湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷

文档序号:1037946 发布日期:2020-10-30 浏览:20次 >En<

阅读说明:本技术 湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷 (Preparation of exoskeleton structure fiber monolithic zirconium carbide ceramic by wet spinning coextrusion ) 是由 李双 孟凡涛 董抒华 于 2020-06-18 设计创作,主要内容包括:本发明提供一种湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷,其特征在于采用以下步骤:1)先将固化剂和增塑剂加入有机溶剂中搅拌溶解,再分别加入纤维独石前驱体胞体和胞体界面层的陶瓷粉料、搅拌均匀,形成两种不同组分的喷丝料浆,倒入不同的注射器中,在机械压力下,通过共挤出喷丝头喷入凝胶槽中,即得外骨骼结构的纤维独石前驱体;2)温压成型;3)真空脱脂;4)热压烧结,即得外骨骼结构纤维独石碳化锆陶瓷,其断裂韧性可达8MPa·m&lt;Sup&gt;1/2&lt;/Sup&gt;以上。本发明所得的外骨骼结构纤维独石碳化锆陶瓷,保留了仿生材料强弱层交替排列的增韧方式,同时,改变了弱质材料的三维联通结构,材料达到断裂韧性和抗氧化烧蚀性协同提高。(The invention provides a method for preparing exoskeleton structure fiber monolithic zirconium carbide ceramic by wet spinning coextrusion, which is characterized by comprising the following steps of: 1) firstly, adding a curing agent and a plasticizer into an organic solvent, stirring and dissolving, then respectively adding ceramic powder of a cell body and a cell body interface layer of a monolithic precursor, uniformly stirring to form spinning slurry of two different components, pouring the spinning slurry into different injectors, and spraying the spinning slurry into a gel tank through a co-extrusion spinning nozzle under mechanical pressure to obtain the monolithic precursor with an exoskeleton structure; 2) warm-pressing and forming; 3) vacuum degreasing; 4) hot pressing and sintering to obtain the outer boneThe fracture toughness of the skeleton-structure fiber monolithic zirconium carbide ceramic can reach 8MPa 1/2 The above. The exoskeleton structure fiber monolithic zirconium carbide ceramic retains the toughening mode of alternate arrangement of strong and weak layers of a bionic material, changes the three-dimensional communication structure of a weak material, and achieves the synergistic improvement of fracture toughness and oxidation and ablation resistance.)

湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷

技术领域

本发明提供一种湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷,属于超高温陶瓷的制备技术领域。

背景技术

超高温陶瓷材料具有抗氧化、熔点高、高温力学性能高和耐气动磨耗等性能。在碳化物陶瓷中,ZrC被认为是极具应用前景的超高温材料。但ZrC陶瓷断裂韧性较低,韧值仅为4~5 MPa•m1/2,限制了其在苛刻作业环境下的应用。因此,为了保证使用过程中的可靠性和安全性,必须提高ZrC陶瓷的断裂韧性。受自然界中贝壳、竹子的微观组织结构的启发,在脆性陶瓷材料中加入耐高温软质材料,设计和制备仿生层状和纤维独石状复合物以提高陶瓷的韧性。

层状和纤维独石材料具有较好的韧性,断裂时,发生裂纹的偏折、裂纹分叉和产生微裂纹,大大增加了裂纹扩展的路径和断裂功,断裂韧性提高明显;且断裂方式为非脆性断裂,即表现为对裂纹损伤具有一定容忍能力的逐次断裂,材料的安全性和可靠性得到提高。

对于仿生纤维独石复合材料的研究。清华大学通过泥料挤出法制备出Si3N4纤维独石前驱体,纤维独石前驱体的直径为1mm,然后,浸涂BN悬浮液,制备出Si3N4/BN纤维独石陶瓷,其弯曲强度为700MPa,断裂韧性为23.9MPa·m1/2。美国密苏里大学以乙烯-丙烯酸乙酯为结合剂,高温矿物油为增塑剂,120℃共挤出泥料制备出有界面结构的纤维独石前驱体,然后定向排布,经800℃裂解后,1900℃、32MPa下热压烧结制备出纤维独石ZrB2复合材料,胞体组成为ZrB2-30vol.%SiC,胞体界面层组成为石墨-15vol.%ZrB2,纤维独石ZrB2复合材料弯强度为375MPa,临界热震温差△Tc为1400℃。

传统的纤维独石陶瓷制备工艺存在以下问题:

一是:传统的纤维独石前驱体成型工艺为泥料挤出成型,即干纺法成型,生坯经过陈腐、真空练泥使其具有一定可塑性,然后通过挤出机喷丝头挤出成型,喷丝头的大小决定了纤维独石前驱体的直径大小,喷丝头直径越小所受到的阻力越大,也就是说,小的喷丝头需要更大的挤出压力,挤出成型制备小于1mm的纤维独石前驱体非常困难,因此,研究人员在原有挤出成型工艺基础上进行了改进,通过将泥料预热到120℃,提高泥料的流动性,使其挤出成型更细的纤维独石前驱体,但没有改变泥料流动性差这一本质属性,喷丝头直径越小,挤出压力越大,挤出成型越困难,纤维独石前驱体挤出后,由于溶剂的挥发迅速固化,纤维独石前驱体韧性差,呈细棒状,连续性差,因此,制备高韧性纤维独石碳化锆陶瓷,必须开发新型的纤维独石前驱体的成型工艺。

二是:传统的纤维独石前驱体胞体界面成型为浸渍涂覆,浸渍涂覆的胞体界面层厚度不均,使得纤维独石ZrB2基超高温陶瓷的微观结构不能精确控制;并且反复浸渍也使纤维独石前驱体容易断裂,浸渍涂覆后的纤维独石前驱体胞体,***变脆,材料性能大大降低。

三是:传统的纤维独石陶瓷,胞体界面层为石墨、氮化硼弱质材料,石墨和氮化硼氧化温度分别为400℃、800℃,抗氧化性差,弱质胞体界面层形成贯通的三维网络路径,烧蚀时放出大量气体,使得胞体脱层,抗氧化烧蚀性能差;同时,胞体和胞体界面层组成成差别别较大,使得纤维独石复合材料热力耦合环境下胞体容易剥落。弱质胞体界面层材料抗烧蚀性差,弱质胞体界面层形成贯通的三维网络路径是纤维独石材料抗热冲击和抗烧蚀性降低的关键问题。

发明内容

本发明的目的是为了解决现有硼化锆超高温陶瓷韧性差、纤维独石前驱体成型困难及弱质材料作为纤维独石碳化锆陶瓷胞体界面抗烧蚀性差的问题,而提供一种湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷。其技术方案为:

一种湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷,其特征在于采用以下步骤:

1)采用湿纺共挤出制备外骨骼结构的纤维独石前驱体:先将固化剂和增塑剂加入有机溶剂中搅拌溶解,再分别加入纤维独石前驱体胞体的陶瓷粉料和纤维独石前驱体胞体界面层的陶瓷粉料、搅拌均匀,形成两种不同组分的喷丝料浆,然后将喷丝料浆分别倒入不同的注射器中,在机械压力下, 将喷丝料浆通过共挤出喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为0~10℃,凝固成型后浸泡8~24h,即得外骨骼结构的纤维独石前驱体,外骨骼结构的纤维独石前驱体由纤维独石前驱体胞体和胞体界面层组成,纤维独石前驱体胞体直径为100~300µm,胞体界面层厚度为250~450µm,其中固化剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇,有机溶剂为无水乙醇;

2)温压成型:根据热压烧结用石墨模具大小裁切外骨骼结构的纤维独石前驱体,在石墨模具中进行平行排布,再在60~100℃,20~50MPa下,温压使其致密得到陶瓷生坯;

3)真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0.25~1℃/min,升温至600~700℃,保温0.5~1h;

4)热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1900~2000℃,保温0.5~2h,压力为20~60MPa,即得外骨骼结构纤维独石碳化锆陶瓷。

所述的湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷,步骤1)中,制备纤维独石前驱体胞体的陶瓷粉料由氮化硼粉末和碳化锆粉末按质量百分比70~90%:10~30%混合而成。

所述的湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷,步骤1)中,制备纤维独石前驱体胞体界面层的陶瓷粉料由碳化锆粉末和碳化硅粉末按质量百分比70~90%:10~30%混合而成。

所述的湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷,步骤1)中,以制备纤维独石前驱体胞体的陶瓷粉料重量为基础计算,按重量百分比称取固化剂20~30%、增塑剂20~30%和有机溶剂200~300%。

所述的湿纺共挤出制备外骨骼结构纤维独石碳化锆陶瓷,步骤1)中,以制备纤维独石前驱体胞体界面层的陶瓷粉料重量为基础计算,按重量百分比称取固化剂10~20%、增塑剂10~20%和有机溶剂100~200%。

本发明的工作原理是:提出湿纺共挤出法制备具有外骨骼结构的纤维独石前驱体的新工艺,先将固化剂和增塑剂加入有机溶剂中搅拌溶解,再分别加入纤维独石前驱体胞体和纤维独石前驱体胞体界面层的陶瓷粉料、搅拌均匀,形成两种不同组分的喷丝料浆,再将两种不同的喷丝料浆从共挤出喷丝头中压出,呈细流状,然后在盛满水的凝胶槽中固化成形,即得具有外骨骼结构的纤维独石前驱体,其结构示意图如图1所示。

通过具有外骨骼结构的纤维独石前驱体,制备的外骨骼结构纤维独石碳化锆陶瓷,其结构示意图如图2所示,胞体为石墨基弱质材料,胞体界面层为ZrB2基材料,胞体直径变小,胞体界面层变厚,弱质材料被ZrB2基材料包裹,显示为弱心强界面结构。弱质材料的三维联通结构被改变,这有效地减小弱质材料被氧化,提高外骨骼结构纤维独石材料的抗氧化性能;同时,在高温热冲击下,由于弱质材料被超高温材料完全包裹,不会剥落;并且保留了纤维独石材料的增韧方式。新型外骨骼结构的纤维独石超高温陶瓷是一种协同提高材料韧性与抗氧化性能的有效途径。

本发明与现有技术相比,具有如下优点:

1、湿纺共挤出法成型外骨骼结构纤维独石前驱体,纤维独石前驱体胞体直径为可达100µm,胞体界面层厚度可达250µm,连续、超细、高韧、致密,长度可达10米以上,180°弯曲不会断裂。彻底解决了泥料挤出成型,泥料流动性差,纤维独石前驱体直径粗、韧性差、不连续的缺点;

2、湿纺共挤出法成型外骨骼结构纤维独石前驱体,改变了浸渍法涂覆涂层厚度不均,降低纤维独石前驱体韧性的缺点,简化工艺,达到纤维独石硼化锆超高温陶瓷微观结构的精确控制;

3、固化剂为聚乙烯醇缩丁醛,增塑剂为聚乙二醇,陶瓷生坯真空脱脂后,聚乙烯醇缩丁醛和聚乙二醇高温裂解成小分子的碳颗粒排除,无碳残留,残留的碳会降低纤维独石硼化锆超高温陶的弯曲强度和断裂韧性;

4、凝胶槽水温为0~10℃,低温快速凝固,纤维独石前驱体不粘连;

5、外骨骼结构纤维独石碳化锆陶瓷的胞体为BN基材料,胞体界面层为ZrC基材料。弱质材料被外层ZrC基材料包裹,弱质材料的三维联通结构被改变,能有效地减少弱质材料被氧化,提高纤维独石材料的抗氧化性能;

6、外骨骼结构纤维独石碳化锆陶瓷的胞体界面层为ZrC基材料,具有较高的强度,提高了界面结合性,胞体不会剥落;并且外骨骼结构纤维独石碳化锆陶瓷,保留了仿生材料强弱层交替排列的增韧方式,断裂韧性可达8MPa•m1/2以上。

附图说明

图1是本发明所述外骨骼结构的纤维独石前驱体的结构示意图;

图2是本发明所述外骨骼结构纤维独石碳化锆陶瓷的结构示意图;

图中:1、外骨骼结构的纤维独石前驱体胞体;2、外骨骼结构的纤维独石前驱体胞体界面层;3、外骨骼结构纤维独石碳化锆陶瓷的胞体;4、外骨骼结构纤维独石碳化锆陶瓷的胞体界面层。

具体实施方式

实施例1

1、制备纤维独石前驱体胞体喷丝液:先将20克聚乙烯醇缩丁醛和20克聚乙二醇在200克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体的陶瓷粉料,纤维独石前驱体胞体的陶瓷粉料由70克氮化硼粉末和30克碳化锆粉末按质量百分比70%:30%混合而成,搅拌均匀,制成纤维独石前驱体胞体喷丝液;

2、制备纤维独石前驱体胞体界面层喷丝液:先将10克聚乙烯醇缩丁醛和10克聚乙二醇在100克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体界面层的陶瓷粉料,纤维独石前驱体胞体界面层的陶瓷粉料由70克碳化锆粉末和30克碳化硅粉末按质量百分比70:30%混合而成,搅拌均匀,制成纤维独石前驱体胞体界面层喷丝液;

3、湿纺共挤出制备外骨骼结构的纤维独石前驱体:将纤维独石前驱体胞体喷丝液和纤维独石前驱体胞体界面层喷丝液分别倒入不同的注射器中,在机械压力下, 将喷丝料浆通过共挤出喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为0℃,凝固成型后浸泡8h,即得外骨骼结构的纤维独石前驱体,外骨骼结构的纤维独石前驱体由纤维独石前驱体胞体和胞体界面层组成,纤维独石前驱体胞体直径为300µm,胞体界面层厚度为450µm;

4、温压成型:根据热压烧结用石墨模具大小裁切外骨骼结构的纤维独石前驱体,在石墨模具中进行平行排布,再在60℃,20MPa下,温压使其致密得到陶瓷生坯;

5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0.25℃/min,升温至600℃,保温0.5h;

6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1900℃,保温0.5h,压力为20MPa,即得外骨骼结构纤维独石碳化锆陶瓷。

实施例2

1、制备纤维独石前驱体胞体喷丝液:先将30克聚乙烯醇缩丁醛和30克聚乙二醇在300克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体的陶瓷粉料,纤维独石前驱体胞体的陶瓷粉料由90克氮化硼粉末和10克碳化锆粉末按质量百分比90%:10%混合而成,搅拌均匀,制成纤维独石前驱体胞体喷丝液;

2、制备纤维独石前驱体胞体界面层喷丝液:先将20克聚乙烯醇缩丁醛和20克聚乙二醇在200克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体界面层的陶瓷粉料,纤维独石前驱体胞体界面层的陶瓷粉料由90克碳化锆粉末和10克碳化硅粉末按质量百分比90:10%混合而成,搅拌均匀,制成纤维独石前驱体胞体界面层喷丝液;

3、湿纺共挤出制备外骨骼结构的纤维独石前驱体:将纤维独石前驱体胞体喷丝液和纤维独石前驱体胞体界面层喷丝液分别倒入不同的注射器中,在机械压力下, 将喷丝料浆通过共挤出喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为10℃,凝固成型后浸泡24h,即得外骨骼结构的纤维独石前驱体,外骨骼结构的纤维独石前驱体由纤维独石前驱体胞体和胞体界面层组成,纤维独石前驱体胞体直径为100µm,胞体界面层厚度为250µm;

4、温压成型:根据热压烧结用石墨模具大小裁切外骨骼结构的纤维独石前驱体,在石墨模具中进行平行排布,再在100℃,50MPa下,温压使其致密得到陶瓷生坯;

5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为1℃/min,升温至700℃,保温1h;

6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为2000℃,保温2h,压力为60MPa,即得外骨骼结构纤维独石碳化锆陶瓷。

实施例3

1、制备纤维独石前驱体胞体喷丝液:先将25克聚乙烯醇缩丁醛和25克聚乙二醇在250克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体的陶瓷粉料,纤维独石前驱体胞体的陶瓷粉料由80克氮化硼粉末和20克碳化锆粉末按质量百分比80%: 20%混合而成,搅拌均匀,制成纤维独石前驱体胞体喷丝液;

2、制备纤维独石前驱体胞体界面层喷丝液:先将15克聚乙烯醇缩丁醛和15克聚乙二醇在150克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体界面层的陶瓷粉料,纤维独石前驱体胞体界面层的陶瓷粉料由80克碳化锆粉末和20克碳化硅粉末按质量百分比80:20%混合而成,搅拌均匀,制成纤维独石前驱体胞体界面层喷丝液;

3、湿纺共挤出制备外骨骼结构的纤维独石前驱体:将纤维独石前驱体胞体喷丝液和纤维独石前驱体胞体界面层喷丝液分别倒入不同的注射器中,在机械压力下, 将喷丝料浆通过共挤出喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为5℃,凝固成型后浸泡12h,即得外骨骼结构的纤维独石前驱体,外骨骼结构的纤维独石前驱体由纤维独石前驱体胞体和胞体界面层组成,纤维独石前驱体胞体直径为200µm,胞体界面层厚度为300µm;

4、温压成型:根据热压烧结用石墨模具大小裁切外骨骼结构的纤维独石前驱体,在石墨模具中进行平行排布,再在80℃,30 MPa下,温压使其致密得到陶瓷生坯;

5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为0. 5℃/min,升温至650℃,保温0.75h;

6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1950℃,保温1h,压力为40MPa,即得外骨骼结构纤维独石碳化锆陶瓷。

实施例4

1、制备纤维独石前驱体胞体喷丝液:先将28克聚乙烯醇缩丁醛和28克聚乙二醇在280克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体的陶瓷粉料,纤维独石前驱体胞体的陶瓷粉料由85克氮化硼粉末和15克碳化锆粉末按质量百分比85%:15%混合而成,搅拌均匀,制成纤维独石前驱体胞体喷丝液;

2、制备纤维独石前驱体胞体界面层喷丝液:先将18克聚乙烯醇缩丁醛和18克聚乙二醇在120克无水乙醇中搅拌溶解,再加入纤维独石前驱体胞体界面层的陶瓷粉料,纤维独石前驱体胞体界面层的陶瓷粉料由85克碳化锆粉末和15克碳化硅粉末按质量百分比85:15%混合而成,搅拌均匀,制成纤维独石前驱体胞体界面层喷丝液;

3、湿纺共挤出制备外骨骼结构的纤维独石前驱体:将纤维独石前驱体胞体喷丝液和纤维独石前驱体胞体界面层喷丝液分别倒入不同的注射器中,在机械压力下, 将喷丝料浆通过共挤出喷丝头喷入盛满水的凝胶槽中,凝胶槽水温为2℃,凝固成型后浸泡10h,即得外骨骼结构的纤维独石前驱体,外骨骼结构的纤维独石前驱体由纤维独石前驱体胞体和胞体界面层组成,纤维独石前驱体胞体直径为180µm,胞体界面层厚度为300µm;

4、温压成型:根据热压烧结用石墨模具大小裁切外骨骼结构的纤维独石前驱体,在石墨模具中进行平行排布,再在70℃,40MPa下,温压使其致密得到陶瓷生坯;

5、真空脱脂:将陶瓷生坯连同石墨模具放入真空脱脂炉中,真空脱脂,升温速度为1℃/min,升温至650℃,保温0.5h;

6、热压烧结:脱脂后,在氩气气氛下热压烧结,烧结温度为1950℃,保温1h,压力为30MPa,即得外骨骼结构纤维独石碳化锆陶瓷。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种原位反应热压烧结制备WC-Y2O3无粘结相硬质合金的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!