一种增强砂浆及其制备方法

文档序号:1037778 发布日期:2020-10-30 浏览:10次 >En<

阅读说明:本技术 一种增强砂浆及其制备方法 (Reinforced mortar and preparation method thereof ) 是由 方季屏 潘微 和艺 祝正申 于 2020-07-07 设计创作,主要内容包括:本发明公开了一种增强砂浆及其制备方法,其中,该增强砂浆包括水泥砂浆、二氧化碳释放树脂球、碳酸钙粉。所述二氧化碳释放树脂球包括高吸水树脂颗粒以及吸收在所述高吸水树脂颗粒中的含二氧化碳的水溶液,所述含二氧化碳的水溶液是通过醋酸与碳酸氢盐水溶液混合反应生成。本发明通过在砂浆内部固定二氧化碳,加速碳化,从而增强砂浆力学强度,提高砂浆抗裂能力。另外,还添加碳酸钙粉,能有效地加速水泥的水化,提高砂浆强度,同时起到固定二氧化碳的效果。而且,该增强砂浆制备方法简便快捷,使用方便,可广泛在各种施工环境和加工厂加工制备和使用。(The invention discloses reinforced mortar and a preparation method thereof, wherein the reinforced mortar comprises cement mortar, carbon dioxide release resin balls and calcium carbonate powder. The carbon dioxide releasing resin ball comprises super absorbent resin particles and a carbon dioxide-containing aqueous solution absorbed in the super absorbent resin particles, wherein the carbon dioxide-containing aqueous solution is generated by mixing and reacting acetic acid and a bicarbonate aqueous solution. According to the invention, carbon dioxide is fixed in the mortar to accelerate carbonization, so that the mechanical strength of the mortar is enhanced, and the crack resistance of the mortar is improved. In addition, calcium carbonate powder is added, so that the hydration of cement can be effectively accelerated, the strength of mortar is improved, and the effect of fixing carbon dioxide is achieved. Moreover, the preparation method of the reinforced mortar is simple, convenient and quick, is convenient to use, and can be widely processed, prepared and used in various construction environments and processing plants.)

一种增强砂浆及其制备方法

技术领域

本发明涉及水泥技术领域,具体涉及一种增强砂浆及其制备方法。

背景技术

抹灰砂浆在早期受物理和化学作用的影响,会发生收缩变形,主要包括化学收缩、温缩和干缩等。在实际过程中,抹灰砂浆要受到各种约束,因而在收缩时会产生内部拉应力,而抹灰砂浆早期强度非常低,从而发生早期开裂。因此,除了在抹灰砂浆中适量掺加矿物掺合料、纤维、膨胀剂、减缩剂和改善配合比、加强养护之外,需要提高抹灰砂浆的早期强度以抵抗拉应力,目前的普遍做法是添加早强剂,如氯化钙、亚硝酸钠、硫酸钠、硫酸钙、氯化钠、亚硝酸钙和甲酸钙等。早强剂可以促进水泥的水化,抹灰砂浆早期强度虽然有所提高,但水泥石中的无害小孔也随之增多,导致增大了抹灰砂浆早期毛细管收缩的压力,反而增加了抹灰砂浆早期开裂的风险,硝酸钙甚至增加了200nm以上有害大孔的数量,甲酸钙加速了约4h的水泥水化速度之后,由于引入了很多钙离子,形成富钙低硅层包覆层,反而阻碍了水泥的进一步水化。

CO2养护砂浆技术,可有效固化CO2并改善砂浆力学性能和耐久性能。CO2养护砂浆是基于CO2与水泥熟料矿物硅酸三钙(简写C3S,化学式为3CaO·SiO2)、硅酸二钙(简写C2S,化学式为2CaO·SiO2)之间的化学反应。加速碳化可促进水泥砂浆早期强度发展,加速碳化可以大幅缩短砂浆养护时间,使其获得良好的力学性能、尺寸稳定性和耐久性。但是,传统的CO2养护为蒸气养护法,设备复杂、成本高,并且只能在加工厂完成,这样很不满足现场施工的需要。

发明内容

有鉴于此,提供一种养护便利、操作简便、增强效果好的增强砂浆及其制备方法。

一种增强砂浆,其包括水泥砂浆、二氧化碳释放树脂球、碳酸钙粉,所述二氧化碳释放树脂球和碳酸钙粉分别按照预定重量比例混合于水泥砂浆中。

优选地,所述二氧化碳释放树脂球添加量为水泥砂浆重量的6%~8%。

优选地,所述二氧化碳释放树脂球包括高吸水树脂颗粒以及吸收在所述高吸水树脂颗粒中的含二氧化碳的水溶液。

优选地,所述二氧化碳释放树脂球吸收后的膨胀粒径为0.75~1.50mm,所述高吸水树脂颗粒的平均粒径为200目以上。

优选地,所述高吸水树脂颗粒为交联型丙烯酸/丙烯酸钠共聚物,所述高吸水树脂颗粒为交联型丙烯酸/丙烯酸钠共聚物,所述吸水树脂颗粒对含二氧化碳的水溶液的吸收量为自身颗粒重量的30倍至200倍。

优选地,所述碳酸钙粉添加量为水泥砂浆重量的含量4%~10%。

具体地,所述二氧化碳释放树脂球是通过以下步骤的制备:

将碳酸氢盐、醋酸、水按照预定重量比混合均匀,形成混合水溶液;将高吸水树脂颗粒放入混合水溶液,搅拌,浸泡,待吸水树脂颗粒膨胀到预定粒径后,停止浸泡。

优选地,所述碳酸氢盐为碳酸氢钙,所述混合水溶液中的碳酸氢钙、醋酸、水的重量比为(10~30)﹕15﹕50。

以及,一种如上所述的增强砂浆的制备方法,其包括以下步骤:

制备二氧化碳释放树脂球;

准备好水泥砂浆,将二氧化碳释放树脂球和碳酸钙粉混入于水泥砂浆,搅拌,经过预定时间后,获得所述增强砂浆。

上述增强砂浆及其制备方法中,利用二氧化碳释放树脂球的高吸水量,通常能吸收自身数十倍甚至数百倍的水溶液,从而通过较小体积的二氧化碳释放树脂球,能释放出高含量的二氧化碳,通过二氧化碳在砂浆内部进行二氧化碳养护,以增强砂浆,增强效果好,而且,通过自然干燥即可养护,操作简便、养护方便快捷,可广泛应用于制造各种增强砂浆,促进建造效率。更进一步地,增强砂浆加入了碳酸钙粉,碳酸钙粉天然资源丰富,分布广泛,容易获得,价格便宜,当掺入适量的碳酸钙粉时,砂浆中的水泥颗粒分布更加稀疏、均匀,二氧化碳气体很容易扩散至水泥颗粒表面,从而加速水泥与二氧化碳反应,以及提高二氧化碳养护的反应程度。另外,碳酸钙粉可较显著提高砂浆二氧化碳养护的反应程度和早期抗压强度。掺入的碳酸钙粉促进了硅酸三钙和硅酸二钙与二氧化碳的反应,诱导生成了更多的碳酸钙、聚合硅酸钙或不定型硅胶,使得砂浆更加致密、孔隙更少。

具体实施方式

下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明实施例提供一种增强砂浆,其包括水泥砂浆、二氧化碳释放树脂球、碳酸钙粉,所述二氧化碳释放树脂球和碳酸钙粉分别按照预定重量比例混合于水泥砂浆中。其中,二氧化碳释放树脂球能释放出二氧化碳,大大促进砂浆的养护,由于树脂球对周边环境具有吸水、保水和释水作用,这种反应将长期下去,对抹灰砂浆的后期强度也具有提高作用。而碳酸钙粉能与二氧化碳释放树脂球相互作用,促进硅凝胶的形成,加速水泥的水化,提升硬化水泥浆体的致密度,进而提高砂浆强度,同时起到固定二氧化碳的效果。

更进一步地,通过加入了碳酸钙粉后,砂浆中的水泥颗粒分布更加稀疏、均匀,二氧化碳气体很容易扩散至水泥颗粒表面,从而加速水泥与二氧化碳反应,以及提高二氧化碳养护的反应程度。另外,碳酸钙粉可较显著提高砂浆二氧化碳养护的反应程度和早期抗压强度。掺入的碳酸钙粉促进了硅酸三钙和硅酸二钙与二氧化碳的反应,诱导生成了更多的碳酸钙、聚合硅酸钙或不定型硅胶,使得砂浆更加致密、孔隙更少。

本发明实施例中,所述二氧化碳释放树脂球包括高吸水树脂颗粒以及吸收在所述高吸水树脂颗粒中的含二氧化碳的水溶液,所述含二氧化碳的水溶液是通过醋酸与碳酸氢盐水溶液混合反应生成碳酸溶于水而形成。优选地,所述二氧化碳释放树脂球添加量为水泥砂浆重量的6%~8%。优选地,所述碳酸钙粉添加量为水泥砂浆重量的含量4%~10%。

具体地,所述高吸水树脂颗粒是选用200目以上筛的高吸水树脂颗粒(简称SAP树脂颗粒),所述高吸水树脂颗粒是合成树脂类吸水颗粒,所述高吸水树脂颗粒包括丙烯酸接枝纤维素聚合物,当然实际应用可根据需要选择不同类型的高吸水性树脂,并不限于此。优选地,所述二氧化碳释放树脂球吸收后的膨胀粒径为0.75~1.50mm。进一步地,所述高吸水树脂颗粒对醋酸与碳酸氢钙水溶液的吸收达到饱和,所述二氧化碳释放树脂球是通过将过量的所述醋酸与碳酸氢钙水溶液浸泡所述高吸水树脂颗粒而形成。

具体地,所述二氧化碳释放树脂球是通过以下步骤的制备:

将碳酸氢盐、醋酸、水按照预定重量比混合均匀,形成混合水溶液;将高吸水树脂颗粒放入混合水溶液,搅拌,浸泡,待吸水树脂颗粒膨胀到预定粒径后,停止浸泡。

优选地,所述碳酸氢盐为碳酸氢钙,所述混合水溶液中的碳酸氢钙、醋酸、水的重量比为(10~30)﹕15﹕50。

高吸水SAP树脂是一种新型功能高分子材料,优选为交联型丙烯酸/丙烯酸钠共聚物,它具有吸收比自身重几百倍水的吸水功能,并且保水性能优良;当周围空气湿度降低,SAP树脂释放出水以弥补湿度降低,并改善其湿度分布,使不同区域的湿度差异减小。SAP树脂的吸水速率很快,但释水速率极其缓慢,释水率约吸水率的4.5%~6.4%,当周围环境潮湿时,SAP树脂会迅速地吸收水分;当周围环境干燥时,SAP树脂则非常缓慢的释放水分,从而实现长期的干湿循环。

在该增强砂浆中,醋酸是一种有机一元醋酸,为食醋的主要成分,1个醋酸分子与1个碳酸氢钙分子反应,生成2个水分子和2个二氧化碳分子,如下式:

Ca(HCO3)2+2CH3COOH=Ca(CH3COO)2+2H2O+2CO2

其中,二氧化碳密度比空气大,能溶于水,与水反应生成碳酸。常温常压下,二氧化碳可溶于水(两者1:1的比例)形成碳酸,见下式:

CO2+H2O=H2CO3

根据上述原理,将醋酸与碳酸氢钙混合,添加适当水,搅拌均匀,形成水溶液;放入高吸水树脂颗粒进行浸泡,形成二氧化碳释放树脂球,主要原理为:

(1)CO2溶于水形成碳酸;

(2)碳酸电离出氢离子、碳酸氢根及碳酸根离子;

(3)碳酸根离子与孔溶液中的钙离子及硅酸二钙、硅酸三钙反应生成难溶于水的CaCO3及水化硅酸钙凝胶晶核。固体相则逐渐析出,覆盖未水化的水泥颗粒,填充混凝土孔隙;

(4)水化硅酸钙凝胶进一步与碳酸根反应,最终转变为硅凝胶及CaCO3

由此,通过这种高吸水性,将预制生成二氧化碳水溶液吸收到颗粒中,即将醋酸与碳酸氢钙混合水溶液浸入高吸水树脂颗粒。混合溶液中,醋酸与碳酸氢钙反应生成CO2,CO2溶于水形成碳酸,碳酸电离出氢离子、碳酸氢根及碳酸根离子,碳酸根离子透过树脂球,与抹灰砂浆孔溶液中的钙离子及硅酸二钙、硅酸三钙反应生成难溶于水的CaCO3及水化硅酸钙凝胶晶核。固体相则逐渐析出,覆盖未水化的水泥颗粒,填充抹灰砂浆内部孔隙;水化硅酸钙凝胶进一步与碳酸根反应,最终转变为硅凝胶及CaCO3。而掺入的碳酸钙粉进一步促进了硅酸三钙和硅酸二钙与二氧化碳的反应,诱导生成了更多的碳酸钙、聚合硅酸钙或不定型硅胶,使得砂浆更加致密、孔隙更少。从而提高抹灰砂浆早期强度并具有抗裂能力。由于树脂球对周边环境具有吸水、保水和释水作用,这种反应将长期下去,对抹灰砂浆的后期强度也具有提高作用。

本发明实施例还提供一种如上所述的增强砂浆的制备方法,其包括以下步骤:

制备二氧化碳释放树脂球;

准备好水泥砂浆,将二氧化碳释放树脂球和碳酸钙粉混入于水泥砂浆,搅拌,经过预定时间后,获得所述增强砂浆。

混合时,所述二氧化碳释放树脂球和碳酸钙粉的添加量按照前述的重量比例。更优选地,所述二氧化碳释放树脂球最佳添加量为水泥砂浆重量的7%,碳酸钙粉最佳添加量为水泥砂浆重量的6~10%,更优选地,所述碳酸钙粉最佳添加量为水泥砂浆重量的10%。预定时间优选为24小时以上。

上述的增强砂浆使用时,采用如下施工步骤:

1、清理基层(涂抹砂浆前)

将基层表面的积灰、油污、浮浆及杂物等清理干净并洒水润湿,洒水以地面出现水印为准,不得积水。如局部凸凹不平,应将凸处凿平,凹处用M20水泥砂浆补平。

2、养护(涂抹砂浆后)

砂浆抹平、压实24h以后,洒水养护,养护期为7天。养护要准时,不得过人踩踏,防止起砂。所用砂子不要过细,采用级配的中砂,每层砂浆铺设厚度均匀到位,以免防水层空鼓、开裂,水泥要稳定,抹压程度适当。

以下通过多个实施例来举例说明不同添加量的增强砂浆及其制备方法和应用于增强砂浆的性能表现等,以下所述份数均为重量份数。

实施例1

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比10﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球和抹灰砂浆混合。具体如下:将3份二氧化碳释放树脂球和抹灰砂浆100份混合,经过预定时间后,形成实施例1的增强砂浆。

然后,对实施例1获得的增强砂浆进行各项抗折强度的测试,记录列表。

实施例2

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比15﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球和抹灰砂浆混合。具体如下:将5份二氧化碳释放树脂球和抹灰砂浆100份混合,经过预定时间后,形成实施例2的增强砂浆。

然后,对实施例2获得的增强砂浆进行各项抗折强度的测试,记录列表。

实施例3

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比20﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球和抹灰砂浆混合。具体如下:将7份二氧化碳释放树脂球和抹灰砂浆100份混合,经过预定时间后,形成实施例3的增强砂浆。

然后,对实施例3获得的增强砂浆进行各项抗折强度的测试,记录列表。

实施例4

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比30﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球和抹灰砂浆混合。具体如下:将10份二氧化碳释放树脂球和抹灰砂浆100份混合,经过预定时间后,形成实施例4的增强砂浆。

然后,对实施例4获得的增强砂浆进行各项抗折强度的测试,记录列表。

实施例5

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比10﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球、碳酸钙粉和抹灰砂浆混合。具体如下:将7份二氧化碳释放树脂球、3份碳酸钙粉和抹灰砂浆100份混合,经过预定时间后,形成实施例5的增强砂浆。

然后,对实施例5获得的增强砂浆进行各项抗折强度的测试,记录列表。

实施例6

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比10﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球、碳酸钙粉和抹灰砂浆混合。具体如下:将7份二氧化碳释放树脂球、5份碳酸钙粉和抹灰砂浆100份混合,经过预定时间后,形成实施例6的增强砂浆。

然后,对实施例6获得的增强砂浆进行各项抗折强度的测试,记录列表。

实施例7

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比10﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球、碳酸钙粉和抹灰砂浆混合。具体如下:将7份二氧化碳释放树脂球、7份碳酸钙粉和抹灰砂浆100份混合,经过预定时间后,形成实施例7的增强砂浆。

然后,对实施例7获得的增强砂浆进行各项抗折强度的测试,记录列表。

实施例8

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比10﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球、碳酸钙粉和抹灰砂浆混合。具体如下:将7份二氧化碳释放树脂球、10份碳酸钙粉和抹灰砂浆100份混合,经过预定时间后,形成实施例8的增强砂浆。

然后,对实施例8获得的增强砂浆进行各项抗折强度的测试,记录列表。

将以上各实施例中获得的增强砂浆的各项抗折强度与普通抹灰砂浆各项抗折强度进行对比,具体如下表所示。

实施例9

本实施例的增强砂浆制备步骤如下:

1、将碳酸氢钙、醋酸、水,按照重量比10﹕15﹕50,混合均匀,形成混合溶液;

2、将200目SAP高吸水树脂颗粒放入混合溶液,搅拌均匀,进行浸泡。待SAP高吸水树脂颗粒膨胀到0.75~1.50mm,停止浸泡,形成二氧化碳释放树脂球。

获得二氧化碳释放树脂球备用。再按实际需要的预定添加量,将二氧化碳释放树脂球、碳酸钙粉和抹灰砂浆混合。具体如下:将7份二氧化碳释放树脂球、12份碳酸钙粉和抹灰砂浆100份混合,经过预定时间后,形成实施例9的增强砂浆。

然后,对实施例9获得的增强砂浆进行各项抗折强度的测试,记录列表。

将以上各实施例中获得的增强砂浆的各项抗折强度与普通抹灰砂浆各项抗折强度进行对比,具体如下表所示。

实施例1(内掺3.0wt%二氧化碳释放树脂球)

Figure BDA0002574013060000081

实施例2(内掺5.0%二氧化碳释放树脂球)

Figure BDA0002574013060000082

实施例3(内掺7.0%二氧化碳释放树脂球)

Figure BDA0002574013060000083

实施例4(内掺10.0%二氧化碳释放树脂球)

Figure BDA0002574013060000084

实施例5(内掺7.0%二氧化碳释放树脂球+3%碳酸钙粉)

Figure BDA0002574013060000091

实施例6(内掺7.0%二氧化碳释放树脂球+5%碳酸钙粉)

Figure BDA0002574013060000092

实施例7(内掺7.0%二氧化碳释放树脂球+7%碳酸钙粉)

实施例8(内掺7.0%二氧化碳释放树脂球+10%碳酸钙粉)

实施例9(内掺7.0%二氧化碳释放树脂球+12%碳酸钙粉)

Figure BDA0002574013060000095

由以上八个实施例可知,内掺7%的抗裂抹灰砂浆+7%碳酸钙粉,其3d抗折强度和3d抗压强度都优于普通抹灰砂浆和分别内掺3%、10%、12%的碳酸钙粉抗裂抹灰砂浆,所以优选实施案例六。

需要说明的是,以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域技术人员而言,本发明可以有各种改动和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种用于泥版画绘制用粘合剂及泥版画绘制方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!