包括输入控制元件的电压转换器布置及操作电压转换器布置的方法

文档序号:1047988 发布日期:2020-10-09 浏览:26次 >En<

阅读说明:本技术 包括输入控制元件的电压转换器布置及操作电压转换器布置的方法 (Voltage converter arrangement comprising an input control element and method of operating a voltage converter arrangement ) 是由 马蒂亚斯·拉德克 里卡多·努内斯·马切桑 于 2018-12-21 设计创作,主要内容包括:一种电压转换器布置,包括能够基于输入电压生成输出电压的钟控电压转换器。电压转换器布置还包括连接在第一输入电压节点和第二输入电压节点之间的第一输入控制元件,其中第二输入电压节点处于参考电势。第一输入控制元件被设计为允许电流流动,以抵消电压转换器布置的输入电流中的波动。本发明还描述了对应的方法。(A voltage converter arrangement includes a clocked voltage converter capable of generating an output voltage based on an input voltage. The voltage converter arrangement further comprises a first input control element connected between the first input voltage node and a second input voltage node, wherein the second input voltage node is at a reference potential. The first input control element is designed to allow current to flow to counteract fluctuations in the input current of the voltage converter arrangement. A corresponding method is also described.)

包括输入控制元件的电压转换器布置及操作电压转换器布置 的方法

技术领域

根据本发明的实施例涉及电压转换器布置。

根据本发明的另外的实施例涉及一种操作电压转换器布置的方法。

根据本发明的另外的实施例涉及具有双向并联线性调节器的上-下转换器。

背景技术

下面,将解释本发明的技术问题。

开关调节器,通常是脉宽调制转换器(PWM转换器),被广泛用于DC-DC转换器或AC-DC转换器中,其中将在输出或输入处生成尽可能没有纹波的直流电压或直流电流。这种开关调节器的效率通常非常高,因为浸渐启闭是通过能量存储装置实现的。

然而,缺点是这种转换器需要平滑电容和另外的滤波元件,诸如在输入处的双补偿扼流圈和在输出处的滤波电容器或额外的滤波扼流圈,以在很大程度上抑制纹波。平滑电容器体积大,并且通常限制使用寿命,并且在许多情况下,它们也不适合于高于100℃的温度,因此特别地应当避免平滑电容器。

避免输入或输出处的电容器的一种方式是使用理想耦接的电感,其最小化开关电感的电流波动。然而,这种措施非常依赖于操作参数,并且通常导致仅在一个操作点或在有限的操作范围内完成输出或输入处的电流平滑,而在其它操作范围内出现电流和电压纹波。

另外的缺点是开关调节器的动态(调节速度)有限,因为它至少受到开关调节器操作的开关频率的周期持续时间的限制。

已经发现主要的技术问题是通过电流纹波的PWM开关调节器(脉宽调制开关调节器)的电源反馈效应,电流纹波由输入侧平滑电容通过转换器获取,并且因此导致在电源输入处的复杂的电源滤波器(用于高频谐波(干扰电压)的电源滤波器)。据估计,电源滤波器占电源供应的体积和成本的20%到30%之间。这种电源电器的输入级通常是boost转换器(升压转换器)或SEPIC转换器,其执行功率因数校正(PFC)以生成与电源电压同相的正弦输入电流并因此抑制朝向电源的低频谐波。

下面将列出针对技术问题的一些先前的解决方案。

克服这些缺点的一个先前的解决方案是根据图1的由PWM buck转换器(降压转换器)和并联线性调节器LR1构成的线性支持buck转换器,buck转换器将输入电压Vin转换为输出电压Vout并向负载RL供应电流,而同时线性调节器LR1从输入向输出供应电流,以及另一线性调节器LR2从buck转换器在负载上的输出得出电流。

图2[1]示出这种原理的典型电路。开关调节器由buck拓扑结构构成,buck拓扑结构具有开关Q1、平滑电感L1和二极管形式的无源开关D1。例如,线性调节器LR1和LR2被设计为快速双极晶体管。

在图3和图4中,示出线性支持buck转换器的优选功能,以消除所提到的缺点。线性调节器LR1和LR2都由放大器控制,使得它们保持跨负载的输出电压Vout恒定。将输出电压与待被调节作为目标值的参考电压Vref进行比较。如果因为通过L1供应给负载的电流太小而使输出电压低于目标值,则调节器LR1将被激活,并且来自输入电压的电流将被额外地供应给负载。另一方面,如果因为通过L1的电流太高而使输出电压太高从而使跨负载的输出电压达到目标值,则调节器LR2将被激活,且负载上的过电流将被耗散。另外,由线性调节器中的一个在各自情况下(由LR1)供应给负载的电流或(由LR2)从负载中释放的电流被测量并将转发给具有滞后的比较器,以与电流参考值Iy进行比较,并且因此在有源开关Q1处实现buck转换器的脉宽调制。如果参考值Iy被设置为正值,如图3b所示,则仅线性调节器LR1将是起作用的,因为电流总是在正方向上流向负载。如果输入电压和输出电压之间的差小于输出电压本身,则这种操作的模式是有用的,因为线性调节器中的功率耗散应当保持尽可能低。另一方面,如果输出电压小于输入电压和输出电压之间的差,并且因此如果仅LR2是起作用的以耗散负载上的过电流,则线性调节器的功率耗散将被降低到最小值。

已经发现的是,减少损耗并实现最大效率的最优的实施方式是取决于输入和输出之间的电压差是小于还是大于输出电压本身,由LR1或者由LR2补偿来自扼流圈L1的buck转换器的所谓的纹波电流。因此,线性调节器中的损耗仅由纹波电流乘以输入与输出之间的最小电压差或输出电压本身形成,使得此布置的总效率几乎与不具有线性调节器辅助的buck转换器的总效率一样高。

在图4中可以看出,在动态调节过程中,通过在时间t_start处接通线性调节器和开关调节器,输出电流作为恒定直流电流被立即供应给负载。随着所有动态负载变化或输入电压变化,线性调节器中的一个因此将完全地补偿开关调节器的较慢反应,开关调节器经由时间常数从存储元件L1和负载RL本身被延迟。

尽管这种布置的实施方式简单,但是由于输入电压必须总是大于输出电压,所以不能消除缺点中的一个。因此,这种实施方式不适于需要低于输出电压的输入电压的应用,并且也不能消除补偿开关调节器的输入处的电流纹波的缺点。

完全消除这些缺点的另外的可能性是未知的,或者仅消除这些缺点的一部分,并且因此限制了应用的领域(例如,具有电容以实现无纹波输出电流[4]的额外的电路)。

图11a和图11b中所示的拓扑结构被称为用于boost转换器或SEPIC转换器的常规解决方案,boost转换器或SEPIC转换器作为具有正弦电源电压的电源电器的输入级;高频电流纹波的抑制是经由电源滤波器实现的,这涉及大量的技术经费,并且还引起热损耗,即使热损耗很小。

另外,存在所谓的无桥boost转换器[7]、[8]或boost/buck转换器[9]或无桥buck(降压)转换器[10],它们适合于AC输入Vin_AC并且被用于功率因数校正,因为可以在某种程度上免除为了功率因数校正的目的而连接在boost或SEPIC转换器上游的整流器桥。图11C和11D示出这种拓扑结构。

这些拓扑结构具有输入侧平滑电感,然而,即使在以连续操作方式工作时,平滑电感也不能完全抑制电流的开关纹波。因此,必须在Vin_AC电源输入与输入扼流圈之间连接额外的滤波电容器和可能的双电流补偿扼流圈,以抑制高频干扰。

鉴于现有技术,需要一种电压转换器概念,提供效率、实施经费和纹波之间的改进的折衷。

发明内容

根据本发明的实施例提供了一种电压转换器布置。电压转换器布置包括能够(或被配置为)基于输入电压生成输出电压的钟控电压转换器。电压转换器布置还包括连接在第一输入电压节点和第二输入电压节点之间的第一输入调节元件,第二输入电压节点具有参考电势(并且例如可以被视为参考电势节点)。第一输入调节元件被配置为允许电流流动以抵消电压转换器布置的输入电流(例如是流过调节元件的电流与钟控电压转换器的输入电流的总和)中的波动,例如使得电压转换器的输入电流中的波动至少部分地被补偿。

对应的电压转换器布置基于这样的考虑,即,通过使得随时间变化并且例如抵消电压转换器布置的输入电流中的波动的电流流动成为可能的第一输入调节元件,可以以有效的方式减少输入纹波(例如,电压转换器布置的输入电流中的波动)。例如,当钟控电压转换器的输入电流小于最大值(例如浮动最大值)(例如钟控电压转换器的输入电流的最大值)时,流过第一输入调节元件的电流可以增加。例如,可以控制或调节流过第一输入调节元件的电流,使得流过第一输入调节元件的电流与钟控电压转换器的输入电流的和至少近似恒定,由此,因此,电压转换器布置的输入电流(通常是流过第一输入调节元件的电流与钟控电压转换器的输入电流的和)保持近似恒定。

虽然对应的输入调节元件通常引起一定量的功率耗散,但是其通常也有助于显著减少输入纹波(例如,电压转换器布置的输入电流的纹波),使得例如涉及大量空间和高成本的输入滤波器组件,诸如电容器和/或扼流线圈可以被设计得尺寸更小或者甚至可以被完全地省去。因此,可以实现效率、实施经费、可靠性和电磁兼容性(例如,关于输入纹波)之间的良好的总体折衷。

在优选实施例中,电压转换器布置被配置为补偿第一输入电压节点和第二输入电压节点之间的电压波动。例如,即使在第一输入电压节点和第二输入电压节点之间存在显著的电压变化,钟控电压转换器也能够提供恒定的输出电压(其中第一输入电压节点和第二输入电压节点之间的电压变化可以由钟控电压转换器以至少2比1的比率补偿)。

在优选实施例中,钟控电压转换器是非反相电压转换器。已经表明的是,上面说明的输入调节元件在这种非反相电压转换器中可以是非常有利的,以抵消输入电流中的波动。

在优选实施例中,电压转换器布置被配置为允许电流流过第二输入调节元件以抵消电压转换器布置的输入电流中的波动。因此,第二输入调节元件可以补充第一输入调节元件的效果,其中例如,可以取决于电压比,借助于控制器来决定哪个输入调节元件应该接管多少电流。第一输入调节元件和第二输入调节元件也可以交替地起作用,使得例如第一输入调节元件在(例如钟控电压转换器的输入电压或开关周期的)周期持续时间的第一部分期间接管电流并且使得例如第二输入调节元件在周期持续时间的第二部分期间接管电流。以这种方式,在一些实施例中可以进一步减小损耗。

在优选实施例中,电压转换器布置具有第二输入调节元件,第二输入调节元件连接在第一输入电压节点和第一输出电压节点之间。第一输出电压节点优选地具有与参考电势不同的电势。在这种情况下,第二输入调节元件优选地被配置为至少暂时地允许在第一输出电压节点和第一输入电压节点之间(例如从第一输出电压节点到第一输入电压节点)的电流流动。

以这种方式,例如可以实现,在周期的第一部分期间,第一输入调节元件引导电流从第一输入电压节点流出,以及在周期持续时间的第二部分期间,第二输入调节元件引导电流流向第一输入电压节点。可替换地,取决于相应操作状态,可以仅第一输入调节元件或仅第二输入调节元件是起作用的。

通过使用上述两个输入调节元件,可以减小损耗,例如其中输入调节元件中的在相应操作状态中导致最低损耗的一个输入调节元件变为起作用的(传导电流)。因此,取决于电压比,驱动输入调节元件并且优选地还驱动钟控电压转换器的控制器可以确定钟控电压转换器的最小电流或最大电流或平均电流,例如,使得流过输入调节元件中的一个的电流或(优选地以交替的方式)流过两个输入调节元件的电流引起最小损耗。

在优选实施例中,第二输入调节元件被配置为允许在第一输入电压节点和第一输出电压节点之间的电流流动,以抵消电压转换器布置的输入电流中的波动。例如,电流可以经由第二输入调节元件从第一输入电压节点流到第一输出电压节点,或者电流可以通过第二输入调节元件从第一输出电压节点流到第一输入电压节点。例如,流过第二输入调节元件的电流可以流向第一输入电压节点,而流过第一输入调节元件的电流可以从第一输入电压节点流出(反之亦然)。这意味着,通过适当地组合或驱动两个输入调节元件,可以实现钟控电压转换器的输入电流相对于电压转换器布置的期望输入电流的波动(例如纹波状波动)至少部分地由从第一输出电压节点经由第二输入调节元件流到第一输入电压节点的电流来补偿,和/或其中小于电压转换器布置的期望输入电流的钟控电压转换器的输入电流由从第一输入电压节点经由第一输入调节元件流到第二输入电压节点的电流来补偿。因此,例如,可以实现电压转换器布置的近似恒定的输入电流,而不管钟控电压转换器的当前(瞬时)输入电流是大于还是小于电压转换器布置的期望(例如,当前或瞬时)输入电流。

在优选实施例中,电压转换器布置被配置为基于输入电流提供输出电压,其中输出电压的量大于输入电压的量。在这样的示例中,第一输入调节元件的存在是特别有用的,因为通常不可能通过连接在第一输入电压节点和第一输出电压节点之间的调节元件来有效地抵消电压转换器布置的输入电流中的波动。

在优选的实施方式中,电压转换器布置被配置为使得钟控电压转换器的输入电流,除了钟控电压转换器的输入电流的电流幅度的至多10%的电流波动之外,不超过时间段(例如在输入电压的周期)与输入电压成比例,其中输入电压的频率低于(或明显低于,例如至少低10倍)钟控电压转换器的开关频率(其例如具有正弦特性或正弦半波形式的特性)。电压转换器布置优选地被配置为(例如以时变方式)适配(例如控制或调节)通过第一输入调节元件的电流流动,其中通过第一输入调节元件的电流流动至少暂时地(或者也在整个正弦半波期间)抵消钟控电压转换器的输入电流中的电流波动(例如与理想正弦特性的偏差)(例如以便因此保持电压转换器布置的输入电流中的电流波动低于钟控电压转换器中的电流波动,或者以便使电压转换器布置的输入电流近似正弦特性)。

通过相应地设计电压转换器布置,例如谐波被保持得相对低。输入调节元件具有这样的效果,例如,钟控电压转换器的输入电流中的波动(其例如由钟控电压转换器的钟控操作产生)可能不会完全影响电压转换器布置的输入电流,而是仅在较小的程度上影响电压转换器布置的输入电流。由于通过第一输入调节元件的电流流动抵消了钟控电压转换器中的电流波动(其例如具有比输入电压明显更短的周期持续时间),因此可以实现减少电压转换器布置的输入电流上的纹波。因此,可以实现电压转换器布置的输入电流至少近似地与电压转换器布置的输入电压成比例,由此即使在没有任何复杂的输入滤波器的情况下,也可以改善电压转换器布置的电磁兼容性。这导致成本和非期望电源反馈效应之间的良好折衷。

在优选实施例中,电压转换器布置具有第三输入调节元件,第三输入调节元件连接在第一输入电压节点和第一输出电压节点之间,第一输出电压节点具有与参考电势不同的电势。例如,第三输入调节元件可以与上述第二输入调节元件并联,但允许电流在与第二输入调节元件的电流流动方向相反的方向上流动。例如,第三输入调节元件被配置为至少暂时地允许在第一输入电压节点和第一输出电压节点之间的电流流动,例如,该电流流动与通过第二输入调节元件的电流流动相反。

例如,利用可以具有三个输入调节元件的对应的电压转换器布置,可以由控制器取决于相应操作状态(例如取决于输入电压和输出电压之间的关系)灵活地决定电流要流过哪个(哪些)输入调节元件。通过使用(或通过存在)第二输入调节元件和第三输入调节元件两者,例如,可以实现电流可以从第一输入电压节点流向第一输出电压节点以及从第一输出电压节点流向第一输入电压节点。另外,从第一输入电压节点到第二输入电压节点(或反之亦然)的电流流动也可以通过第一输入调节元件发生。因此,可以灵活地选择(例如通过控制电压转换器布置)电流要流过哪些输入调节元件,以便即使钟控电压转换器的输入电流变化,也保持电压转换器布置的输入电流至少近似恒定。

在优选实施例中,电压转换器布置具有第二输入调节元件,第二输入调节元件连接在第一输入电压节点和第一输出电压节点之间。电压转换器布置还具有第三输入调节元件,第三输入调节元件连接在第一输入电压节点和第一输出电压节点之间。电压转换器布置被配置为当电压转换器布置的输入电压(或输入电压的量)大于电压转换器布置的输出电压与输入电压之间的差(或大于第一输入电压节点与第一输出电压节点之间的电势差的量)时允许(例如选择性地)电流经由第二输入调节元件流动。电压转换器布置还被配置为当输入电压偏离输出电压至多10%(或至多+/-1V,或至多+/-2V,或至多+/-5V)时允许(例如选择性地)电流经由第一输入调节元件流动。电压转换器布置还被配置为当输入电压(或输入电压的量)小于输出电压与输入电压之间的差(或小于第一输入电压节点与第一输出电压节点之间的电势差的量)时,允许(例如选择性地)电流经由第一输入调节元件流动。电压转换器布置还被配置为当输入电压偏离输出电压的一半至多10%(或至多+/-1V,或至多+/-2V,或至多+/-5V)时,允许(例如选择性地)电流经由第二输入调节元件和/或第一输入调节元件流动。电压转换器布置还被配置为当输入电压(或输入电压的量)大于输出电压时,允许(例如选择性地)电流经由第三输入调节元件流动。

提供了一种适当的机制,以使能钟控电压转换器在不同的操作状态中(或者甚至在输入电压的周期的不同的阶段期间)的输入电流中的波动,各自具有良好的效率。

在优选实施例中,钟控电压转换器是boost转换器(升压转换器)和/或SEPIC转换器和/或Cuk转换器。已经发现的是,本文所述的概念可以特别好地用于这种转换器类型。

在优选实施例中,第二输入调节元件和/或第三输入调节元件和/或第一输入调节元件通过使用双极晶体管来实现。已经发现的是,双极晶体管特别好地适合于对应的调节。

在优选实施例中,电压转换器布置具有连接在第一输入电压节点和不同于参考电势节点的第一输出电压节点(第一输出电压节点具有例如不同于参考电势的电势)之间的第二输入调节元件。钟控电压转换器优选地被配置为-在输入电压的量等于第一输入电压节点和第一输出电压节点之间的电势差的量(或者偏离第一输入电压节点和第一输出电压节点之间的电势差的量例如最大10%,或者最大+/-1V,或者最大+/-2V,或者最大+/-5V)并且输入电压的量小于输出电压的量的操作状态(以下也描述为“情况4”)中-具有脉动输入电流(其最大量值例如大于电压转换器布置的所需或期望电流值,并且其最小量值例如小于电压转换器布置的所需或期望输入电流值)。例如,第一输入调节元件和第二输入调节元件被配置为,在输入电压的量对应于第一输入电压节点和第一输出电压节点之间的电势差的量并且输入电压的量小于输出电压的量的操作状态中,通过第一输入调节元件使能在第一输入电压节点和参考电势节点之间的时间上脉动的电流流动并且通过第二输入调节元件使能在第一输出电压节点和第一输入电压节点之间的时间上脉动的电流流动来至少部分地补偿钟控电压转换器的输入电流中的波动。例如,通过第二输入调节元件的脉动电流流动和通过第一输入调节元件的脉动电流流动在时间上交替(即,它们不同时发生)。例如,如果输入电流的瞬时电流小于电压转换器布置的所需电流值(或期望电流值),则出现通过第二输入调节元件的电流流动。例如,如果钟控电压转换器布置的输入电流的瞬时电流小于电压转换器布置的所需电流值(或期望电流值),则电流将流过第一输入调节元件。例如,电流流动这样发生,使得电压转换器布置的输入电流暂时小于钟控电压转换器的输入电流以及电压转换器布置的输入电流暂时大于钟控电压转换器的输入电流,或者使得电压转换器布置的输入电流的时间曲线是钟控电压转换器的输入电流的时间曲线的时间平滑版本。例如,借助于上述驱动可以实现,电压转换器布置补偿钟控电压转换器在完全不同的操作状态中的输入电流中的波动,其中保持低损耗。

在优选实施例中,电压转换器布置具有连接在第一输入电压节点和不同于参考电势节点的第一输出电压节点之间的第二输入调节元件。例如,第一输出电压节点具有与参考电势不同的电势。例如,钟控电压转换器被配置(或被驱动)为具有脉动输入电流,在输入电压的量大于第一输入电压节点和第一输出电压节点之间的电势差的量并且输入电压的量小于输出电压的量的操作状态(本文中也被描述为“情况1”)中,脉动输入电流的最小值至少与电压转换器布置的所需或期望输入电流值一样大。例如,第二输入调节元件被配置为,在输入电压的量大于第一输入电压节点与第一输出电压节点之间的电势差的量并且输入电压的量小于输出电压的量的操作状态中,通过使得第二输入调节元件使能在第一输出电压节点与第一输入电压节点之间的时间上脉动的电流流动,以至少部分地补偿钟控电压转换器的输入电流中的波动。在所提及的操作状态中(其中输入电压的量大于第一输入电压节点和第一输出电压节点之间的电势差的量),可以通过适当地配置电压转换器布置来有效地抵消钟控电压转换器的输入电流中的波动。例如,在上述情况下,在第二输入调节元件中出现的功率耗散小于在使用第一输入调节元件的情况下将在第一输入调节元件中出现的功率耗散。因此,第二输入调节元件补充第一输入调节元件,使得控制器可以决定,是当通过第一输入调节元件还是当通过第二输入调节元件实现对钟控电压转换器的输入电流中的波动的补偿时,该补偿更有效。

在优选实施例中,钟控电压转换器被配置(或驱动)为,在输入电压的量对应于输出电压的量(例如,偏离输出电压的量至多10%,或至多+/-1V,或至多+/-2V,或至多+/-5V)的操作状态(这在本文中也称为“情况2”)中,具有脉动输入电流。例如,钟控电压转换器的脉动输入电流的最大值至多与电压转换器布置的所需或期望输入电流值一样大。第一输入调节元件被配置为,在输入电压的量对应于输出电压的量的操作状态中,通过第一输入调节元件使能在第一输入电压节点和参考电势节点之间的时间上脉动的电流流动,至少部分地补偿钟控电压转换器的输入电流中的波动。因此,电压转换器布置的输入电流大于或等于钟控电压转换器的输入电流。

在所提及的操作状态中存在第一输入调节元件是有利的,因为由于输入电压与输出电压之间的相对小的差,从第一输入电压节点到第一输出电压节点的电流流动和从第一输出电压节点(第一输出端子)到第一输入电压节点(第一输入端子)的电流流动仅在有限的程度上是可能的。因此,第一输入调节元件,例如在所提及的操作状态中是用于抵消电压转换器布置的输入电流中的波动(或者至少部分地补偿钟控电压转换器的输入电流中的波动)的选择装置。

在优选实施例中,钟控电压转换器被配置(或被驱动)为在输入电压的量小于第一输入电压节点和第一输出电压节点之间的电势差的量并且输入电压的量小于输出电压的量的操作状态(在下文中也称为“情况3”)中,具有脉动输入电流(其最大值例如至多与电压转换器布置的所需或期望输入电流值一样大)。第一输入调节元件被配置为,在输入电压的量小于第一输入电压节点和第一输出电压节点之间的电势差的量并且输入电压的量小于输出电压的量的这种操作状态中,通过第一输入调节元件使能在第一输入电压节点和第二输入电压节点(其可以是参考电势节点)之间的时间上脉动的电流流动,至少部分地补偿钟控电压转换器的输入电流中的波动。

借助于电压转换器布置的上述配置或通过相应地驱动第一输入调节元件,实现了在所提及的操作状态中,以最小损耗对钟控电压转换器的输入电流中的波动进行补偿。由于在所提及的操作状态中,输入电压的量小于第一输入电压节点和第一输出电压节点之间的电势差的量,所以第一输入调节元件中的功率耗散通常小于可以连接在第一输入电压节点和第一输出电压节点之间的任何可能的另外的输入调节元件中的功率耗散。因此,第一输入调节元件在此操作状态中可以充分利用其优点。

在优选实施例中,电压转换器布置具有第三输入调节元件,第三输入调节元件连接在第一输入电压节点和第一输出电压节点之间。例如,第三输入调节元件与上述第二输入调节元件并联连接,但是被设计用于与第二输入调节元件相比的相反方向的电流流动。顺便提及,第一输出电压节点优选地具有与参考电势不同的电势。

钟控电压转换器被配置为在输入电压的量大于输出电压的量的操作状态中具有脉动输入电流(其中钟控电压转换器的脉动输入电流的最大值例如最多与电压转换器布置的所需或期望输入电流值一样大)。第三输入调节元件被配置为在输入电压的量大于输出电压的量的操作状态中,通过第三输入调节元件使能在第一输入电压节点和第一输出电压节点之间的时间上脉动的电流流动,补偿钟控电压转换器的输入电流中的波动。

通过相应地设计电压转换器布置或者通过相应地驱动第三输入调节元件,可以实现以能量有效的方式补偿钟控电压转换器的输入电流的波动。具体地,在上述操作状态中,第三输入调节元件通常具有例如比第一输入调节元件更低的功率耗散,因为第一输入电压节点和第一输出电压节点之间的电压差的量通常小于第一输入电压节点和第二输入电压节点之间的输入电压的量。因此,第三输入调节元件的存在或适当驱动使得能够在所提及的操作状态中进行低损耗操作(或低损耗地减少电压转换器布置的输入电流中的波动)。

在优选实施例中,电压转换器布置被配置为吸收输入电流,使得输入电流的时间曲线至少在一段时间上(例如在输入电压的周期持续时间期间)近似地与输入电压成比例(例如基于输入电压的幅度或者可替换地基于输入电流的幅度,具有至多10%的最大偏差)。输入电压的频率优选地小于(或显著小于,例如至少小10倍)钟控电压转换器的开关频率。例如,输入电压具有正弦半波曲线。电压转换器布置被配置为使得电压转换器布置的输入电流在第一时间范围内的(例如脉动的)曲线在量上大于钟控电压转换器的输入电流,第一时间范围对应于正弦半波的零值(例如过零)并且在钟控电压转换器的输入电流的多个周期上延伸(使得电压转换器的输入电流在过零附近的脉动可以通过LR4或仅通过LR4来补偿、LR4被电压转换器布置相应地驱动)。

电压转换器布置的适当设计可以确保仅生成低谐波。通过驱动钟控电压转换器,使得其输入电流在量上小于电压转换器布置的(期望)输入电流,可以实现通过第一输入调节元件补偿钟控电压转换器的输入电流中的波动。这是特别有利的,因为第一输入调节元件在与正弦半波的零值邻近的第一时间范围内以特别低的损耗操作,因为在这种情况下跨第一输入调节元件的压降相对小。

在另一优选实施例中,电压转换器布置被配置为当输入电压的量小于输入电压和输出电压之间的差的量时并且当输入电压的量小于输出电压的量时(或者当输入电压小于输出电压和输入电压之间的差时并且当输出电压大于输入电压时),借助于通过第一输入调节元件的时变电流流动来至少部分地补偿钟控电压转换器的输入电流中的波动。在所提及的操作状态中,可以以特别低的损耗方式,实现借助于通过第一输入调节元件的时变电流流动的对(选择性地)钟控电压转换器的输入电流中的波动的补偿。例如,在所提及的操作状态中,第一输入调节元件的功率耗散小于例如连接在第一输入电压端子与第二输入电压端子之间的可能的额外的输入调节元件的功率耗散。因此,通过在所提及的操作状态中(选择性地)使用第一输入调节元件,而例如在其他操作状态中使用连接在第一输入电压节点和第一输出电压节点之间的另外的输入调节元件,可以将由输入调节元件引起的损耗保持为低。

在另一优选实施例中,电压转换器布置被配置为当输入电压的量大于输入电压和输出电压之间的差的量并且当输入电压的量小于输出电压的量时(或者当输入电压大于输出电压和输入电压之间的差时并且当输出电压大于输入电压时),借助于通过第二输入调节元件的时变电流流动来至少部分地补偿钟控电压转换器的输入电流中的波动。第二输入调节元件连接在第一输入电压节点和第一输出电压节点之间,第一输出电压节点具有与参考电势不同的电势。

已经认识到,在所提及的操作状态中,例如,第二输入调节元件可以以比第一输入调节元件更小的损耗补偿钟控电压转换器的输入电流中的波动。因此,例如第一输入调节元件和第二输入调节元件可以彼此互补,以在不同的操作状态中以小的损耗补偿钟控电压转换器的输入电流中的波动。例如,控制器可以基于电压关系(例如基于输入电压和输出电压之间的关系)决定哪个输入调节元件(例如第一输入调节元件或第二输入调节元件或者可能存在的第三输入调节元件)接管对钟控电压转换器的输入电流中的波动的补偿。

在优选实施例中,电压转换器布置被配置为当输入电压的量是输出电压的量的大约50%(例如,具有+/-10%的容差,或具有+/-1V或+/-2V或+/-5的容差)并且当输入电压的量小于输出电压的量时,或当输入电压的量在输出电压的量的40%和60%之间并且当输入电压的量小于输出电压的量时,通过流过第一输入调节元件和第二输入调节元件的时变交流电流流动,至少部分地补偿钟控电压转换器的输入电流中的波动。第二输入调节元件连接在第一输入电压节点和第一输出电压节点之间,第一输出电压节点具有与参考电势不同的电势。

此实施例基于这样的发现,即在输入电压的量近似为输出电压的量的一半的情况下,可以通过(例如在钟控电压转换器的周期内)流过第一输入调节元件和第二输入调节元件的电流来执行对钟控电压转换器的输入电流中的波动的特别节能的补偿。例如,如果钟控电压转换器的输入电流小于电压转换器布置的(当前)目标输入电流,则第一输入调节元件从第一输入电压节点减去电流。另一方面,例如,如果钟控电压转换器的输入电流大于电压转换器布置的(当前)目标输入电流,则第二输入调节元件例如可以将电流馈送到第一输入电压节点中。因此,例如钟控电压转换器可以***作,使得其输入电流(在钟控电压转换器的周期期间)暂时大于以及暂时小于电压转换器布置的(当前)目标输入电流。这样,由于流过输入调节元件的最大电流小于在仅使用一个输入调节元件情况下将流过对应的输入调节元件的最大电流,因此使得能量有效的操作成为可能。这减少了功率耗散。

在优选实施例中,电压转换器布置被配置为当输入电压的量大于输出电压的量时(或者当输入电压大于输出电压时),借助于通过第三输入调节元件的时变电流流动,至少部分地补偿钟控电压转换器的输入电流中的波动。第三输入调节元件连接在第一输入电压节点和第一输出电压节点之间,第一输出电压节点具有与参考电势不同的电势(例如,允许在与第二输入调节元件LR3的电流流动方向相反的方向上的电流流动)。

通过使用第三输入调节元件,因此,在所提及的操作条件下也可以对钟控电压转换器中的波动进行低损耗补偿,而在所提及的操作状态中,第一输入调节元件中的损耗将大于第三输入调节元件中的损耗。由于存在两个或三个输入调节元件,例如第一输入调节元件和第三输入调节元件(或者可选地还有上述第二输入调节元件),因此可以实现将电压转换器布置的各个操作点处的损耗保持为低。

在优选实施例中,电压转换器布置被配置为使得在第二时间范围内,钟控电压转换器的输入电流的脉动特性在量上大于电压转换器布置的输入电流(使得钟控电压转换器的输入电流在第二时间范围内的脉动可以通过LR3或仅LR3来补偿,LR3由电压转换器布置相应地驱动),在第二时间范围期间,电压转换器布置的输入电压小于电压转换器布置的输出电压并且第二时间范围在时间上比第一时间范围更接近正弦半波的最大值。电压转换器布置的适当设计确保了在第二时间范围内可以进行具有相对低损耗的操作。通过将电压转换器布置设计为使得钟控电压转换器的输入电流的脉动特性的量大于电压转换器布置的输入电流,由此可以实现,电流通过第二输入调节元件(例如从第一输出电压节点)流向第一输入电压节点,以补偿钟控电压转换器布置的输入电流中的波动。这允许以适当的电压比(例如,当当前输入电压小于当前输出电压时)保持较低的损耗,因为跨第二输入调节元件的压降将小于跨第一输入调节元件的压降。

在优选实施例中,电压转换器布置被配置为使得在第三时间范围内,在脉动特性的周期内的钟控电压转换器的输入电流的脉动特性在量上暂时小于电压转换器布置的输入电流以及在量上暂时大于电压转换器布置的输入电流,在第三时间范围期间,电压转换器布置的输入电压小于电压转换器布置的输出电压(例如,输出电压的一半)并且第三时间范围在时间上比第一时间范围更接近正弦半波的最大值。因此,例如,钟控电压转换器的输入电流的脉动可以在第三时间范围内由LR3和LR4一起(交替地)补偿,LR3和LR4相应地由电压转换器布置驱动。因此,例如,所述的实施方式实现了流过第一输入调节元件的电流被暂时从第一输入电压节点汲取,以及流过第二输入调节元件(例如LR3)的电流被暂时供应到第一输入电压节点。这使得损耗特别低,因为流过第一输入调节元件或流过第二输入调节元件的最大电流保持相对小(例如,小于仅有一个输入调节元件是起作用的情况)。

总之,可以说,因为钟控电压转换器(在一些操作状态中)的输入电流的特性在量上小于电压转换器布置的期望输入电流的特性,所以钟控电压转换器的输入电流中的波动通过从第一输入电压节点转移流过相应调节元件的电流来补偿。因为钟控电压转换器(在某些操作状态中)的输入电流的特性在量上大于电压转换器布置的期望输入电流,所以钟控电压转换器的输入电流中的波动可以通过将流过相应的调节元件的电流(例如从第一输出电压节点)引导到第一输入电压节点来补偿。通过相应地驱动钟控电压转换器,钟控电压转换器因此可以被设置为以可能最能量有效的方式补偿其输入电流纹波。

在优选实施例中,电压转换器布置被配置为使得在第四时间范围内,钟控电压转换器的输入电流的脉动特性在量上小于电压转换器布置的(期望)输入电流(使得例如通过LR1或者仅能够通过LR1来补偿钟控电压转换器的输入电流的脉动,LR1由电压转换器布置相应地驱动),在第四时间范围期间,电压转换器布置的输入电压大于电压转换器布置的输出电压并且第四时间范围在时间上比第一时间范围更接近正弦半波的最大值。例如,由于通过LR1从第一输入电压节点得出朝向第一输出电压节点的电流,因此实现了可以低损耗补偿钟控电压转换器的输入电流中的波动。

在优选实施例中,在使用第一输入调节元件时形成的线性调节器的调节频率(或调节速度)大于(或快于)钟控电压转换器的时钟频率(或周期持续时间)。可替换地或额外地,在使用第二输入调节元件时形成的线性调节器的调节频率(或调节速度)大于(或快于)钟控电压转换器的时钟频率(或周期持续时间)。可替换地或额外地,在使用第三输入调节元件时形成的线性调节器的调节频率(或调节速度)大于(或快于)钟控电压转换器的时钟频率(或周期持续时间)。以这种方式,与钟控电压转换器的输入电流纹波相比,使线性调节器“快速”操作,由此(多个)线性调节器可以基本上补偿钟控电压转换器的输入电流中的波动。

在优选实施例中,电压转换器布置具有第二输入调节元件,第二输入调节元件连接在第一输入电压节点和第一输出电压节点之间,第一输出电压节点具有与参考电势不同的电势。第二输入调节元件被配置为至少暂时地允许在第一输出电压节点和第一输入电压节点之间(例如,从第一输出电压节点到第一输入电压节点)的电流流动。电压转换器布置还包括调节电路,调节电路被配置为调节通过第一输入调节元件和第二输入调节元件的电流流动,以作为调节目标致力于实现电压转换器布置的输入电压(例如,第一输入电压节点和第二输入电压节点之间)与电压转换器布置的输入电流之间的固定预定的或可变可调的比率。以这种方式,在使用第一输入调节元件和第二输入调节元件时执行的电流调节可以使得电压转换器布置的输入电流和输入电压至少近似地彼此成比例,这导致电压转换器布置的基本上电阻性的行为并且额外地将非期望电源反馈效应保持为低。

在优选实施例中,电压转换器布置包括第一放大器电路,第一放大器电路被配置为缩放跨电流测量电阻器下降并且与电压转换器布置的输入电流成比例的电压,以获得与电压转换器布置的输入电流成比例的第一缩放电压值。电压转换器布置还包括固定或可变分压器,固定或可变分压器被配置为产生与电压转换器布置的输入电压成比例的第二缩放电压值。电压转换器布置还包括调节放大器(可变增益放大器),调节放大器被配置为接收第一缩放电压值和第二缩放电压值,并且提供用于第一输入调节元件和第二输入调节元件的驱动信号或用于第一输入调节元件和第二输入调节元件的共同驱动信号,以减小或最小化第一缩放电压值和第二缩放电压值之间的差。

以这种方式,可以以在电路方面可容易实现的方式来实现调节,以调节电压转换器布置的输入电流和输入电压以实现预定的比率。

在优选实施例中,电压转换器布置被配置为根据由电压转换器布置递送到负载的功率来设置分压器的分压器比,以使电压转换器布置的输入电压(例如,第一输入电压节点和第二输入电压节点之间)与电压转换器布置的输入电流之间的目标比率适配于递送到负载的功率(使得例如结果是电压转换器布置的输入功率适配于递送到负载的电压转换器布置的输出功率)。这确保了电压转换器布置可以高效地操作,因为以这种方式实现了功率耗散保持为低。特别地,不需要通过调节元件(例如输入调节元件)消耗相当大部分的功率或将其转化为热量。因此,通过使电压转换器布置的输入电压与电压转换器布置的输入电流之间的目标比率适配于负载,输入调节元件中的损耗可以被降低到最低要求的水平。

在优选实施例中,电压转换器布置被配置为响应于来自电压转换器布置的输出的反馈信号来调节分压器的分压器比,反馈信号用于设置钟控电压转换器的开关信号的占空比。例如,反馈信号可以基于电压转换器布置的实际输出电压与电压转换器布置的目标输出电压之间的差来形成。这允许以非常有效的方式设置或调节分压器比,反馈信号是关于是应该向电压转换器布置的输出供应更多还是更少功率的重要指示符。

在优选实施例中,电压转换器布置具有第三输入调节元件,第三输入调节元件连接在第一输入电压节点和第一输出电压节点之间(例如与第二输入调节元件并联;电流流动可以相反)。例如,第一输出电压节点具有与参考电势不同的电势。第三输入调节元件被配置为至少暂时地允许在第一输入电压节点和第一输出电压节点之间的电流流动,电流流动与通过第二输入调节元件的电流流动相反。顺便提及,调节电路被配置为根据电压转换器布置的输入电压与电压转换器布置的输出电压之间的关系来调节通过第一输入调节元件和/或通过第二输入调节元件的电流流动或者控制通过第三输入调节元件的电流流动,以作为调节目标致力于实现电压转换器布置的输入电压(例如,第一输入电压节点与第二输入电压节点之间)与电压转换器布置的输入电流之间的固定预定的或者可变可调的比率。因此,取决于电压转换器布置的输入电压与电压转换器布置的输出电压之间的关系,保证最佳效率或最低可能损耗的输入调节元件(例如,第一输入调节元件和第二输入调节元件)的组合和/或输入调节元件(例如,第三输入调节元件)可以用于实现电压转换器布置的输入电压与电压转换器布置的输入电流之间的期望比率。

例如,当输入电压小于输出电压时(这是正弦输入电压的情况,至少在周期持续时间的一部分期间),第一输入调节元件和/或第二输入调节元件可以很好地用于实现输入电压和输入电流之间的期望比率。另一方面,当输入电压高于输出电压时,可以更有利地由第三输入调节元件执行调节。在一个周期持续时间内,哪个(哪些)输入调节元件应该起作用的对应的转换(起作用的输入调节元件的转换可以容易地在一个周期持续时间内发生一次或多次)因此使得能够优化效率或减少损耗。

在优选实施例中,电压转换器布置包括第一放大器电路,第一放大器电路被配置为缩放跨电流测量电阻器下降并且与电压转换器布置的输入电流成比例的电压,以产生与电压转换器布置的输入电流成比例的第一缩放电压值。电压转换器布置还包括固定或可变分压器,固定或可变分压器被配置为产生与电压转换器布置的输入电压成比例的第二缩放电压值。电压转换器布置还包括调节放大器,调节放大器被配置为接收第一缩放电压值和第二缩放电压值,并且生成用于第一输入调节元件和第二输入调节元件的驱动信号或用于第一输入调节元件和第二输入调节元件的共同驱动信号,以减小或最小化第一缩放电压值与第二缩放电压值之间的差。例如,电压转换器布置还被配置为根据由电压转换器布置向负载供应的功率来设置针对跨电流测量电阻器下降的电压的缩放比和/或分压器的缩放比,以使电压转换器布置的输入电压(例如,第一输入电压节点与第二输入电压节点之间)与电压转换器布置的输入电流之间的目标比率适配于向负载供应的功率(从而结果,使电压转换器布置的输入功率适配于向负载供应的电压转换器布置的输出功率)。

这种电路布置可以以相对小的工作量来实现,并且使得可以将由于输入调节元件而引起的损耗保持得尽可能小。

在优选实施例中,电压转换器布置被配置为实现调节目标,调节目标被限定为电压转换器布置的输入电压与电压转换器布置的输入电流之间的目标比率(例如,通过根据由电压转换器布置向负载供应的功率和/或根据流过第一输入调节元件的电流和/或根据流过第二输入调节元件的电流和/或根据流过第三输入调节元件的电流和/或根据流过输入调节元件的总电流来影响分压器的分压器比)。通过相应地设置调节目标,电压转换器布置的功率耗散可以保持为小,而调节致力于减小电源干扰。

在优选实施例中,在使用第一输入调节元件时形成的线性调节器的调节速度(或调节频率)比当输入电流和输入电压的参考比率被适配为调节目标时的设置速度或调节速度快(例如至少快5倍或至少快10倍或至少快20倍)。这防止了调节目标过快地波动,过快地波动可导致不稳定和/或输入侧干扰。

在优选实施例中,电压转换器电路被设计为使得调节电路的输入信号在调节电路的参考电势附近的至多+/-15V或至多+/-5V的范围内。这确保了可以使用容易获得的运算放大器来实现调节电路。

在优选实施例中,第一输入电压节点和第二输入电压节点耦接到整流器电路,使得电压转换器布置的输入电压由单向AC电压形成。这确保了输入电压的极性保持不变,这保持了低的实现工作量。可选地,可以省略平滑电容器,这通常提高了电路装置的可靠性。

在优选实施例中,在钟控电压转换器中使用的至少一个开关晶体管是氮化镓晶体管或碳化硅晶体管。可替换地或额外地,在钟控电压转换器中使用的至少一个二极管是氮化镓二极管或碳化硅二极管。已经发现,使用氮化镓成分或碳化硅成分通常导致高功率密度和低损耗。

根据本发明的实施例提供了一种操作电压转换器布置的方法,电压转换器布置包括钟控电压转换器和连接在第一输入电压节点和第二输入电压节点之间的第一输入调节元件,第二输入电压节点具有参考电势。方法包括通过至少暂时激活通过输入调节元件的电流流动来抵消电压转换器(或电压转换器布置)的输入电流中的波动。

方法基于与上述设备的基础相同的考虑。方法可以进一步由本文关于对应的设备(特别是电压转换器布置)单独地或组合地所述的所有特征、功能和细节补充。

附图说明

下面将参考附图更详细地解释根据本发明的实施例,其中

图1示出根据常规解决方案的线性支持buck转换器的框图;

图2示出根据常规解决方案的与两个线性调节器组合的buck转换器设计的框图;

图3示出根据常规解决方案的与两个线性调节器组合的buck转换器的调节功能的框图;

图4示出根据常规解决方案的与线性调节器结合的转换器的调节功能的曲线形状的图示;

图5示出根据本发明的实施例的电压转换器布置的框图;

图6示出根据本发明的实施例的操作电压转换器布置的方法的流程图;

图7示出通过线性调节器LR3和LR4针对脉宽调制转换器(PWM转换器)的纹波电流补偿的图示(表3和表4的情况4);

图8示出通过线性调节器LR3针对PWM转换器的纹波电流补偿的示意性表示(表3和表4的情况1);

图9示出通过线性调节器LR4和/或LR1针对PWM转换器的纹波电流补偿的示意性表示(表3和表4的情况2、3和5);

图10示出与四个线性调节器组合的变压器耦接的Cuk转换器的发明性实施方式的简化电路图;

图11a示出常规PFC boost转换器的简化电路图(PFC=功率因数校正;boost转换器=“升压转换器”);

图11b示出常规PFC SEPIC转换器的简化电路图;

图11c示出常规无桥PFC boost转换器的简化电路图;

图11d示出常规无桥PFC SEPIC转换器的简化电路图;

图12示出与两个线性调节器组合的线性支持降压转换器的发明性实施方式(或实施例)的框图;

图13a示出与两个线性调节器组合的线性支持boost转换器的发明性实施方式(或实施例)的简化电路图;

图13b示出与两个线性调节器组合的根据图13a的线性支持boost转换器的发明性实施方式(或实施例)的简化电路图,以及用于输入处的纹波电流抑制的线性支持升压转换器的发明性调节功能的实施方式;

图13c示出与两个线性调节器组合的根据图13a的线性支持boost转换器的发明性实施方式(或实施例)的简化电路图,以及用于输入处的纹波电流抑制的的线性支持升压转换器的发明性调节功能以及跨功能Kv(s)使用可变电压参考的压控功率因数校正的实施方式;

图13d示出与两个线性调节器组合的根据图13a的线性支持boost转换器的发明性实施方式(或实施例)的简化电路图,以及用于输入处的纹波电流抑制的线性支持升压转换器的发明性调节功能以及跨具有时间延迟的两个反相放大器的功能使用可变电压参考的压控功率因数校正(低通滤波器Ry2、Ry3、Cy3和Ry5、Ry6、Cy6)的实施方式;

图14示出与三个线性调节器组合的线性支持升压/降压转换器的发明性实施方式(或实施例)的框图;

图15a示出与三个线性调节器组合的SEPIC转换器的发明性实施方式(或实施例)的简化电路图;

图15b示出与三个线性调节器组合的根据图15a的线性支持SEPIC转换器的发明性实施方式(或实施例),以及用于输入处的纹波电流抑制的线性支持升压/降压转换器的发明性调节功能以及跨功能Kv(s)使用可变电压参考的压控功率因数校正的实施方式;

图15c示出与三个线性调节器组合的根据图15a的线性支持SEPIC转换器的发明性实施方式的简化电路图,以及用于输入处的纹波电流抑制的线性支持升压/降压转换器的发明性调节功能以及跨功能Kv(s)和通过感测线性调节器中的电流Ireg1、Ireg3和Ireg4的电压参考Vuref的校正功能使用可变电压参考的压控功率因数校正的实施方式。

图15d示出具有全桥整流器的通过单向交流电压的输入电压源Vin的发明性实施方式的电路图;

图16示出根据表4(示例)中的4,通过线性调节器LR3和LR4中的电流对用于单向正弦输入电压Vin的输入电流IVin(t)的电流纹波进行补偿的示意性表示;

表3示出例如图12和13的实施方式的线性调节器的激活函数的表格表示;

表4示出例如图14和15的实施方式的线性调节器的激活函数的表格表示。

具体实施方式

1.根据图5的电压转换器布置

图5示出根据本发明的实施例的电压转换器布置500的框图。

电压转换器布置500被配置为接收输入电压Uein并基于输入电压Uein提供输出电压Uaus

电压转换器布置包括钟控电压转换器510,钟控电压转换器510能够基于输入电压Uein生成输出电压Uaus或者被配置为基于输入电压Uein生成输出电压Uaus

电压转换器布置500还包括连接在第一输入电压节点504与第二输入电压节点506之间的第一输入调节元件520。第二输入电压节点506包括例如参考电势,并且可以被认为是参考电势节点。

第一输入调节元件520被配置为允许电流流动以抵消电压转换器布置500的输入电流Iein中的波动,例如,输入电流Iein是流过调节元件520的电流Iregel(Iregulation)与钟控电压转换器510的输入电流Itakt(Iclock)的和。例如,因此,钟控电压转换器510的输入电流Itakt中的波动至少部分地被补偿。

关于操作的模式,应当注意的是,例如第一输入调节元件520与钟控电压转换器510的输入并联连接。因此,电压转换器布置500的输入电流Iein等于钟控电压转换器510的输入电流Itakt与流过第一输入调节元件520的电流Iregel的和。还假设,钟控电压转换器510的输入电流Itakt由于钟控电压转换器510的钟控操作而经受波动,例如,波动至少近似是周期性的(至少在短的时间段上,即,例如在钟控电压转换器510的若干个开关周期上)。因此,例如第一输入调节元件520可以至少部分地补偿钟控电压转换器510的输入电流Itakt中的波动,从而可以减小或者理想地甚至完全或几乎完全补偿电压转换器布置的输入电流Iein中的(短期)波动(即,例如与钟控电压转换器510的时钟控制对应的波动)。换句话说,第一输入调节元件520通常足够快以补偿由钟控电压转换器510的钟控开关引起的电流Itakt中的(例如,纹波状)波动。

借助于对应的布置,例如,可以实现,当钟控电压转换器510的输入电流Itakt低于最大值或平均值时,总是有增加的电流流过第一输入调节元件520,使得例如,电流Itakt和Iregel的和近似恒定或者遵循期望曲线(例如与电压转换器布置的输入电压成比例)(至少在短时间段内,例如在钟控电压转换器的开关周期内)。

然而,可选地,如下所述,另外可以使用另外的输入调节元件。

总之,因此可以说,通过流过第一输入调节元件520的电流流动,电压转换器布置500使得可以至少部分地、但理想地完全或几乎完全地补偿电流Itakt中的波动,波动是由钟控电压转换器510的钟控开关Iregel引起的。虽然第一输入调节元件520生成一定量的功率耗散,但是在此可以节省或至少显著地减少需要额外的结构空间并且通常限制使用寿命的复杂的输入滤波器。在这方面,(第一)输入调节元件520有助于提供一种提供效率、实现工作量和干扰抑制之间的改进的折衷的电压转换器布置。

下面将解释另外的可选的细节。换句话说,图5中所示的电压转换器装置500可以可选地通过本文单独地或组合地所述的所有特征、功能和细节被补充。

2.另外的实施例

下面将描述一些另外的实施例。

图10示出变压器耦接的CuK转换器的发明性实施方式。

图12示出升压转换器的发明性实施方式,在图13中被实施为boost转换器。

图14示出升压/降压转换器的发明性实施方式,其在图15中被实施为SEPIC转换器。

图7、8和9示出如何补偿输入电流I_in的电流纹波ΔI。图7、8和9中所示的以及基于这些图描述的功能可以可选地全部或部分地在本文所述的所有实施例中实现。

图10的电压转换器布置

图10所示的实施例是图10所示的变压器耦接的Cuk转换器,缺点是由于额外的变压器而导致电路复杂性较高,额外的变压器在相同的方向上以与输入电压相同的地电势保持输出电压的极性。另一方面,此实现方式具有额外的优点,即输入电流和输出电流可以同时被线性补偿。

下面,将更详细地解释图10的电压转换器布置1000。

电压转换器布置1000被配置为从输入电压源1010接收输入电压Vin,并将输出电压Vout递送到负载1020,负载在本文中由负载电阻器RL表示。

电压转换器布置包括绝缘(例如变压器耦接的)Cuk转换器1030,绝缘Cuk转换器形成钟控电压转换器。绝缘Cuk转换器1030的一个输入耦接到第一输入电压节点1032和第二输入电压节点1034。绝缘Cuk转换器1030的输出耦接到第一输出电压节点1042和第二输出电压节点1044。应当注意的是,电压源1010也耦接到第一输入电压节点1032并且耦接到第二输入电压节点1034,以及负载1020连接在第一输出电压节点1042与第二输入电压节点1044之间。

作为第一输入调节元件的调节晶体管1050的集电极端子耦接到第一输入电压节点,而调节晶体管1050的发射极端子耦接到第二输入电压端子。因此,第一调节晶体管1050的集电极-发射极路径与绝缘Cuk转换器1030的输入并联连接。例如,在所示的输入电压的极性下,第一调节晶体管1050(LR4)是NPN晶体管。

还存在(可选的)第二调节晶体管1060,作为第二输入调节元件。它是PNP晶体管,它的发射极端子耦接到第一输出电压节点1042,并且它的集电极端子耦接到第一输入电压节点1032。因此,第二调节晶体管1060的发射极-集电极路径连接在第一输出电压节点1042和第一输入电压节点1032之间,例如,使得电流可以从第一输出电压节点1042流向第一输入电压节点1032。

电压转换器布置还包括第三调节晶体管1070,例如第三调节晶体管也是PNP晶体管。例如,第三调节晶体管1070的发射极端子连接到第一输入电压节点1032,以及例如,第三调节晶体管1070的集电极端子连接到第一输出电压节点1042,使得第三调节晶体管1070的发射极-集电极路径连接在第一输入电压节点1032与第一输出电压节点1042之间。因此,例如第三调节晶体管1070可以将电流从第一输入电压节点1032转移到第一输出电压节点1042。第三调节晶体管1070也被认为是可选的。

另外,电压转换器布置1000包括另外的第四调节晶体管1080,例如第四调节晶体管是NPN晶体管。例如,第四调节晶体管1080的集电极端子耦接到第一输出电压节点1042,并且例如,第四调节晶体管1080的发射极端子耦接到第二输出电压节点1044。因此,第四调节晶体管的集电极-发射极路径例如与负载1020并联连接。

关于Cuk转换器1030的内部结构,应当注意的是,它包括输入侧电感1090、开关1091、输入侧电容1092、具有输入侧绕组1094和输出侧绕组1095的变压器1093、输出侧电容1096、输出侧二极管1097和输出侧电感1098。例如,输入侧电感1090连接在第一输入电压节点1032和第一节点1099a之间。开关1091连接在第一(输入侧)节点1099a和第二输入电压节点1034之间。变压器1093的输入侧绕组1094与输入侧电容1092串联连接在第一输入侧节点1099a和第二输入电压节点1034之间。变压器1093的输出侧绕组1095与输出侧电容器1096串联连接在第二输出侧节点1099b和第二输出电压节点1044之间。二极管1097的阳极耦接到第二输出电压节点1044,以及二极管1097的阴极耦接到输出侧节点1099b。输出侧电感1098耦接在第二输出侧节点1099b和第一输出电压节点1042之间。例如,输入侧电感1090和输出侧电感1098被施加到共同芯,并且呈现对应的磁耦合。

为了简化的原因,在此省略了变压器耦接的Cuk转换器1030的输入侧和输出侧缓冲电容,但是当然可以可选地使用。

还应当注意的是,例如,第二输入电压节点和第二输出电压节点以低阻抗连接,并且还可形成公共电路节点。

在下文中,将稍微更详细地阐述电压转换器布置的功能。

Cuk转换器1030的精确功能在此不是特别相关。相反,假设Cuk转换器以钟控方式操作,以基于由输入电压源1010提供的输入电压提供可能小于或大于输入电压的输出电压。假设输入电压和输出电压都参考公共参考电势(例如,公共参考电势被施加到第二输入电压节点1034和第二输出电压节点1044)。例如,这里进一步假设,Cuk转换器1030的输入电流,也称为Itakt,根据开关1091的开关周期随时间波动。这里进一步假设从电压源1010汲取的电流Iein应当具有预定的曲线并且应当在相对短的时间段上(例如在Cuk转换器1030的多个开关周期上)具有基本上平滑的曲线。总之,因此,输入电流Iein可以容易地变化(例如,它可以具有近似正弦曲线或者单向正弦曲线的曲线,但是此曲线应当保持尽可能不受钟控电流流动Itakt的影响或者不受其干扰。

这是通过以下方式实现的,即,通过第四调节晶体管1050的电流流动ILR4,以及可选地,通过第二调节晶体管1060的电流流动ILR3,以及通过第三调节晶体管1070电流流动ILR1,至少部分地或者甚至基本上或者完全地补偿电流Itakt中的这些波动。例如,第一调节晶体管1050的适当驱动确保电流ILR4流动,以及因此,电流Iein比电流Itakt大ILR4,例如,这在Itakt小于期望输入电流Iein的情况下是有用的。

通过适当地驱动第二调节晶体管1060,例如,可以实现电流ILR3流动,这又导致电流Iein比Itakt小ILR3。例如,如果Itakt大于Iein的(当前)期望值,则这可能是有帮助的。然而,只有当输出电压Vout高于输入电压Vin时,电流ILR3才可以流动。

另外,通过适当地驱动第三调节晶体管1070,可以实现电流ILR1流动,这导致电流Iein比电流Itakt大ILR1。例如,如果Itakt小于期望输入电流Iein,这是有帮助的,但是只有当输出电压Vout小于输入电压Vin时,电流ILR1才可以流动。

因此,例如,通过适当地驱动第一调节晶体管1050以及可选地还驱动第二调节晶体管1060和/或第三调节晶体管1070,即使电流Itakt经受显著的(短期的或纹波状的)波动(例如在时钟中或以开关1092的开关频率的周期性),输入电流Iein也能够被调节到期望目标值或期望曲线(例如近似正弦曲线)。例如,调节晶体管1050、1060、1070及其驱动可以被配置为使得调节明显快于钟控电压转换器1030的时钟频率,从而电流ILR4、ILR3和ILR1可以在钟控电压转换器1030的开关周期内跟随电流Itakt中的波动。以这种方式,可以实现输入电流Iein以小的偏差具有期望曲线(偏差小于输入电流Itakt中的周期性的或纹波状的波动)。

如果输入电压大于输出电压,图10中的实施方式还允许通过线性调节器LR2针对地电势或通过调节器LR1从输入电压对输出电压的电流纹波的可选补偿。如果输出电压大于输入电压,则电流纹波(例如钟控电压转换器的输出电流纹波)可以可选地由LR2或LR3补偿。

如果输出电压大于输入电压,则输入电压的电流纹波通过LR4针对地电势或者可选地通过LR3补偿,或者如果输出电压小于输入电压,则可选地通过LR1补偿。

因此,此实施方式还可以可选地仅补偿输入电压的电流纹波或(仅)补偿输出电压的电流纹波,或者同时补偿输入和输出电压的电流纹波。

另一方面,如果仅补偿L1处的输入电流纹波,而不补偿L2处的输出电流纹波,则将(可选地)区分出情况6至10中的状况(见表2)。

如果(可选地)要补偿电感L1和L2两者处的电流纹波,则出现情况11至17(参见表2)。在情况13、14、16和17中,可以看出,存在实现线性调节器的最低损耗状态的各种方式。所述状态取决于纹波电流的量,纹波电流的量在L1的输入处和在L2的输出处可以不同,并且纹波电流的量与跨所涉及的线性调节器的相应压降相结合导致不同的损耗。这取决于变压器耦接的Cuk转换器的设计参数。

图10中的实施例可以用于,例如将从诸如电池的源汲取无纹波电流的应用,或者用于将保存输入缓冲电容器以及输出缓冲电容器的应用。在由于输入电压也会由于输入处的电流波动而波动因此无法(或无法容易地)避免输入缓冲电容器的情况下,这是特别有用的。

本发明的主要方法专门针对转换器输入处相对于源的电流纹波的补偿。因此,例如,用于功率因数校正(PFC)的电路由线性辅助调节器补充。

根据图7、8和9的功能

下面,将再次参照图7、8和9简要说明电压转换器1000的操作的模式,应当注意的是,图7、8和9中说明的一些或全部功能可以与图10的电压转换器一起使用,顺便提及,根据图7、8和9的功能也可以在其他实施例中使用。

图7示出对PWM转换器的纹波电流补偿的图示。横坐标710描述时间,并且纵坐标720描述电流。

曲线730描述了钟控电压转换器的输入电流,例如电流Itakt。例如,曲线740描述流过LR3和LR4的电流,即流过用作第一输入调节元件的第一调节晶体管1050和流过用作第二输入调节元件的调节晶体管1060的电流。例如,假设输出电压Vout大约是输入电压Vin的两倍。

例如,输入电流的目标值由Iin表示。

如图7中可见,例如,转换器在时间t_start接通。然后,如曲线730所示,钟控电压转换器的输入电流Itakt开始增加,直到达到大于Iin的最大值(例如在附图标记732处)。然后,输入电流Itakt再次减小,例如减小到小于期望输入电流Iin的值(例如在附图标记734处)。然后,输入电流Itakt围绕期望输入电流Iin波动,例如具有基本上三角形的曲线。在钟控电压转换器1030(即变压器耦接的Cuk转换器)的开关周期内,电流暂时小于期望输入电流Iin以及暂时大于期望输入电流Iin。例如,开关周期的周期持续时间对应于电流Itakt的两个连续最小值或两个连续最大值之间的时滞。

曲线740示出线性调节器(具有调节晶体管LR3和LR4)如何至少部分地补偿输入电流Itakt中的波动(在这里示出的理想情况下,它们甚至以理想的方式补偿波动)。在此方面,应当注意的是,只要电流Itakt小于期望电流Iin,电流就流过第一调节晶体管1050。例如,在时间t_start和另一时间t1之间,电流流过第一调节晶体管LR4,使得输入电流Iein大于电流Itakt(例如,对应于电流ILR4+Itakt的和)。另一方面,如果电流Itakt大于期望输入电流Iin,例如在时间t1和t2之间的情况,第二调节晶体管1060将从第一输出电压节点1042供应电流到第一输入电压节点1032(而电流ILR4将通常为零),从而实现电流Itakt部分地由输入电流Iein提供,部分地由ILR3提供。结果,Iein于是对应于期望输入电流Iin,使得Itakt与期望输入电流Iin的偏差由电流ILR3补偿。在时间t2和t3之间,电流Itakt再次小于期望输入电流Iin,从而电流再次流过第一调节晶体管1050(ILR4)。电压转换器布置1000的总输入电流,即电流Iein,因此再次对应于期望输入电流Iin

然后,重复此过程,其中电流Itakt在期望输入电流Iin附近振荡,其中通常,在钟控电压转换器1030的开关周期内,流过第一调节晶体管1050的电流被暂时引导到第二输入电压节点1034,并且其中在相同的开关周期内,流过第二调节晶体管1060的电流被暂时从第一输出电压节点1042引导到第一输入电压节点1032。因此可以看出,通过第一调节晶体管1050和第二调节晶体管1060的协作,可以非常有效地在操作点补偿电流Itakt中的波动。

下面将基于图8,特别地关于输出电压Vout大于输入电压Vin的情况解释在另一操作点处对PWM转换器的纹波电流补偿,然而,其中输出电压Vout与输入电压Vin之间的差(即第二调节晶体管1060的发射极-集电极电压)小于输入电压Vin(其对应于第一调节晶体管1050的集电极-发射极电压)。换句话说,在现在描述的操作状态中,跨第二调节晶体管1060的发射极-集电极路径的电压比第一调节晶体管1050的集电极-发射极电压小(例如,至少小10%或至少小20%)。

在这种情况下,假设通过第一调节晶体管1050的电流流动比通过第二调节晶体管1060的电流流动导致更高的功率耗散。因此,在所提及的操作状态中的驱动电路驱动调节晶体管1050、1060、1070,使得仅第二调节晶体管1060携带电流,而第一调节晶体管1050保持不导通。第三调节晶体管1070无论如何都不能在所提及的操作状态中携带电流,因为输出电压Vout大于输入电压Vin。换句话说,在上述的操作状态中,仅激活第二调节晶体管1060(LR3),以最小化损耗。

横坐标810描述时间,以及纵坐标820再次描述电流。曲线830描述钟控电压转换器的输入电流,即Itakt,曲线840描述流过第二调节晶体管1060的电流,即ILR3

可以看出,在时间t1’,电流Itakt超过期望输入电流Iin。从此时开始,第二调节晶体管1060供应电流ILR3,其确保Iein保持在期望值Iin。然后,电流Itakt保持高于期望输入电流Iin直到时间t2’,并且例如在时间t2’再次达到期望电流Iin。在时间t1’和t2’之间,即在钟控电压转换器1030的整个开关周期期间,第二调节晶体管1060提供电流流动,该电流流动确保输入电流Iin不超过期望值Iin,即使电流Itakt大于期望输入电流Iin

在时间t2’之后,电流Itakt再次增加,即再次变得大于Iin,并且在时间t3’返回到值Iin。在钟控电压转换器1030的多个开关周期期间,因此由第二调节晶体管1060供应电流ILR3,这确保输入电流Iein保持恒定或几乎恒定,即,特别地不跟随电流Itakt中的波动,或仅以显著减小的程度跟随波动。

通过驱动电压转换器布置(或钟控电压转换器1030和调节晶体管1050、1060、1070)使得电流Itakt(在操作状态中)永久地(或至少在开关周期的90%期间)大于期望输入电流Iin或大于输入电流Iein,实现了对Itakt中的波动的补偿可以由第二调节晶体管1060执行,例如,这比由第一调节晶体管1050进行的补偿导致更低的损耗。

下面将借助图9说明另外的操作状态,特别地,将描述通过线性调节器LR4或LR1对PWM转换器的纹波电流补偿,例如,在情况2、3和5中,可以根据表3和表4执行该补偿。

横坐标910描述时间,以及纵坐标920描述电流。曲线930描述钟控电压转换器的输入电流,即电流Itakt,而曲线940描述流过第一调节晶体管1050的电流(ILR4)和流过第三调节晶体管1070的电流(ILR1)的和。

例如,如果输入电压近似等于输出电压,则可以使用对应的概念,因为在这种情况下,通常只有第一调节晶体管1050可以生成可靠的电流流动,而第二调节晶体管1060和第三调节晶体管1070的集电极-发射极电压太小。如果输入电压小于第一输出电压节点1042与第一输入电压节点1032之间的电压差,那么也可应用对应的概念,因为在此情况下,通过第一调节晶体管1050的电流流动比通过第二调节晶体管1060或第三调节晶体管1070的电流流动导致少的功率耗散。

在所述的操作状态下,通常通过适当驱动实现钟控电压转换器1030的输入电流Itakt不超过期望输入电流Iin,Itakt的最大值优选等于期望输入电流Iin。例如,可以看出,电流Itakt在时间t1”达到期望输入电流Iin,然后再次下降。然后,钟控电压转换器1030的输入电流Itakt在时间t2”再次达到期望输入电流Iin。在时间t1”和t2”之间,例如,取决于输入电压Vin和输出电压Vout之间的关系,电流流过第一线性调节器1050或第三线性调节器1070。这确保了输入电流Iin对应于期望输入电流Iin。由于Itakt不超过期望输入电流Iin,所以流过第一调节晶体管1050的电流ILR4或流过第三调节晶体管1070的电流ILR1可以用于确保Itakt和ILR4的和或者Itakt和ILR1的和在各自情况下对应于(至少是良好近似)期望输入电流Iin。因此,输入电流Iein基本上保持恒定,并且不跟随Itakt中的波动,或者仅以显著衰减的形式跟随它们。

总的来说,应当注意的是,根据图10的电压转换器1000不一定必须在图7、8和9中描述的所有操作状态中操作,而是例如,如果电压转换器1000可以在所提及的操作状态中的一个或多个中操作则已足够的。

总之,图7、8和9优选地示出升压和buck转换器的输入电流(蓝色曲线或曲线730、830、930)、线性调节器或线性调节器的输入电流(红色曲线或曲线740、840、940)和输入直流电流Iin(或Iein)(黑色曲线或曲线750、850、950)的发明性曲线。根据本发明,分别优选的曲线形状被赋予表4的情况1至4。

总之,因此可以说,例如,电压转换器布置1000的控制可以被配置为根据表3或根据表4区分操作状态,例如,此区分可以基于输入电压与输出电压之间的关系来进行。因此,电压转换器布置1000的控制可以决定在相应操作状态中使用调节晶体管1050、1060、1070中的哪些(或者一般地,线性调节器中的哪些)来补偿电流Itakt中的波动。因此,控制器可为调节晶体管1050、1060、1070提供适当的驱动信号。

在此,应当注意的是,不是所有的调节晶体管1050、1060、1070都必须存在,而是存在一个或两个所提及的调节晶体管就已足够。

另外,应当注意的是,调节晶体管1050、1060、1070在此(以及贯穿本说明书)表示不同类型的线性调节器,并且还可以由其他线性调节器来代替。特别地,在此所述的线性调节器不必由对应的双极晶体管形成。相反,可以使用场效应晶体管来代替双极晶体管。通常,场效应晶体管的源极连接对应于双极晶体管的发射极连接。另外,场效应晶体管的宿端子或漏极端子通常对应于双极晶体管的集电极端子。场效应晶体管的控制端子或栅极端子通常对应于双极晶体管的基极端子。

另外,应当注意的是,例如,在此所示的NPN晶体管也可由PNP晶体管代替,并且在此所示的PNP晶体管也可由NPN晶体管代替,在此情况下,当然需要相应地修改驱动,如所属领域的技术人员的通常实践的。

例如,NPN双极晶体管可以由N沟道场效应晶体管代替,PNP双极晶体管可以由P沟道场效应晶体管代替。

另外,也可以使用与所示电路互补的电路。

根据图12的电压转换器

图12示出根据发明性实施方式(或实施例)的与两个线性调节器组合的线性支持升压转换器的框图。

根据图12的电压转换器或电压转换器布置1200被配置为基于由输入电压源1210供应的输入电压Vin为负载1220提供输出电压Vout

电压转换器1200具体包括升压转换器1230,其中升压转换器1230的输入端子耦接到第一输入电压节点1232并且通常还耦接到第二输入电压节点1234。升压转换器1230的输出通常耦接到第一输出电压节点1242,并且还耦接到第二输出电压节点1244。负载1220连接在第一输出电压节点1242与第二输出电压节点1244之间。输入电压源1210还连接到第一输入电压节点1232和第二输出电压节点1234。输入电压源1210和负载1220通常不是电压转换器1200的部分。

电压转换器1200还包括第一输入调节元件1250(LR4)和第二输入调节元件1260(LR3)。

换句话说,图12示出与两个线性调节器LR3和LR4组合的发明性boost转换器(根据实施例)。

在这方面,应当注意的是,例如,电压转换器1200的操作的模式可以对应于电压转换器500的操作的模式或电压转换器1000的操作的模式。例如,第一输入调节元件1250或第一线性调节器1250可对应于第一输入调节元件或第一线性调节器或第一调节晶体管1050。另外,第二输入调节元件1260或第二线性调节器1260可以对应于第二输入调节元件1060或第二线性调节器1060或第二调节晶体管1060。升压转换器1230可以对应于变压器耦接的Cuk转换器1030。

在这方面,例如,电压转换器1200可以具有电压转换器1000的一些或全部功能,如以上在图7、8和9中以及还在图10中所解释的。

然而,还将借助于图13解释进一步的可选的细节,图13中解释的特征、功能和细节可以可选地单独地或组合地转移到根据图12的电压转换器1200。

根据图13a至13d的电压转换器

图13a示出与两个线性调节器(或输入调节元件或调节晶体管)组合的线性支持boost转换器的简化电路图。

例如,电压转换器或电压转换器布置1300被配置为基于来自电压源1310(输入电压源1310和负载1320通常不是电压转换器1300的部分)的输入电压Vin为负载1320提供输出电压Vout。例如,电压转换器包括boost转换器1330,boost转换器的输入耦接到第一输入电压节点1332和第二输入电压节点1334。例如,boost转换器的输出耦接到第一输出电压节点1342和第二输出电压节点1344。

电压转换器还包括第一调节晶体管1350,例如,第一调节晶体管是PNP晶体管。例如,第一调节晶体管1350的集电极-发射极路径与升压转换器或boost转换器1330的输入并联连接,例如,发射极端子耦接到第一输入电压节点1332,以及例如,集电极端子耦接到第二输入电压节点1334。另外,电压转换器1300具有第二调节晶体管1360,例如,第二调节晶体管是NPN晶体管。例如,第二调节晶体管1360的集电极-发射极路径耦接在第一输出电压节点1342与第一输入电压节点1332之间,集电极耦接到第一输出电压节点1342,以及发射极耦接到第一输入电压节点1332。因此,调节晶体管1360允许从第一输出电压节点1342到第一输入电压节点1332的电流流动,以及第一调节晶体管1350允许从第一输入电压节点1332到第二输入电压节点1334的电流流动。在此方面,应当注意的是,第一调节晶体管1350和第二调节晶体管1360分别仅是可能的输入调节元件和可能的线性调节器的示例;也可以采用其它类型的晶体管或其它类型的调节元件。

例如,升压转换器包括连接在第一输入电压节点1332和内部节点1336之间的电感1335。开关耦接在内部节点1336与第二输入电压节点1334或第二输出电压节点1344之间。二极管1338耦接在内部节点1336与第一输出电压节点之间,例如,阳极耦接到内部节点1336,以及阴极耦接到第一输出电压节点。另外,(可选的)输出电容1339耦接在第一输出电压节点1342与第二输出电压节点1344之间。

关于电压转换器1300的功能,应当注意的是,所述功能类似于电压转换器1000的功能,变压器耦接的Cuk转换器1030被升压或boost转换器1330代替。输入电压源1310对应于输入电压源1010,负载1320对应于负载1020,第一输入调节元件1350对应于第一输入调节元件1050,第二输入调节元件1360对应于第二输入调节元件1060。例如,输入调节元件的驱动可以以与电压转换器1000类似的方式针对电压转换器1300执行,或者以与本文所述的其他电压转换器布置类似或相同的方式执行。

按照图13b的电压转换器

下面,将借助于图13b描述与两个线性调节器的组合的根据图13a的线性支持boost转换器,以及用于输入处的纹波电流抑制的线性支持升压转换器的发明性调节功能的实现。

根据图13b的电压转换器或电压转换器布置1380基于根据图13的电压转换器1300,使得相同或相互对应的元件使用相同的附图标记来表示,并且在此将不再解释。

应当注意的是,图13b示出关于开关1337的驱动和关于输入调节元件1350、1360的驱动的另外的细节(其是可选的并且可以单独地和组合地使用)。

如从图13b可以看出,电压转换器1380包括脉宽调制驱动器1337a,脉宽调制驱动器为场效应晶体管Q1提供驱动信号,场效应晶体管Q1用作开关1337。例如,脉宽调制信号发生器1337a提供信号,信号被施加到场效应晶体管Q1的栅极端子以接通和关断用作开关的场效应晶体管。

电压转换器1380还包括线性调节电路1382,线性调节电路一方面接收关于boost转换器的输入电压的信息,另一方面接收关于由输入电压源提供的输入电流的信息,以及基于信息为第一调节晶体管1350和第二调节晶体管1360提供共同驱动信号。例如,差分放大器1384在其反相输入处接收由具有电阻器RV1和RV2的电阻式分压器基于boost或升压转换器1330的输入电压而获得的电压Vuref。换句话说,分压器,例如,包括电阻器RV1和RV2,连接在第一输入电压节点1332和第二输入电压节点1334之间,以及电阻式分压器的抽头连接到差分放大器1384的反相输入(-)。另外,电流测量电阻器1385与输入电压源1310串联连接在第一输入电压节点1332与第二输入电压节点1334之间,以确定由输入电压源1310供应的电流。跨电流测量电阻器1385的压降由(反相)放大器1386缩放,以及对应的缩放电流信号(表示电压形式的输入电流)被馈送到差分放大器1384的非反相输入(+)。差动放大器1384的输出信号被供应给作为NPN晶体管的第二调节晶体管1360的基极端子和作为PNP晶体管的第一调节晶体管1350的基极端子。

包括调节晶体管1350、1360、电阻式分压器RV1、RV2、反相放大器1386和差分放大器1384的锁定环路设置调节晶体管1350、1360的驱动,使得由电压源1310供应的电流IIN至少近似地与第一输入电压节点1332和第二输入电压节点1334之间的输入电压成比例(输入电压节点1332、1334之间的电压是电压VIN的良好近似,因为跨电流测量电阻器的压降优选地应当小到可以忽略)。比例常数由电阻式分压器(包括电阻器RV1和RV2)、电流测量电阻器1385和反相放大器1386的增益确定。

至于调节机制,应当注意的是,当输入电压源1310供应的电流相对于输入电压变得“太大”时,第二调节晶体管1360变为导通。在这种情况下,电流从电压转换器布置的输出经由第二调节晶体管1360供应到输入。然而,如果由输入电压源1310供应的电流(或者由整个电压转换器布置从输入电压源1310汲取的电流)“太小”(相对于输入电压),则第一调节晶体管1350将变得导通并且将因此增大由电压转换器布置汲取的电流。这至少部分地补偿升压或boost转换器1330的输入电流纹波。

另外,应当注意的是,对应的调节功能当然可以在电路工程方面不同地实现。包括电阻器RV1、RV2的分压器可由为调节放大器提供对应的信号的任何其它模拟或数字电路代替。在最简单的情况下,第一输入电压节点也可以直接与调节放大器的输入连接。当然,由电流测量电阻器1385和反相放大器1386执行的电流测量可以由另一电流测量机制代替,另一电流测量机制向调节放大器1384提供对应的电流信号。

当然,可选地,可以为调节晶体管1350、1360生成单独的驱动信号,使用共同驱动信号是特别有效的。

顺便提及,应当注意的是,根据图13B的电压转换器布置1380可以由本文关于其它电压转换器布置描述的那些特征、功能和细节来补充。对应的特征、功能和细节也可以单独地或组合地用于电压转换器布置1380中。

根据图13c的电压转换器布置

图13c示出与两个线性调节器组合的根据图13a的为线性支持升压或线性支持boost转换器或boost转换器的电压转换器布置1390的电路图,以及用于输入处的纹波电流抑制的线性支持升压转换器的发明性调节功能和经由功能Kv(s)使用可变电压参考的压控功率因数校正的实现。

在这方面,应当注意的是,电压转换器布置1390采用图13a和13b中所示的电压转换器布置的许多特征、功能、细节和元件。对应的特征、功能、细节和组件在此使用相同的附图标记来表示,从而关于图13a和13b的描述在此仍然有效。

然而,使用根据图13c的电压转换器布置1390,一些细节已经被改变或以更大的详细程度被示出,如将在下面解释的。

在这方面,应当注意的是,boost转换器1330”具有用于开关或开关晶体管1337的脉冲宽度调制的调节。例如,与boost转换器或电压转换器布置的输出电压Vout成比例(或者其也可以等于输出电压)的电压信号1391a通过包括电阻器RT1和RT2的电阻式分压器被抽头,并且被馈送到调节电路1391b。例如,在调节电路中,电压信号1391a通过调节放大器与参考电压VRef进行比较,并且例如,在此基础上通过使用调节1391c提供调节信号1391d。例如,调节1391c可实施比例调节或积分调节或比例-积分调节或其它调节功能。例如,调节信号1391d用于设置脉宽调制的开关比,使用脉宽调制的开关比来驱动开关或开关晶体管1337。例如,通过比较器1391e将调节信号1391d与来自锯齿波发生器1391f的信号进行比较以获得用于开关1337的驱动信号,从而产生脉冲宽度调制。因此,开关1337的驱动信号的开关比由调节信号1391d确定,开关1337的开关频率由锯齿波发生器1391f获得的锯齿信号的频率确定。

总之,因此可以说,通过根据升压转换器的输出电压设置或调节接通时间和关断时间的比率来调节升压转换器或boost转换器133”。

另外,调节信号1391d还用于设置升压转换器的输入电压与电压转换器布置的输入电流之间的目标比率。特别地,如针对电压转换器布置1380所描述的,由电阻器RV1和RV2形成的固定分压器在这里由可变分压器1392a代替。可调分压器1392a基于第一输入电压节点1332与第二输入电压节点1334(在其之间施加电压转换器布置1390的输入电压或boost转换器1330”的输入电压)之间的电压来提供分压信号1392b。可调分压器1392a包括串联连接在第一输入电压节点1332与第二输入电压节点1334之间的第一电阻器1392c和第二电阻器1392d的串联连接。第三电阻器1392e和可调晶体管1392f的集电极-发射极路径的串联连接与第一电阻器1392c并联连接。例如,电阻器1392e的第一端子耦接到第一输入电压节点1332,并且电阻器1392e的第二端子耦接到可调晶体管1392f的集电极端子。例如,可调晶体管1392f的发射极端子耦接到可调分压器1392a的中心节点1392g,第一电阻器1392c的第二端子和第二电阻器1392d的第一端子也耦接到中心节点。顺便提及,分压信号1392b在中心节点1392g处被抽头,并且例如,在差分放大器的非反相输入(+)处被馈送到差分放大器。例如,依据调节信号1391d并且依据流过第一调节晶体管1350以及第二调节晶体管1360的电流来调节可调分压器1392a。

例如,由设置功能1393a提供可调分压器1392a的可调晶体管1392f的驱动信号。例如,设置功能1393a接收调节信号1391d。另外,设置功能1393a可以接收关于流过第一调节晶体管1350和第二调节晶体管1360的电流的信息1393b。例如,信息1393b表示流过第一调整晶体管1350的电流和/或流过第二调整晶体管1360的电流是否超过预设阈值。因此,例如,调节功能1393a可以根据流过第一调节晶体管1350和第二调节晶体管1360的电流的量来适配,如下所述。总之,因此可以设置电压转换器布置的输入电压与输入电流(即,由电压源1310供应的电流)之间的目标比率,同时考虑也由调节信号1391d描述的电压转换器布置1390上的负载。

还应当注意的是,在图13c中所示的实施例中,调节放大器1384的输出信号不直接施加到调节晶体管1350、1360的基极端子。相反,调节放大器1384的输出信号被施加到场效应晶体管1394a的栅极端子,例如,场效应晶体管的源极端子被耦接到第二输入电压节点1334。例如,晶体管1394a的漏极经由电阻器1394b耦接到第一输出电压节点。例如,调节晶体管1350、1360的基极端子耦接到晶体管1394a的漏极端子处的节点。这使得施加到调节晶体管的基极端子的电压能够几乎增加到施加到第一输出电压节点1342的电压的电平,而调节放大器1384的电源电压不必假定同样高的值。在这个方面,可以有效地驱动调节晶体管1350、1360。

顺便提及,应当注意的是,根据图13c的电压转换器布置1390可以可选地由本文关于其他电压转换器布置所描述的任何特征、细节和功能来补充。对应的细节、特征和功能可以结合电压转换器布置1390单独地或组合地使用。

根据图13d的电压转换器布置

图13d示出根据发明性实施方式或实施例的电压转换器布置1395的电路图。特别地,图13示出与两个线性调节器组合的根据图13a的线性支持boost转换器,以及用于在输入处纹波电流抑制的线性支持升压转换器的发明性调节功能和使用可变电压参考经由具有时间延迟的两个反相放大器的功能进行的压控功率因数校正(低通滤波器Ry2、Ry3、Cy3和Ry5、Ry6、Cy6)的实现。

应当注意的是,电压转换器布置1395在许多部分中对应于根据图13a、13b和13c的电压转换器布置1300、1380、1390。为此,在此用相同的附图标记表示相同或作用相同的元件,并且参考关于图13a、13b和13c给出的解释。

然而,应当注意的是,例如与调节信号1391d相比,被馈送到比较器1391e的调节信号1391g被减慢。还应当注意的是,独立于输出电压的调节来执行调节晶体管1350、1360的驱动。

代替可变分压器1392a,电压转换器布置1395包括以修改的方式驱动的可变分压器1397a。

第一分支与第二分支的并联连接连接在第一输入电压节点1332与可调分压器1397a的中心节点1397b之间。第一分支包括第一可调晶体管1397c和第一电阻器1397d,晶体管1397c的发射极端子耦接到第一输入电压节点1332,晶体管1397c的集电极端子耦接到电阻器1397d的第一端子,以及电阻器1397d的第二端子耦接到中心节点1397b。第二分支包括第二可调晶体管1397e和第二电阻器1397f。第二可调晶体管1397e的发射极端子耦接到第一输入电压节点,第二可调晶体管1397e的集电极端子耦接到第二电阻器1397f的第一端子,以及第二电阻器1397f的第二端子耦接到中心节点。另外,第三电阻器1397g耦接在中心节点和第二输入电压节点1342之间。中心节点1397b耦接到调节放大器1384的非反相输入(+)。顺便提及,例如,第一可调晶体管1397c和第二可调晶体管1397e是PNP晶体管。

例如,基于运算放大器的有源低通滤波器提供用于第一可调晶体管的基极驱动信号,对应的运算放大器的第一非反相输入耦接到第一输入电压节点1332,运算放大器的第二反相输入经由电阻器耦接到电流测量节点1398a。例如,对应的运算放大器的输出耦接到第一可调晶体管1397的基极端子。例如,电流测量节点1398经由电流测量电阻器1398b耦接到第一输入电压节点1332。另外,电流测量节点1398a耦接到第二调节晶体管1360的发射极端子。因此,跨电流测量电阻器1398b的压降与流过第二调节晶体管1360的电流成比例。因此,总体效果是,随着通过第二调节晶体管1360的电流流动增加,第一可调晶体管1397c的基极-发射极电压的量以时间延迟的方式增加。总的来说,随着通过第二调节晶体管1360的电流流动增加,因此,(有效)电阻在由第一可调晶体管1397c和相关联的电阻器1397d形成的可调分压器的路径中降低。

还应当注意的是,第二可调晶体管1397e的基极端子耦接到辅助晶体管1399c的集电极端子。顺便提及,辅助晶体管1399c的发射极端子耦接到第一输入电压节点1332。辅助晶体管1399c的基极端子耦接到运算放大器的输出,运算放大器是有源低通滤波器的部分。有源低通滤波器接收与流过第一调节晶体管1350的电流成比例的输入电压。为此,电流测量电阻器1398c连接在第一输入电压节点和第一调节晶体管1350的发射极端子之间。因此,跨电流测量电阻器1398c的压降与通过第一调节晶体管1350的电流流动成比例。因此,基于运算放大器的低通滤波器的输入电压与通过第一调节晶体管1350的电流流动成比例,以及辅助晶体管1399c的基极-发射极电压的量以延迟的方式跟随通过第一调节晶体管1350的电流流动的量。随着通过第一调节晶体管1350的电流流动增加,通过辅助晶体管1399c的发射极-集电极路径的电流流动也增加,这又使得通过第二可调晶体管1397e的发射极-集电极路径的电流流动降低。

因此,如果通过第二调节晶体管1360的电流流动平均增加,则在调节放大器1384的非反相输入(+)处的电压与输入电压之间的比率增大。换句话说,随着通过第二调节晶体管1360的电流流动增加,调节放大器1384的非反相输入端(+)处的电压与输入电压之间的比率增大。随着通过第一调节晶体管1350的电流流动增加,调节放大器1384的非反相输入(+)处的电压与输入电压之间的比率减小。

因此,总的来说,可调分压器1397a的分压器比根据通过第一调节晶体管1350和第二调节晶体管1360的电流流动来调节,此处的调节以时间延迟的方式发送,例如,使得基本上在钟控电压转换器1330”的若干开关周期上进行求平均。例如,这通过有源(基于运算放大器)低通滤波器来实现,有源低通滤波器为可调分压器1397a的可调晶体管1397c、1397e供应驱动信号。

稍后将描述进一步的细节。

根据图14的电压转换器布置

图14示出根据本发明的实施例的电压转换器1400的框图。

电压转换器布置1400被配置为从输入电压源1410接收输入电压,并且基于输入电压为负载1420提供输出电压。电压转换器布置1400包括升压和降压转换器1430。电压转换器布置1400包括第一输入电压节点1432和第二输入电压节点1434以及第一输出电压节点1442和第二输出电压节点1444(例如,第二输出电压节点可与第二输入电压节点1434重合)。例如,升压和降压转换器1430的输入耦接到第一输入电压节点,并且升压和降压转换器1430的输出耦接到第一输出电压节点。通常,升压和降压转换器还耦接到第一输入电压节点1434和第二输出电压节点1444。

第一输入调节元件1450连接在第一输入电压节点1432与第二输入电压节点1434之间以允许电流流动。第二输入调节元件1460连接在第一输入电压节点1432与第一输出电压节点1442之间。例如,第三输入调节元件1470与第二输入调节元件并联地连接在第一输入电压节点1432与第一输出电压节点1442之间。例如,第二输入调节元件1460允许从第一输出电压节点1442到第一输入电压节点1432的电流流动,而第三输入调节元件1470允许从第一输入电压节点1432到第一输出电压节点1442的电流流动。

电压转换器布置1400的功能类似于如图12中所示的电压转换器布置1200的功能,升压转换器1230由升压和降压转换器1430代替。因此,例如,第一输入调节元件1450对应于第一输入调节元件1250,并且例如,第二输入调节元件1460对应于第二输入调节元件1260。添加第三输入调节元件1470,并且例如,如果第三输入调节元件1470中的功率耗散小于第一输入调节元件1450中的功率耗散,那么第三输入调节元件可取代第一输入调节元件1450而接管电流流动。

关于其余的操作的模式,例如,参考关于根据图12和13的电压转换器布置的以上解释以及关于根据图15的电压转换器布置的以下解释。

根据图15a的电压转换器布置

图15a示出与三个线性调节器组合的SEPIC转换器的简化电路图。

电压转换器布置1500被配置为基于由输入电压源1510供应的输入电压为负载1520提供输出电压。电压转换器布置1500包括SEPIC转换器1530,SEPIC转换器的输入耦接到第一输入电压节点1532,并且SEPIC转换器的输出耦接到第一输出电压节点1542。

电压转换器布置1500还包括第一调节晶体管1550,第一调节晶体管是PNP晶体管,发射极端子耦接到第一输入电压节点1532,以及集电极端子耦接到第二输入电压节点1534。电压转换器布置1500还包括第二调节晶体管1560,第二调节晶体管是NPN晶体管,集电极端子耦接到第一输出电压节点1542,并且发射极端子耦接到第一输入电压节点1532。电压转换器布置1500还包括第三调节晶体管1570,第三调节晶体管是PNP晶体管,发射极端子耦接到第一输入电压节点1532,并且集电极端子耦接到第一输出电压节点1542。第二调节晶体管1560和第三调节晶体管1570以反并联方式连接在第一输入电压节点1532和第一输出电压节点1542之间,使得它们可以承载不同方向的电流。

SEPIC转换器1530包括连接在第一输入电压节点1532和第一内部节点1536之间的第一电感1534。SEPIC转换器1530还包括连接在第一内部节点1536和第二输入电压节点1534之间的开关1536a。SEPIC转换器还包括连接在第一内部节点1536和第二内部节点1537之间的第一电容1536b。SEPIC转换器还包括连接在第二内部节点1537和第二输入电压节点1534之间的第二电感1537a,以及连接在第二内部节点1537和第一输出电压节点1542之间的二极管1538。SEPIC转换器还包括连接在第一输出电压节点与第二输出电压节点之间(即,与负载1520并联)的(可选的)输出电容1539。

至于SEPIC转换器的操作的模式,应当注意到,由SEPIC转换器1530的时钟控制引起的SEPIC转换器1530的输入电流中的波动至少部分地由输入调节元件1550、1560、1570补偿;取决于操作状态(例如,取决于施加在输入电压节点1532、1534之间的输入电压和施加在输出电压节点1542、1544之间的输出电压之间的关系),控制器决定调节晶体管1550、1560、1570中的哪些被激活用于调节。

在可变的可选择输出电压的情况下,用于线性支持SEPIC转换器的最优操作范围遵循以下形式的近似函数

ΔVout=Vin-Vin_min (2)

下面将参考其它电压转换器的实现来解释细节,这些电压转换器也可以可选地在此使用。

根据图15b的电压转换器布置

图15b示出与三个线性调节器组合的根据图15a的线性支持SEPIC转换器的框图,以及用于输入处的纹波电流抑制的线性支持升压/降压转换器的发明性调节功能和经由功能Kv(s)使用可变电压参考进行压控功率因数校正的实现。

电压转换器布置1580被配置为从输入电压源1510接收输入电压并且为负载1520提供输出电压。

电压转换器布置1580包括SEPIC转换器1530’,SEPIC转换器基本上与SEPIC转换器1530相同。这里,开关1536a由场效应晶体管形成。在此基本上如利用根据图13c的电压转换器布置1390那样进行调节,其中信号1591a、1591b、1591c、1591d、1591e、1591f基本上对应于信号或组件1391a、1391b、1391c、1391d、1391e、1391f在其功能和作用方面的作用,从而在此不给出另外的描述;相反,将参考以上解释。

与根据图15a的电压转换器布置1500的情况一样,电压转换器布置1580还具有第一调节晶体管1550、第二调节晶体管1560和第三调节晶体管1570,它们以与针对电压转换器布置1500所描述的方式相同的方式连接。

还存在电流测量电阻器1585,电流测量电阻器1585对应于电流测量电阻器1385,并且引起与电压源1510供应的电流相对应的压降。还存在调节放大器1584,调节放大器1584在其操作的模式方面对应于调节放大器1384。另外,存在基于运算放大器的放大器电路1586,例如,放大器电路1586对应于放大器电路1386,并且例如,向放大器1584的非反相(+)输入供应与电压源1510供应的电流成比例的电压信号。还存在可调分压器1592,可调分压器1592在功能上对应于可调分压器1392。可调分压器向调节放大器1584的反相(-)输入供应电压信号,该电压信号以可调分压器比对应于电压转换器布置的输入电压(例如,对应于电压源1510供应的电压减去跨电流测量电阻器1585下降的电压(通常可忽略不计))。通过除法而减小的对应电压信号由1592表示。

调节放大器1584的输出信号经由开关1594被(共同地)馈送到第一调节晶体管1550和第二调节晶体管1560的基极端子或者馈送到第三调节晶体管1570的基极端子。因此,控制器可以决定是否第一调节晶体管1550和第二调节晶体管1560,还是(可替换地)由第三调节晶体管1570来执行调节。

还应当注意的是,例如由映射功能1593基于调节信号1591d(对应于调节信号1391d)提供用于可调分压器的驱动信号。

在这方面,应当注意的是,下面将描述关于电压转换器布置1380的功能的进一步细节。另外,关于其它电压转换器布置描述的特征、功能和细节可以可选地单独地或组合地用于根据图15b的电压转换器布置中。

根据图15c的电压转换器布置

图15c示出根据本发明的实施例的电压转换器布置1590的电路图。

特别地,图15c示出与三个线性调节器组合的根据图15a的线性支持SEPIC转换器,以及用于输入处的纹波电流抑制的线性支持升压/降压转换器的发明性调节功能和经由功能Kv(s)以及通过感测线性调节器中的电流Ireg1、Ireg3和Ireg4的电压参考Vuref的校正功能使用可变电压参考进行压控功率因数校正的实现。

应当注意的是,根据图15c的电压转换器布置1590非常类似于根据图15b的电压转换器布置1580和根据图15a的电压转换器布置1500,使得在此将不再描述相同或作用相同的元件和信号。相反,参考以上解释。

特别地,应当注意的是,用于可调分压器1592a的驱动信号的生成是使用电压转换器1590与使用电压转换器1580略微不同地执行的。另外,与电压转换器布置1580略微不同地执行用于调节晶体管1550、1560、1570的基极端子的驱动信号的提供。

在电压转换器布置1590中,用于可调电压转换器1592a的驱动信号由映射功能1596a生成,映射功能1596a不仅接收调节信号1591d作为输入信号或作为输入信息,而且接收关于流过调节晶体管1550、1560、1570的电流的信息。例如,调节功能1596a接收关于流过调节晶体管1550、1560、1570的电流是超过还是低于指定的上阈值和/或下阈值的信息。可替换地或额外地,调节功能1596a还接收关于流过调节晶体管1550、1560、1570的电流的最小值和/或最大值的信息。下面将描述关于对应的设置功能或调节功能或映射功能1596a的细节。

关于生成用于调节晶体管的基极端子的驱动信号,应当注意的是,场效应晶体管1595a(例如,n沟道场效应晶体管)和电阻器1595b用于此目的。例如,场效应晶体管1595a的栅极端子连接到调节放大器1584的输出。场效应晶体管1595a的源极端子耦接到第二输入电压节点1534。晶体管1595A的漏极端子经由电阻器1595b耦接到第一输出电压端子1542。因此,例如,施加到开关1594的输入的信号可以采用位于第一输出电压节点1542的电势和第二输入电压节点1534的电势或第二输出电压节点1544的电势之间的电势。

下面将解释关于电压转换器布置1590的另外的细节。另外,关于其它电压转换器布置描述的特征、功能和细节可以可选地单独地或组合地用于根据图15c的电压转换器布置中。

根据图15d的输入电压源

图15d示出输入电压源1598的电路图。例如,输入电压源1598包括具有四个整流二极管的桥式整流器1599a。例如,桥式整流器的输入端子连接到AC电压源1599b。例如,第一输出端子1599c和第二输出端子1599d可以用于为本文所述的电压转换器布置提供输入电压Vin。因此,例如,电压转换器布置的输入电压表示由桥式整流器在输出端子1599c、1599d处提供的脉动DC电压。

然而,应当注意的是,电压转换器布置的输入电压当然也可以以其他方式提供。

换句话说,图15d示出通过具有全桥整流器的单向AC电压的输入电压源Vin的发明性实施方式。

另外的方面和细节

在下文中,将描述可以可选地与本文所述的电压转换器布置一起使用的另外的方面和细节。应当注意的是,所述方面和细节通常可单独或组合使用。

图13示出线性支持boost转换器(根据另一实施例)的发明性实施方式。这意味着,通过已知的调节方法遵循正弦形状的输入电流从电源被取为没有任何高频偏差的正弦形状。

表3示出有源调节器LR3与LR4的功能,例如,当输入电压大于输出电压与输入电压的差时,线性调节器LR3是起作用的。如果输入电压小于输出和输入电压之间的差,或者如果输入电压近似输出电压,例如,线性调节器LR4将被激活。如果输入电压约为输出电压的一半(例如,+/-10%),则线性调节器LR3和LR4将被激活,使得如果扼流电流小于目标值,例如,电流的输入侧正弦形状的目标值,则图13中的boost扼流圈L1的电流纹波将被线性调节器LR3接管。另一方面,如果扼流圈电流大于目标值,例如电流的输入侧正弦形状的目标值,则LR4接管电流纹波,例如,使得线性调节器中的功率耗散在各自情况下被最小化为相应线性调节器上的电压差和最小可能有效电流的乘积。

图13b示出本发明的实施方式,例如,建立(例如,调整)输入电流与施加的输入电压的精确比例。原则上,电路可以用于输入处的电压Vin的正弦半波处的功率因数校正。然而,使用正弦半波仅遵循以下函数的功率可以被发送:

输入电流与输入电压成比例地固定地设置,例如,其中由boost转换器的脉动输入电流产生的纹波由线性调节器LR3和LR4在各自情况下进行补偿。由于图13b中的电路,电流具有以下函数:

Figure BDA0002636531970000392

如果boost转换器吸收大于由(3a)设置的值(或目标值)的输入电流IL1,即消耗比由(3a)的比率指定的更多的功率,则例如线性调节器LR3将被激活(例如由调节放大器1384),并且除了纹波电流之外还补偿DC分量,其中电流从输出电压的正电势(例如从第一输出电压节点1342)流到输入电压的正节点(例如流到第一输入电压节点),从而从负载收回进一步的能量。结果,输出比使用负载RL所负荷的更多地被负荷,并且输出电压被降低,直到负载处的功率近似等于根据(3)消耗的功率。因此,boost转换器在连续操作中的传递函数变得小于由等式Vout/Vin=1/(1-D)描述的函数。

另一方面,如果输出负载消耗的功率小于(3)指定的功率,则例如在线性调节器LR4中通过将电流对地分流来消耗过多的功率。在这种情况下,对于连续操作,boost转换器的传递函数遵循等式Vout/Vin=1/(1-D)。

boost转换器应当总是在连续模式(CCM)下操作,以保持两个线性调节器中的损耗低。例如,输入电流纹波只能被完全补偿到小于或等于根据等式(3)的功率的输出功率。对于负载RL处的较低功率,线性调节器LR3和LR4中的损耗分量将增加到在(3)中描述的功率将在输入处供应的程度。例如,此电路可以用于在任意的随机输入电压曲线上要求正弦电压或具有100%的功率因数的电压的任务,例如这可以是在测量技术中的情况。为了使电路的功率耗散最小化,负载RL可以是到电源或能量存储设备的低损耗后馈电路。PWM的频率和接通时间可以保持近似恒定,使得输入功率等于输出功率减去电路的组件中的损耗。

为了改变根据(3)的发送功率,例如,可以改变分压比RI3/RI2或者分压比RV1/RV2,例如,这由图13b中未示出并且在图13c和13d中描述的另外的可能性给出。

图13c示出具有用于功率因数校正的线性辅助的boost转换器的发明性实施方式。例如,boost转换器利用足够大的电感L1以连续操作进行操作。例如,经由分压器RT1和RT2,输出电压Vout被与参考电压Vref比较,并且经由调节器Reg1和经由限制器的调节参数“控制”或“调节”的下游设置而被使用,以通过比较调节器输出与锯齿函数Vsawtage生成PWM信号。例如,PWM信号控制场效应管(Mosfet)Q1以将输出电压调节到近似恒定值。在电源间隙中的优选单向电压Vin下降到零的情况下,调节器将以最大接通时间操作,例如短时间,而不发送能量,输出缓冲电容器Cout近似维持电压,而不管输出到负载的功率。例如,分压器RV1和RV2感测在扼流圈L1中的电流不会降至零情况下在连续操作中可以发送的最小可能输入功率的输入电压的量。如果功率较低,boost转换器将在突发模式下操作,例如,线性调节器LR3和LR4将在突发模式的关闭时间期间被去激活(可选的去激活电路未在图13c中示出)。在连续操作中从源Vin汲取的最小功率是固定设置的,例如根据(3),通过电阻式分压器RV1和RV2以及RI2和RI3。例如,放大器AmpI将跨负电压的分流或分流电阻器RI1的电压相对于地的方向反转,并以比率RI3/RI2放大该电压,使得跨分流RI1的功率耗散可保持为低。此电路优选地也可以容纳在集成电路中;电阻器RI2和RI3可以布置在外部,或者可以通过内部电路数字编程。为了在低操作电压下操作放大器Amp,例如,可以经由放大器Amp的输出电压和boost转换器的输出电压之间的上拉电阻器来提供输出晶体管QA(n沟道场效应管),然后,放大器Amp控制输出晶体管的栅极,并且因此,Amp的输入的极性应当或必须如图所示地反转。

如果来自分压器RV2/(RV1+RV2)的电压的参考值太小而不能向输出供应所需功率,则例如通过经由晶体管LRv添加第三电阻器RV3来增大分压器比,其值通过增加来自源Vin的最大电流来调节负载处的最大功率,在该源处线性调节器仅补偿电流纹波。

例如,这借助于控制功能Kv(s)来实现,功能Kv(s)在Q1的接通时间较短并且因此,在调节器“控制”或“调节”的输出处的比较值较低的情况下将较小的电压传递到LRv的基极,使得LRv被关断。例如,Kv(s)的功能应该被选择,使得对应于boost转换器的当前输出功率的电流曲线的平均DC电流由以下式给出

电阻Rvers由电阻器RV1与来自RV3的等效电阻值和调节晶体管LRv的并联连接产生。为了防止由(4)设定的功率过大,并且因此为了防止在线性调节器LR4中消耗过多的功率,其中线性调节器LR4接管在输入处设定的量和在负载处需要的电流之间的平均差分电流,经由分压器RVers/RV2设定仅稍微更大的参考电流,例如经由功能Kv(s)。

另外,此设置更适合于低输入电压,例如,因为跨LR4仅存在小的压降,因此在LR4处仅发生很少的功率耗散。然而,对于较高的输入电压,需要设置稍微太小的参考电流,使得仅从输出电压经由例如LR3补偿输入电流纹波,并且因此由于跨RL3的较低压降而经由LR3的功率耗散低于RL4的功率耗散。

通常,例如,功能Kv(s)在第一近似中是比例因数,并且在更好的近似中,一方面Kv(s)是由boost转换器的实施方式并且另一方面由输入处的单向AC电压的当前施加量产生的非线性功能。

为了形成功能Kv(s),例如,除了固定地设置非线性之外,可以在两个线性调节器LR3和LR4中执行可选的电流测量,其测量如图中所示的电流Ireg3和Ireg4,并且当超过相应最大值时,例如通过在LR4中的电流超过最大值时更多地关断LRv,以及在LR3中的电流超过最大值时更多地接通LRv,实现功能Kv(s)关于其比例因数的校正。

由于负载变化或输入电压的快速变化可导致LR3和LR4中超过最大电流值的振荡,其中这两个电流在高频下交替地被超过,所以将经由Kv(s)实现LRv的状态变化的延迟,使得在动态转变中实现稳定性,并且可以使用线性调节器LR3和LR4的非常高的频率带宽来实现对输入电流的开关纹波的补偿,而Kv(s)实现不能跟随开关频率的低通滤波器。优选地,滤波器的截止频率应该选择在开关频率的值的二到十倍之间,以一方面通过过快地改变参考Vuref,不损害通过Ireg3和Ireg4的采样对开关纹波的补偿,另一方面及时地对负载的动态变化作出反应,以避免线性调节器中纹波补偿之外的额外损耗。

图13d示出输入处的电流纹波补偿的另外的发明性实施方式,其中省略了功能Kv(s),并且相反,仅经由辅助线性调节器LRv3和LRv4实现Vuref的参考值的改变,所述改变提供有低通滤波器。在这种情况下,调节器“控制”或“调节”应该或必须以比低通滤波器最大实现的截止频率低的截止频率操作,因为否则不能实现输入电压和输出电压之间的比例。

如果应用允许,则比较器Comp1的非反相输入可以(可选地)以恒定参考***作,从而省去了经由Reg1的锁定环路(调节器电路)。因此,接受了以输入电压的频率的输出电压中的波动。

图14示出与三个线性调节器组合的升压和降压转换器的发明性实施方式。输出电压可以取任何值,其甚至可以小于输入电压的值。

图15a示出与三个线性调节器组合的SEPIC转换器的发明性实施方式。

例如,图14和15a所示的线性调节器根据表4中描述的函数被激活,为了使得线性调节器在各自情况下的电损耗最小,例如,根据表4表现出最小压降的那些线性调节器将被激活。具体地,对于根据表4的情况4中的升压转换,输入扼流圈L1的电流纹波由两个线性调节器LR3和LR4补偿,因为两个线性调节器两端的压降近似相同,并且因为在两个线性调节器中出现纹波电流有效值(均方根值)的仅大约一半。

对于应用单向正弦输入电压的功率因数校正的典型情况,输入源Vin的电流纹波的补偿如图15b所示。

图15b所示的电路的功能例如类似于图13c中描述的电路的功能,用于输出电压大于输入电压的情况。对于输出电压变得低于输出电压的情况,例如,开关SL从位置3+4切换到位置1,使得仅线性调节器LR1是起作用的。同样在这种情况下,LR1中的电流测量可确保电流不超过特定最大值,其中调节晶体管LRv被更多地关断。另外,如果输出电压低于输入电压,例如,在负载强烈增加的情况下LR1将关断,使得开关纹波不能立即补偿。因此,可能在LR1中的电流降到最小电流以下的同时,改变控制功能Kv(s)的值,使得控制晶体管LRv更多地被接通(即,例如,传导更多的电流)。例如,在开关SL的位置3+4时输出电压大于输入电压的情况下,这不是必需的,因为线性调节器LR3或LR4中的一个在各自情况下是起作用的,这取决于与当前设置的电流参考相比,在负载处需要的电流是过多还是过少。

图15c表示SEPIC转换器的另一发明性实施方式,其中线性调节器LR1、LR3和LR4中的电流被感测,并且经由功能Kv(s)使得电压参考Vuref适应于输出处当前消耗的功率,以最小化线性调节器中的损耗。

图15d中所示的输入侧AC电压的整流器电路可以被看作图13和15中的输入电压源Vin的另外的发明性实施方式。

如图16所示,线性调节器LR3(例如在本文所述的电压转换器布置中)将相对于扼流圈L1补偿从输出电压到输入电压的正电流纹波ΔI。相反,负电流纹波-ΔI由线性调节器LR4补偿,例如,从源Vin的输入电压到源Vin的地电势。理想地,输出电压将是输入电压的大约两倍。然而,在典型的应用中,输出电压是恒定的,并且比大约输入电压Vin的最大值的两倍高到25%。

由于输入电压(例如)与图16所示的电流曲线的正弦曲线近似成比例,而输出电压近似恒定,所以如果如图13所示根据本发明实现boost转换器,则仅在正弦函数的最大值附近,图13所示的电流纹波的补偿将导致线性调节器中损耗的最优减少。在单向正弦电压的过零附近,例如,电流纹波的补偿将根据本发明仅借助于LR4发生,使得LR4的整个电流纹波=-2△I变为负(或由LR4接管)。

在如图15所示的SEPIC转换器的实施方式的情况下,根据本发明,输出电压可以被选择为(例如)近似(例如,具有+/-10%的容差)单向正弦输入电压的峰值的一半。在这种情况下,例如根据表4,情况5将发生在峰值附近,使得线性调节器LR1被激活并且电流纹波=-2ΔI由LR1得出到输出RL。例如,在过零附近,根据表4,在情况3中仅LR4被再次激活,以实现线性调节器的最低损耗。例如,如果输出电压近似等于输入电压,则将出现情况2。例如,如果输出电压高于输入电压并且大约是输入电压的两倍高,则将出现如图16所示的情况4。

因此(例如在一些实施例中),从源中汲取理想的直流电流,在单向正弦电压Vin的情况下,该理想的直流电流导致这样的事实,即,在没有另外的电源滤波器的情况下,仅可以使用在交流网络的输入处的整流器来执行此布置。为了抑制可由输入整流器引起的电源过零中电流的寄生谐波振荡,可以可选地在电源过零中通过线性调节器LR3额外地模拟电源输入的整流器的电容再充电的预定功能,以也实现电源过零中高频干扰的电流纹波的完全抑制。

总之,因此可以说,使用本文所述的电压转换器布置,可以可选地调节流过输入调节元件(在本文中也称为线性调节器)的电流,以实现例如输入电压和输入电流之间的固定或可变指定的比率。如图13b、13c、13d、15b、15c所示,各种调节的实现是可能的。

另外,通过以图中未示出的方式控制电压转换器布置,可以获得关于输入电压Vin和输出电压Vout之间的关系的信息。例如,控制器可以基于输入电压和输出电压之间的关系来区分不同的情况,具体地,例如,表2和/或3和/或4中所示的情况,然而,当然控制器也可以不区分表2和/或3和/或4中所示的所有情况,但不区分,例如在电压转换器布置的具体应用中实际出现的仅那些情况。基于实际上存在的是在所提及的表中示出的输入电压和输出电压之间的关系中的哪些,然后,控制器可以决定应该激活输入调节元件或线性调节器中的哪些,即例如应该使用线性调节器中的哪些来补偿钟控电压转换器的纹波。

表2示出例如情况1至5,仅用于负载处的纹波电流补偿。表2还示出情况6至11,其仅用于输入侧(即,输入电压源处)的纹波电流补偿。如果纹波电流补偿将在输入(即,在输入电压源侧)和输出(在负载)处发生,则也可以使用情况11至17。

因此,应当注意的是,例如,如果电压转换器布置的控制器能够在例如情况1至5之间切换,例如,或者如果电压转换器布置的控制器能够在例如情况6至10之间切换,例如,或者如果电压转换器布置的控制器能够在例如情况11至17之间切换,则可以是足够的。

还应当注意的是,如表2所示的情况6至10可以对应于例如如表4所示的情况1至5。

另外,表3所示的情况1至4可以对应于表2的情况6至9或表4的情况1至4,在升压转换器的情况下,例如,表4的情况5或表2的情况10通常在正常操作期间不发生,因为升压转换器的输出电压高于输入电压。

另外,应当注意的是,例如,对于根据表2的情况7和9,或者对于根据表3的情况2和4,或者对于根据表4的情况2和4,可以容许+/-10%或+/-20%或+/-1V或+/-2V或+/-5V的偏差,使得例如如果输入电压与输出电压偏离不大于+/-10%(或任何其他预定容差值),则可以通过控制电压转换器布置来选择根据表3和4的情况2,并且使得例如如果输入电压与输出电压的一半偏离不大于+/-10%或+/-20%(或任何其他预定容差值),则可以通过电压转换器布置的控制器来选择根据表3和4的情况4。

还应当注意的是,本文所述的调节功能当然可以可选地通过其它硬件布置来实现,同时例如应当维持驱动线性调节器以建立输入电压与输入电流之间的固定或可调比率的基本机制。关于可变电压划分以及电流测量的细节在此可以可选地改变。输入调节元件或线性调节器LR1、LR3、LR4如何考虑电流或以何种程度考虑电流的问题也可以根据情况的改变而变化。

3.效果和优点

下面,将解释根据本发明的实施例的一些优点和效果。然而,应当注意的是,根据本发明的实施例不一定必须具有本文所述的优点或效果,并且一些实施例例如仅部分地实现对应的优点和效果。

本发明的实施例的优点特别地在于,具有从输入到负载的降压转换电压的线性支持开关电源(线性支持buck转换器或降压转换器)的优点与朝向负载的电压的升压转换相结合。线性支持降压转换器的优点包括:

-高效率,因为仅开关纹波而不是整个负载电流被线性调节器补偿;

-极高的调节动态,因为线性调节器能够补偿任何动态负载变化和输入电压变化;

-节省通常对温度敏感、占用空间和使用寿命有限的输入缓冲电容器。

线性支持升压转换器,诸如boost转换器的优点是,例如

-高效率,因为仅补偿开关纹波而不是整个输入电流;

-非常高的调节动态,因为线性调节器也可以跟随boost转换器的高频切换而不是例如仅跟随低频正弦输入电流曲线用于功率因数校正;

-在正弦输入电压的情况下,节省输入整流器上游或下游的输入滤波电容器,并且尤其是在交流或直流网络的情况下节省电源滤波扼流圈。

通过线性支持SEPIC转换器的发明,所述优点被扩展,例如在于

-实现或使能电压的升压转换以及降压转换;

-由于相对小的耦合电容而引起的电流隔离防止了在施加输入电压时的浪涌电流;

-在特定操作领域中实现了与线性支持boost转换器相比的效率改进,其中输出电压被选择为近似于输入电压的最大值的一半,用于正弦电压的电源输入处的功率因数校正的典型应用,或者遵循函数ΔVout=Vin-Vin_min

4.可替换的解决方案

如下面将解释的,难以找到不具有任何显著缺点(并且例如将允许绕过本发明)的可替换的解决方案。

与发明行电路实施方式相比,本发明只能通过增加工作量来绕过。例如,线性辅助,即线性调节器或调节元件,可以由辅助源提供,而不是如本发明的情况那样由转换器装置本身提供,这意味着增加的工作量。这通常是不经济的。

5.实施例的重要方面

下面,将解释一些重要的方面,它们可以可选地在本发明的实施例中实现。

通过关于以下电特征测试或测量对应的电压转换器,可以容易地识别根据本发明的实施例:

输出DC电压优选地高于转换器的输入DC电压,并且同时,优选地可以在输出负载处测量无纹波的DC电流,所述输出负载直接连接到转换器的电感,可以容易地被光学地和电气地验证。或者,输入DC电压可以大于或小于或等于输出电压,并且可以在输入处测量无纹波的DC电流,输入源直接连接到转换器的电感。同时,电路方面的花费应该与性能近似相等的PWM转换器的花费类似,并且不应该显著大于后者。输出电压的最高电势(正极)不应接地或低于输入电压的最低电势(负极)。输入电压的最高电势(正极)也不应接地或低于输出电压的最低电势(负极)。

6.应用技术领域

例如,本发明的应用可见于以下典型领域:

1.用于太阳能微型逆变器的开关电源供应

2.芯片上的全集成电源供应

3.用于无电解电容器的防爆开关电源供应

4.用于医疗和实验室应用的高稳定电源电压

5.用于正弦和其它输入电压时间曲线的功率因数校正

6.用于任何输入电流曲线的精确电流宿

1.对于太阳能系统的所谓的微型逆变器,本发明用于避免或极大地减小缓冲电容器的尺寸。Zeta转换器的特性用于提高太阳能电池板的电压,以操作具有电源电压输出的逆变器。因此,通过省去体积密集型缓冲电容器,可以以较小的体积实现太阳能转换器。同时,这增加了微型逆变器的使用寿命,因为电解电容器通常首先失效。

2.现在,通过使用利用Si-CMOS或Si-NMOS上的GaN技术的驱动器芯片上的集成电感,芯片上的全集成电源供应可以在大于100MHz的开关频率下操作,这允许>10V/ns的开关边沿。通过消除输出电容器,在一个设备中需要若干电源来提供例如用于控制器和传感器的不同电压的情况下可以极大地减小安装尺寸。这种电源考虑到通信设备尺寸的持续减小。

3.防爆开关电源供应必须以非常复杂的方式封装,并且仅在上至一定温度是可靠的。在着火的情况下,尤其是电解电容器可能在高温下失效或甚至***。可以容忍线性支持转换器的低额外的成本和线性调节器中的低额外的损耗,因为它们允许增加的可靠性和显著更高的温度而没有电源供应故障。尤其对于安全性(火灾安全系统等)方面的应用,本发明提供了从小的或严重下降的供应电压的供应的可能性,线性支持降压转换器不能提供该可能性,并且该可能性不能通过具有线性支持的另一升压转换器(boost转换器、SEPIC转换器、常规Cuk转换器)以足够高的效率实现。

4.用于医疗应用的电源供应通常需要非常稳定以满足高可靠性要求。同时,为了以微小尺寸操作电池供电的设备并且还保持由损耗引起的发热尽可能低(高效率),需要高度的小型化。另外,值得提及的是,电容器的节省以及即使在电池电压降低情况下的电压的安全升压转换。

5.上至几百瓦的功率的功率因数校正常常需要额外的电源滤波器,额外的电源滤波器可以以高达约30%的比例构成设备的大部分。本发明完全消除了对这种电源滤波器的需要,因为线性调节器还可以补偿高频谐波,而不会显著增加PFC级的电感式组件(扼流圈)的尺寸,从而节省了体积和成本。

6.在测量技术中,通常经由放大器类A、B或AB以高功率耗散来实现精确的电流宿,因此放大器类A、B或AB在性能上受到限制并且生成高功率耗散。本发明克服了这个缺点,因为从待测试源取得的负载电流的电流曲线被开关调节器以低损耗去除,并且同时出现的纹波电流被线性调节器补偿。

总之,因此可以说,本文所述的电压转换器布置可以有利地用于所有上述应用(当然,以及在另外的应用中)。

7.另外的方面

根据本发明的其它实施例将由所附专利权利要求限定。

应当注意的是,根据权利要求的实施例可以使用本文所述的所有特征、功能和细节来补充(只要这不导致任何矛盾)。

权利要求的特征、功能和细节也可以与本文所述的实施例组合,以获得额外的实施例。

应当注意的是,在各个或所有实施例中示出的特征和功能也可以用于其它实施例中,除非存在不这样做的严重技术原因。

另外,应当注意的是,也可以使用本文所述的实施例的部分功能,只要不存在不这样做的严重技术原因。

8.另外的的细节和标记

图13和15包括额外的组件,诸如输入电压和输入电流之间的比例比率、通过延时低通滤波器补偿适于根据式(4)的输出功率的比例因子、以及调节器“控制”或“调节”的调节速度,调节器“控制”或“调节”相对于低通滤波器进一步延迟,关于电压Vin或VinAC的出现输入频率,以确保PFC,其中输入源的电流大致遵循输入电压的正弦曲线。

下面将列出根据图13和15的实施例的一些重要(但不是必需的)方面:

-反相放大器的电路技术;和/或

-在正输入节点的电势电平处控制线性调节器,在此节点周围具有+/-5至10伏的低电压;和/或

-借助于线性调节器中的电流测量校正电压参考(或电流参考,图中未示出);和/或

-线性调节器的调节速度是与电压参考Vuref(或电流参考Viref)的适配的延迟调节速度相比的最高可能调节速度,用于设置功率相关输入电流并且用于借助于没有DC分量的专门纹波补偿来最小化线性调节器中的损耗;和/或

-用于功率因数校正的开关调节器的调节速度甚至低于用于适配参考值的调节速度,用于设置功率相关输入电流以最大化功率因数;和/或

-通过单向交流电压实现输入源Vin

其它重要(但不是必需)方面如下:

-使用放大器Amp和AmpI实现LR3和LR4的驱动以获得电流和电压的比例

-将源Vin表示为来自电源输入的桥式整流器,

-通过借助于反相放大器改变分压器(或电流放大器)来调节电压和电流之间的比例因数子的参考,反相放大器使用低通滤波器仅放大低于开关调节器的开关频率的频率,以使来自输入源的功率适应于来自开关调节器(RL)的输出的功率。

根据另一方面,开关调节器(例如钟控电压转换器)的一个或多个开关晶体管(或者甚至开关调节器的所有开关晶体管)可以是氮化镓(GaN)晶体管或碳化硅(SiC)晶体管。

根据另一方面,开关调节器(例如钟控电压转换器)的一个或多个二极管或整流二极管(或甚至开关调节器的所有二极管或整流二极管)可以是氮化镓(GaN)二极管或碳化硅(SiC)二极管。

9.根据图6的过程

图6示出根据本发明实施例的方法600的流程图。

图6示出一种操作电压转换器布置的方法,电压转换器布置包括钟控电压转换器和连接在第一输入电压节点和第二输入电压节点之间的第一输入调节元件,第二输入电压节点具有参考电势。方法包括通过至少暂时激活通过输入调节元件的电流流动来抵消610电压转换器(或电压转换器布置)的输入电流中的波动。

根据图6的方法600可以可选地由本文所述的所有特征、功能和细节补充。特别地,方法600还可以通过本文关于电压转换器布置描述的特征和细节来补充。方法600还可以与本文所述的对应的电压转换器布置结合使用。

10.结论

总之,因此可以说,根据本发明的实施例通过由线性调节器补偿来自源的例如(但不是必须)大于正弦曲线的瞬时输入电压的电流纹波来抑制(例如电压转换器布置的)输入处的电流纹波。迄今为止在这方面还没有已知的技术方案。

因此,本发明的实施例使得可以同时利用开关调节器和线性调节器的优点,并避免它们各自的缺点。因此,期望的优点(其可以利用根据本发明的实施例实现)是高度的效率、避免大的平滑电容、避免电源滤波器、高调节动态、在输出负载处或在输入源处的无纹波直流电流和无纹波直流电压或者与输出电压相比的任意可选择的输入电压。

应当注意的是,在本发明的实施例中,可选地可以实现所提到的优点中的一个或多个。因此,除了通过现有技术或通过关于所描述的技术问题的常规解决方案所消除的所有或至少一些缺点之外,根据本发明的实施例还消除了例如首要缺点,通过线性调节器来补偿开关调节器的输入处的电流纹波。换句话说,除了现有技术关于所描述的技术问题所消除的所有或至少一些缺点之外,根据本发明的实施例还通过利用线性调节器补偿开关调节器(例如钟控电压转换器)的输入处的电流纹波来消除了基本缺点。另外,实施例消除了输入电压必须大于转换器的输出电压的限制。

总之,因此可以说,与常规的电压转换器相比,根据本发明的实施例提供了在效率、实现工作量和干扰抑制之间的实质上改进的折衷。

参考文献

1]H.Martinez-Garcia:Capacitorless DC-DC Regulator as a CandidateTopology for Photovoltaic Solar Facilities,International Conference onRenewable Energies and Power Quality(ICREPQ14),La Coruna,Spain,25th-27th 2015年3月

2]H.Martinez-Garcia,Antoni Grau-Saldes:Linear-Assisted DC/DCConverters with Variable Frequency:On their Complex Control Strategies,(COMPENG 2014)Proceedings 2014Complexity in Engineering,978-1-4799-4079-0/14/$31.00,IEEE

3]H.Martinez-Garcia,Alireza Saberkari:Four-Quadrant Linear-AssistedDC/DC Voltage Regulator,Mixed Signal Letter,Analog Integr Circ Sig Process(2016),88:第151-160页,DOI 10.1007/s10470-016-0747-8,Springer-Verlag

4]Application Note AN3180:A 200W ripple-free input current PFC pre-regulator with the L6563S,ST Microelectronics 2010,Doc ID 17273Rev 1

5]Jeff Falin:Designing DC/DC converters on the basis of ZETAtopology,Application Note "High-Performance Analog Products"www.ti.com/aaj 2Q2010,Analog Applications Journal,Texas Instruments 2010

6]S.Subasree,A.Balamani:"Energy Efficient Zeta Converter with CoupledInductor for PV Applications",International Journal for Research andDevelopment in Engineering(IJRDE)www.ijrde.com ISSN:2279-0500Special Issue:pp-076-082,Methods Enriching Power and Energy Development(MEPED)2014

7]ON Semiconductor,Application Note AND8481/D:A High-Efficiency,300WBridgeless PFC Stage

8]NXP Semiconductors:Totem-Pole Bridgeless PFC Design UsingMC56F82748,Design Reference Manual,Document Number:DRM174,Rev.0,11/2016

9]Jae-Won Yang and Hyun-Lark Do,Bridgeless SEPIC Converter With aRipple-Free Input Current,IEEE TRANSACTIONS ON POWER ELECTRONICS,VOL.28,NO.7,JULY 2013

10]Yungtaek Jang and Milan M.Jovanovi

Figure BDA0002636531970000502

,Bridgeless Buck PFC Rectifier,978-1-4244-4783-1/10/$25.00

Figure BDA0002636531970000501

2010IEEE

70页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:双端子有源电感器装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!