厚而有所不同。

加热器207的温度设定为使晶圆200的温度为例如0℃以上700℃以下,优选为室温(25℃)以上550℃以下,更优选成为40℃以上500℃以下范围内的温度这样的温度。如本实施方式这样,通过使晶圆200的温度为700℃以下,进而为550℃以下,进而为500℃以下,能够降低对晶圆200施加的热量,能够良好地进行晶圆200所承受的热经历的控制。

通过在上述条件下对晶圆200供给DCS气体,在晶圆200(表面的基底膜)上形成含Si层。含Si层除了Si层之外,还可以含有Cl、H。在晶圆200的最外表面,通过DCS的物理吸附、DCS的一部分分解而成的物质的化学吸附、DCS热分解而堆积Si等,形成含Si层。即,含Si层可以是DCS的吸附层(物理吸附层、化学吸附层)、DCS的一部分分解而成的物质的吸附层(物理吸附层、化学吸附层),也可以是Si的堆积层(Si层)。

在形成含Si层后,关闭阀门243,停止向处理室201内供给DCS气体。这时,保持打开APC阀门244的状态,由真空泵246对处理室201内进行真空排气,将处理室201内残留的未反应的DCS气体或贡献于含Si层的形成后的DCS气体、反应副生成物等从处理室201内排除(S4)。此外,维持打开阀门243c,243d的状态,维持向处理室201内供给N2气体。N2气体作为吹扫气体来发挥作用。需说明的是,也可以省略该步骤S4。

作为原料气体,除了DCS气体之外,可以适当使用四(二甲基氨基)硅烷(Si[N(CH3)2]4,简称:4DMAS)气体、三(二甲基氨基)硅烷(Si[N(CH3)2]3H,简称:3DMAS)气体、双(二甲基氨基)硅烷(Si[N(CH3)2]2H2,简称:BDMAS)气体、双(二乙基氨基)硅烷(Si[N(C2H5)2]2H2,简称:BDEAS)、双(叔丁基氨基)硅烷(SiH2[NH(C4H9)]2,简称:BTBAS)气体、二甲基氨基硅烷(DMAS)气体、二乙基氨基硅烷(DEAS)气体、二丙基氨基硅烷(DPAS)气体、二异丙基氨基硅烷(DIPAS)气体、丁基氨基硅烷(BAS)气体、六甲基二硅氮烷(HMDS)气体等各种氨基硅烷原料气体,单氯硅烷(SiH3Cl,简称:MCS)气体、三氯硅烷(SiHCl3,简称:TCS)气体、四氯硅烷(SiCl4,简称:STC)气体、六氯二硅烷(Si2Cl6,简称:HCDS)气体、八氯丙硅烷(Si3Cl8,简称:OCTS)气体等无机系卤硅烷原料气体,甲硅烷(SiH4,简称:MS)气体、乙硅烷(Si2H6,简称:DS)气体、丙硅烷(Si3H8,简称:TS)气体等不含卤基的无机系硅烷原料气体。

作为非活性气体,除了N2气体之外,可以使用Ar气体、He气体、Ne气体、Xe气体等惰性气体。

(反应气体供给步骤:S5、S6)

在成膜处理结束后,对处理室201内的晶圆200供给作为反应气体的受到等离子体激发后的NH3气体(S5)。

本步骤中,阀门243b~243d的开关控制以与步骤S3中的阀门243a,243c,243d的开关控制同样的过程来进行。NH3气体由MFC241b进行流量调整,经由喷嘴249b供给至缓冲室237内。这时,在棒状电极269,270,271之间供给高频电力。供给至缓冲室237内的NH3气体被激发至等离子体状态(进行等离子体化而被活性化),作为活性种(NH3*)而供给至处理室201内,由排气管231进行排气。

由MFC241b控制的NH3气体的供给流量例如设为100sccm以上、10000sccm以下,优选设为1000sccm以上、2000sccm以下范围内的流量。施加到棒状电极269,270,271的高频电力例如设为50W以上、600W以下范围内的电力。处理室201内的压力例如设为1Pa以上、500Pa以下范围内的压力。通过使用等离子体,即使将处理室201内的压力设为这样较低的压力带,也能够使NH3气体活性化。关于将通过对NH3气体进行等离子体激发而得到的活性种向晶圆200供给的时间,即,气体供给时间(照射时间),例如设为1秒以上、180秒以下,优选设为1秒以上、60秒以下范围内的时间。其他处理条件设为与上述S3同样的处理条件。

通过在上述条件下对晶圆200供给NH3气体,在晶圆200上形成的含Si层被等离子体氮化。这时,通过受到等离子体激发后的NH3气体的能量,将含Si层所具有的Si-Cl键、Si-H键切断。与Si的结合被切断的Cl、H会从含Si层脱离。而且,因Cl等脱离而具有未结合电子(悬空键)的含Si层中的Si会与NH3气体中所含的N结合,形成Si-N键。通过进行这样的反应,将含Si层变化(改性)为含有Si和N的层,即,氮化硅层(SiN层)。

需说明的是,在将含Si层改性为SiN层时,需要将NH3气体等离子体激发来供给。这是因为,即使在非等离子体的气氛下供给NH3气体,在上述温度范围中,使含Si层氮化所需要的能量也不足,难以使Cl、H充分地从含Si层中脱离,难以使含Si层充分氮化而增加Si-N键。

在将含Si层转变为SiN层后,关闭阀门243b,停止供给NH3气体。此外,停止向棒状电极269,270,271间供给高频电力。并且,按照与步骤S4同样的处理过程、处理条件,将处理室201内残留的NH3气体、反应副生成物从处理室201内排除(S6)。需说明的是,也可以省略该步骤S6。

作为氮化剂,即,受到等离子体激发的含N气体,除了NH3气体之外,也可以使用二氮烯(N2H2)气体、肼(N2H4)气体、N3H8气体等。

作为非活性气体,除了N2气体之外,例如,可以使用步骤S4中例示的各种惰性气体。

(实施预定次数:S7)

依次且非同时即非同步地进行上述S3、S4、S5、S6,以此作为1个循环,通过将该循环进行预定次数(n次),即,1次以上(S7),能够在晶圆200上形成预定组成和预定膜厚的SiN膜。上述的循环优选重复多次。即,优选:每1循环中形成的SiN层的厚度小于所希望的膜厚,多次重复上述循环,直至通过层叠SiN层而形成的SiN膜的膜厚达到所希望的膜厚。

(大气压复原步骤:S8)

在上述的成膜处理结束后,从气体供给管232c,232d分别向处理室201内供给作为非活性气体的N2气体,由排气管231进行排气。由此,由非活性气体吹扫处理室201内,将处理室201内残留的气体等从处理室201内除去(非活性气体吹扫)。然后,处理室201内的气氛被置换为非活性气体(非活性气体置换),将处理室201内的压力复原为常压(S8)。

(搬出步骤:S9)

然后,由晶圆盒升降机115将密封帽219降下,打开集管209的下端,同时将处理后的晶圆200以由晶圆盒217支撑着的状态从集管209的下端搬出到反应管203的外部(晶圆盒卸载)(S9)。在晶圆盒卸载后,移动挡板219s,使集管209的下端开口经由O型圈220c被挡板219s闭塞(关闭挡板)。处理后的晶圆200被搬出到反应管203的外部后,从晶圆盒217中取出(晶圆释放)。需说明的是,在晶圆释放后,也可将空的晶圆盒217搬入处理室201内。

(3)根据本实施方式的效果

根据本实施方式,可以得到如下所示的1个或多个效果。

(a)根据本实施方式,通过设置加热式的气罐,将在基本常温下供给的反应性气体封入,加热,从而能够升压,能够提高MFC的上游侧的供给压力。

(b)通过将MFC的上游侧的气罐设置两条管线以上,能够使MFC大流量化,能够以稳定的大流量向处理室供给。

(变形例1)

接着,基于图8对本实施方式的变形例进行说明。本变形例中,如下仅对与上述实施方式不同的部分进行说明,省略相同部分的说明。

本变形例1中,在MFC241a与调压用调节器345之间设置4个具有相同容积的气罐,并列地构成4条原料气体供给管线。

实施方式的构成中,进而在MFC241a的上游侧设置有第三气罐331c、第四气罐331d、测定第三气罐331c的压力的第三压力计332c、测定第四气罐331d的压力的第四压力计332d、控制从第三气罐331c经由气体供给管232a向MFC241a供给气体的第三阀门333c和控制从第四气罐331d经由气体供给管232a向MFC241a供给气体的第四阀门333d。在第三气罐331c的上游侧设置有控制从调压用调节器345向第三气罐331c供给气体的第三气动阀334c,在第四气罐331d的上游侧设置有控制从调压用调节器335向第四气罐331d供给气体的第三气动阀334d。由此,即使推进大流量化,也能够维持MFC的上游侧的压力高的状态。此外,通过使用相同容积的气罐331a~331d,能够使得从气罐331a~331d向MFC241a的相同供给量的DCS气体为相同供给流量,因而能够供给稳定的DCS气体。

(变形例2)

接着,基于图9对本实施方式的变形例2进行说明。本变形例中,如下仅说明与上述变形例1不同的部分,省略相同部分的说明。

本变形例2中,改变变形例1中的4个气罐的容积,由大容积的气罐和小容积的气罐构成。例如,使第三气罐331c和第四气罐331d的容积比第一气罐331a和第二气罐331b的容积小。由此,在装置的工作持续更长时间时,不会有气罐内的加热不及时的状况,能够防止因等待加热时间而导致的不良状况的发生。

以上,对本公开的实施方式进行了具体的说明。但是本公开不限于上述实施方式,在不脱离其要旨的范围内可以进行各种变更。

例如,上述实施方式中,以在供给原料后供给反应气体为例进行了说明。本公开不限于这样的方式,也可以将原料、反应气体的供给顺序反过来。即,可以在供给反应气体后供给原料。通过改变供给顺序,能够改变所形成的膜的膜质、组成比。

上述实施方式等中,对于在晶圆200上形成SiN膜的例子进行了说明。本公开不限于这样的方式,在晶圆200上形成氧化硅膜(SiO膜)、碳氧化硅膜(SiOC膜)、碳氮氧化硅膜(SiOCN膜)、氮氧化硅膜(SiON膜)等Si系氧化膜时、在晶圆200上形成碳氮化硅膜(SiCN膜)、硼氮化硅膜(SiBN膜)、硼碳氮化硅膜(SiBCN膜)等Si系氮化膜时,也能合适地适用。这些情形下,作为反应气体,除了含O气体之外,可以使用C3H6等含C气体、NH3等含N气体、BCl3等含B气体。

此外,对于在晶圆200上形成含有钛(Ti)、锆(Zr)、铪(Hf)、钽(Ta)、铌(Nb)、铝(Al)、钼(Mo)、钨(W)等金属元素的氧化膜、氮化膜,即,形成金属系氧化膜、金属系氮化膜的情形,也能合适地适用本公开。即,在晶圆200上形成TiO膜、TiN膜、TiOC膜、TiOCN膜、TiON膜、TiBN膜、TiBCN膜、ZrO膜、ZrN膜、ZrOC膜、ZrOCN膜、ZrON膜、ZrBN膜、ZrBCN膜、HfO膜、HfN膜、HfOC膜、HfOCN膜、HfON膜、HfBN膜、HfBCN膜、TaO膜、TaOC膜、TaOCN膜、TaON膜、TaBN膜、TaBCN膜、NbO膜、NbN膜、NbOC膜、NbOCN膜、NbON膜、NbBN膜、NbBCN膜、AlO膜、AlN膜、AlOC膜、AlOCN膜、AlON膜、AlBN膜、AlBCN膜、MoO膜、MoN膜、MoOC膜、MoOCN膜、MoON膜、MoBN膜、MoBCN膜、WO膜、WN膜、WOC膜、WOCN膜、WON膜、MWBN膜、WBCN膜等时,也能适宜地适用本公开。

这些情形下,例如,作为原料气体,可以使用四(二甲基氨基)钛(Ti[N(CH3)2]4,简称:TDMAT)气体、四(乙基甲基氨基)铪(Hf[N(C2H5)(CH3)]4,简称:TEMAH)气体、四(乙基甲基氨基)锆(Zr[N(C2H5)(CH3)]4,简称:TEMAZ)气体、三甲基铝(Al(CH3)3,简称:TMA)气体、四氯化钛(TiCl4)气体、四氯化铪(HfCl4)气体等。作为反应气体,可以使用上述反应气体。

即,本公开在形成含有半金属元素的半金属系膜、含有金属元素的金属系膜时,也能适宜地适用。这些成膜处理的处理过程、处理条件可以是与上述实施方式、变形例所示的成膜处理同样的处理过程、处理条件。即使在这些情形下,也能得到与上述实施方式、变形例同样的效果。

成膜处理中所使用的配方优选对应于处理内容分别准备,经由电信线路、外部存储装置123预先存储于存储装置121c内。然后,在开始各种处理时,优选CPU121a对应于处理内容从存储在存储装置121c内的多个配方中适宜选择合适的配方。由此,能够在1台的基板处理装置中通用地且再现性良好地形成各种膜种、组成比、膜质、膜厚的薄膜。此外,能够降低操作者的负担,避免操作失误,快速开始各种处理。

上述配方不限于新制作的情形,例如,也可以通过改变在基板处理装置中已经安装的现有配方来准备。在变更配方时,可以将变更后的配方经由电信线路、记录该配方的记录介质安装到基板处理装置中。此外,还可以操作现有基板处理装置所具备的输入输出装置122,直接变更在基板处理装置中已经安装的现有配方。

产业上的利用可能性

如上所述,根据本公开,能够提供能够对基板进行均匀处理的技术。

符号说明

200:晶圆,201:处理室,反应管:203,241a:MFC,243a:阀门,249a:喷嘴,331a:第一气罐,331b:第二气罐,332a:第一压力计,332b:第二压力计,333a:第一阀门,333b:第二阀门,334a:第一气动阀,334b:第二气动阀,335:调压用调节器。

24页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:接触焊盘结构及其形成方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类