一种具有多中空的紧聚焦光场分布构造方法

文档序号:104647 发布日期:2021-10-15 浏览:18次 >En<

阅读说明:本技术 一种具有多中空的紧聚焦光场分布构造方法 (Method for constructing distribution of tightly focused light field with multiple hollows ) 是由 季开来 覃亚丽 徐梦华 刘小旭 郑欢 于 2021-06-09 设计创作,主要内容包括:一种具有多中空的紧聚焦光场分布构造方法,包括以下步骤:步骤1,在紧聚焦系统中,设置入射平面的初始参数;步骤2,设计包含多涡旋奇点的相位分布矩阵P,对涡旋的数量为S、第n个涡旋的位置为和携带的拓扑电荷大小为l-(n)进行调控;步骤3,以径向偏振与角向偏振矢量叠加为混合偏振状态;步骤4,将HPBGVB的透射光场矩阵E-(t),通过Deybe-Wolf衍射积分方程得到聚焦光场矩阵E-(out);步骤5,根据所得的聚焦光场矩阵E-(out)计算出聚焦光强矩阵。本发明可以灵活地调控紧聚焦光场分布中空的数量。(A method of constructing a tightly focused light field distribution having multiple hollows, comprising the steps of: step 1, setting initial parameters of an incidence plane in a tight focusing system; step 2, designing a phase distribution matrix P containing multiple vortex singularities, wherein the number of vortices is S, the position of the nth vortex is and the size of the carried topological charge is l n Regulating and controlling; step 3, superposing radial polarization vectors and angular polarization vectors to form a mixed polarization state; step 4, transmitting the HPBGVB transmission light field matrix E t Obtaining a focused light field matrix E through a Deybe-Wolf diffraction integral equation out (ii) a Step 5, according to the obtained focusing light field matrix E out A focused light intensity matrix is calculated. The invention can flexibly regulate and control the number of the distributed hollows of the tightly focused light field.)

一种具有多中空的紧聚焦光场分布构造方法

技术领域

本发明涉及一种具有多中空的紧聚焦光场分布构造方法,属于焦场调控的技术领域。

背景技术

焦场调控和构造以满足改善光学操纵、粒子捕获等领域的需要以及性能的提升,这是当前的重要研究课题。它指的是使用透镜在焦点附近(焦平面上)获得聚焦光场,可以在入射端对相关的参数(例如偏振形式、拓扑电荷等)调整,控制焦场的强度以及相位分布满足特定的需要。一个毫米级别的高斯光束通过高数值孔径(NA>0.7)物镜,产生一个大小可达到波长量级的光斑,可以有效地提高聚焦成像系统的空间分辨率。相较于普通聚焦,光束的紧聚焦会在聚焦中心产生一个折射率远小于背景折射率的能量分布,这将有利于粒子的捕获。因此光束的紧聚焦特性受到许多研究者的关注。

涡旋光束可以简单地看成是拉盖尔高斯模式的线性叠加。涡旋光束又称局域空心光束,在相位奇点处具有中心凹陷的强度分布特点。在1992年,Allen等人验证了涡旋光束具有相位并且每个光子携带携带轨道角动量(Orbital angular momentum,OAM)为,其中为拓扑电荷(Topological charge,TC)。具有OAM的光束会围绕相位奇点旋转沿着光轴向前传播。涡旋光束携带的TC幅值和符号,可以通过与球面波干涉产生的明亮条纹数量和旋转方向进行检测。利用涡旋光束的空间维度信息,可以极大提高通信焦场调控的自由度。

偏振是光束的一项重要特性,它描述的是光束在横向平面内的电场强度的振动方向。相较于常见的线性偏振和椭圆偏振属于均匀偏振,径向偏振和角向偏振属于非均匀偏振。其中径向偏振描述光场的横向分量的振动方向总是和径矢方向保持一致,而角向偏振的振动方向总是与径矢垂直。近些年,由于径向偏振光束和角向偏振光束在光纤通信、光学操纵、粒子捕获、光学数据存储、聚焦显微镜等领域宽泛的应用,它们已经被广泛的研究。

将涡旋特性加在矢量光束中,再经高数值孔径聚焦后,会有许多有趣的现象生成。当TC为零时,径向偏振光束紧聚焦后会产生一个很小的光斑,在焦点附近表现出一个很强的纵向光场分量;角向偏振光束在焦点附近表现为中心凹陷的圆环。当TC为1时,径向偏振和角向偏振光束都表现为一个光斑。但是这种聚焦程度有所不同,相较于径向偏振,角向偏振光束所得的光斑的半径要更小。此外,当TC为非整数时,矢量涡旋光束表现为更多聚焦特性,形成具有开口的涡旋光束。由此可见,偏振状态和涡旋特性对光束的聚焦产生巨大的影响。

发明内容

为了解决在粒子捕获中所需要提供多个中心暗洞的光笼结构的焦场调控问题,本发明提供一种具有多中空的紧聚焦光场分布构造方法,采用携带多拓扑电荷的双涡旋相位的方式,可以灵活地调控紧聚焦光场分布中空的数量。

本发明解决其技术问题所采用的技术方案是:

一种具有多中空的紧聚焦光场分布构造方法,包括以下步骤:

步骤1,在紧聚焦系统中,设置入射平面的初始参数:入射平面先采用在直角坐标系下N×N的矩阵X和Y,上下边界分别为R_xy和-R_xy,点间距为2R_xy/(N-1),计算出矩阵X和Y在极坐标下的极矢量长度矩阵ρ和角矩阵根据透镜的数值孔径NA与光束折射角θ的关系,计算出折射角矩阵θ:

θ=arcsin[ρ·NA/(nt·R)]

其中,nt为透镜的折射率,R为透镜的最大半径;

根据标量波矢k=2π/λ,折射角θ和角矩阵计算出波矢矩阵k=(kx,ky,kz):

再依据横向波矢矩阵计算出横向波矢矩阵kρ

步骤2,设计包含多涡旋奇点的相位分布矩阵P,对涡旋的数量为S、第n个涡旋的位置为和携带的拓扑电荷大小为ln进行调控,涡旋相位分布矩阵P计算表达式为:

步骤3,以径向偏振与角向偏振矢量叠加为混合偏振状态,设置代表入射光束混合偏振状态的混合偏振角φ0,计算出混合偏振贝塞尔高斯涡旋光束(Hybrid PolarizedBessel Gaussian Vortex Beam,HPBGVB)在透射面的混合偏振状态矩阵V:

根据极矢量矩阵ρ、横向波矢矩阵kρ、设计的涡旋相位分布矩阵P和混合偏振状态矩阵V,计算出HPBGVB的透射光场矩阵Et

其中,入射光束携带的等效拓扑电荷数量为w0为高斯腰宽,最大峰值1/e强度对应的半宽,HPBGVB的入射光束光场矩阵为

步骤4,将HPBGVB的透射光场矩阵Et,通过Deybe-Wolf衍射积分方程得到聚焦光场矩阵Eout

其中,r和Φ分别为焦平面的极矢量长度矩阵和角矩阵,α为透射光束的最大折射角,z为光束聚焦的传输距离;

步骤5,根据所得的聚焦光场矩阵Eout计算出聚焦光强矩阵I:

I=|Ex|2+|Ey|2+|Ez|2

矩阵I即为最后获得的具有多中空的紧聚焦光场分布,通过设计不同涡旋相位分布矩阵P,获得不同中空数量的紧聚焦光场分布。

鉴于入射光束的偏振状态和附加涡旋对聚焦特性的影响,本发明中选择贝塞尔高斯涡旋光束作为标量场,将每个涡旋引入位置信息,将径向偏振和角向偏振进行矢量组合,成为HPBGVB。紧聚焦光强分布中涡旋相位奇点所在区域常常表现为暗洞的结构。因此,可以通过采用携带多拓扑电荷的双离轴涡旋相位的方式,来调控聚焦光强中心暗洞的数量的生成。这些具有多中空的焦场结构可以同时捕获多个粒子分别在这些中空暗洞中,将在粒子捕获、光学操纵等领域具有一定的研究意义。此外,本发明中提出的混合偏振比例、涡旋的数量、涡旋位置的坐标信息,将为在焦平面上获得特定光强分布的聚焦光束提供更多的调制自由度提供可能。

本发明的有益效果主要表现在:相较于复梯度相位方法相比,本发明使用携带相同拓扑电荷数量关于光轴对称的双涡旋相位方法,这种加载多个离轴涡旋的方法将更方便地在焦平面上获得具有多中空的紧聚焦光场分布。获得焦场结构的中空数量,可以通过两个涡旋携带的拓扑电荷的大小进行准确调控,有利于提高中空焦场结构制备的效率。而且获得的紧聚焦光场分布的中空数量包含奇数和偶数,更具有普遍性。通过这种使用涡旋位置和携带拓扑电荷数量来设计涡旋相位分布的方式,可以有效降低涡旋相位设计的复杂度,提高数据处理效率。获得的多中空紧聚焦光场分布,可以实现同时捕获多个粒子的实际应用。

附图说明

图1为本发明中获得具有多中空的紧聚焦光场分布的流程图。

图2为本发明中获得具有多中空的紧聚焦光光场分布的紧聚焦系统框图。

图3为本发明中设计的多拓扑电荷的双离轴涡旋相位分布。

图4为本发明中获得具有多中空的紧聚焦光场分布结果。

具体实施方式

下面结合附图对本发明作进一步描述。

参考图1~图4,一种具有多中空的紧聚焦光场分布构造方法,包括以下步骤:

步骤1,在紧聚焦系统中,设置入射平面的初始参数:入射平面先采用在直角坐标系下N×N的矩阵X和Y,上下边界分别为R_xy和-R_xy,点间距为2R_xy/(N-1),计算出矩阵X和Y在极坐标下的极矢量长度矩阵ρ和角矩阵根据透镜的数值孔径NA与光束折射角θ的关系,计算出折射角矩阵θ:

θ=arcsin[ρ·NA/(nt·R)]

其中,nt为透镜的折射率,R为透镜的最大半径;

根据标量波矢k=2π/λ,折射角θ和角矩阵计算出波矢矩阵k=(kx,ky,kz):

再依据横向波矢矩阵计算出横向波矢矩阵kρ

步骤2,设计包含多涡旋奇点的相位分布矩阵P,对涡旋的数量为S、第n个涡旋的位置为和携带的拓扑电荷大小为ln进行调控,涡旋相位分布矩阵P计算表达式为:

由于相位奇点所在的位置,光强分布展现为暗洞的结果。基于这个原理,可以将多个涡旋相位奇点在不同的位置上进行排列,将产生一些特定暗洞形状分布的紧聚焦光场分布。为了制备具有多中空的中空紧聚焦光场分布,本发明设计的多拓扑电荷的双离轴涡旋相位分布,两个涡旋关于原点(光轴)对称,且携带的拓扑电荷相同l1=l2=ln。通过调控每个涡旋的携带的拓扑电荷数量ln和涡旋位置的极矢量大小ρk,设计的多拓扑电荷的双离轴涡旋相位分布以及对应的入射光束光强分布(右上角),如图3所示;

步骤3,以径向偏振与角向偏振矢量叠加为混合偏振状态,设置代表入射光束混合偏振状态的混合偏振角φ0,计算出HPBGVB在透射面的混合偏振状态矩阵V:

根据极矢量矩阵ρ、横向波矢矩阵kρ、设计的涡旋相位分布矩阵P和混合偏振状态矩阵V,计算出HPBGVB的透射光场矩阵Et

其中,入射光束携带的等效拓扑电荷数量为w0为高斯腰宽(最大峰值1/e强度对应的半宽),HPBGVB的入射光束光场矩阵为

步骤4,将HPBGVB的透射光场矩阵Et,通过Deybe-Wolf衍射积分方程得到聚焦光场矩阵Eout

其中,r和Φ分别为焦平面的极矢量长度矩阵和角矩阵,α为透射光束的最大折射角,z为光束聚焦的传输距离;

步骤5,根据所得的聚焦光场矩阵Eout计算出聚焦光强矩阵I:

I=|Ex|2+|Ey|2+|Ez|2

制备获得的多中空焦场结构的光强分布结果,如图4所示。图4所示了紧聚焦光强分布的中心凹陷区域中空数量分别为二、三、四和五的结果。为了更方便地获取具有多中空的紧聚焦光场分布,最大的中空数量与加载的双离轴涡旋中每个涡旋携带的具有相同符号拓扑电荷的大小有关。设定最大的中空数量为Sp,可以表述为:最大的中空数量=每个涡旋携带的拓扑电荷大小之和-1(Sp=l1+l2-1)。本发明中所提到的紧聚焦光场分布的中空数量可以通过在入射平面对所加载的双离轴涡旋相位携带的拓扑电荷大小进行调控,这将为调控紧聚焦光场分布的中空数量提供便利。

上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

10页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种基于棱镜分光的水下微光彩色成像设计方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!