用于新无线电(nr)通信的设备系统和方法

文档序号:1047999 发布日期:2020-10-09 浏览:16次 >En<

阅读说明:本技术 用于新无线电(nr)通信的设备系统和方法 (Device system and method for New Radio (NR) communication ) 是由 A.巴姆里 铃木秀俊 况泉 D.冈萨雷斯 R.沙 于 2019-02-11 设计创作,主要内容包括:本公开涉及通信设备、基站以及用于通信设备和基站的相应方法。该通信设备包括收发单元,该收发单元从基站接收跳变模式指示符,跳变模式是在多个传输时间间隔(TTI)中接收或发送信号所按照的多个带宽部分的顺序,带宽部分由至少一个物理资源块形成。该通信设备还包括电路,该电路基于跳变模式指示符确定要应用的跳变模式。该收发单元还根据所确定的跳变模式在多个TTI中接收或发送信号。(The present disclosure relates to a communication device, a base station and corresponding methods for a communication device and a base station. The communication device includes a transceiver unit that receives a hopping pattern indicator from a base station, a hopping pattern being an order of a plurality of bandwidth parts in which a signal is received or transmitted in a plurality of Transmission Time Intervals (TTIs), a bandwidth part being formed of at least one physical resource block. The communications apparatus also includes circuitry to determine a hopping pattern to apply based on the hopping pattern indicator. The transceiver unit also receives or transmits signals in a plurality of TTIs according to the determined hopping pattern.)

用于新无线电(NR)通信的设备系统和方法

技术领域

本公开涉及诸如3GPP(第三代合作伙伴计划)通信系统的通信系统中的发送和接收、设备和方法。

背景技术

目前,第三代合作伙伴计划(3GPP)致力于下一代蜂窝技术(也称为第五代(5G))的技术规范的下一个版本(版本15)。在3GPP技术规范小组(TSG)无线电接入网络(RAN)会议#71(哥德堡,2016年3月)上,涉及RAN1、RAN2、RAN3和RAN4的第一个5G研究项目“Study onNew Radio Access Technology”获得批准,并且该研究有望成为定义第一个5G标准的版本15工作项目。该研究项目的目的是开发一种“新无线电(NR)”接入技术(RAT),该技术在高达100GHz的频率范围内操作,并支持广泛的用例,如在RAN需求研究期间所定义的(例如,参见3GPP TR 38.913“Study on Scenarios and Requirements for Next Generation AccessTechnologies”,当前版本14.3.0可在www.3gpp.org上获得)。

国际电信联盟的IMT-1010(国际移动电信-2020)规范对下一代移动通信的三种主要场景进行了广泛分类:增强型移动宽带(eMBB)、大规模机器类型通信(mMTC)和超可靠低等待时间通信(URLLC)。在版本15的3GPP工作项目中,最近完成的阶段I主要集中在eMBB和低等待时间通信上,这是通过引入基于非时隙的调度来实现的。在阶段II中,将涵盖URLLC的可靠性方面,随后是mMTC相关的工作。例如,eMBB部署场景可以包括室内热点、密集城市、农村、城市宏和高速;URLLC部署场景可以包括工业控制系统、移动医疗保健(远程监视、诊断和治疗)、车辆实时控制、智能电网的广域监视和控制系统;mMTC可以包括具有大量非时间关键数据传送设备的场景,诸如智能可穿戴设备和传感器网络。

发明内容

一个非限制性且示例性实施例有助于在无线通信系统中提供可靠的信令。

在一个实施例中,这里公开的技术特征在于一种通信设备,该通信设备用于在无线通信系统中在多个带宽部分的至少一个中从基站接收信号或向基站发送信号,带宽部分由至少一个物理资源块形成。该通信设备包括收发单元,该收发单元从基站接收指定跳变模式的跳变模式指示符,该跳变模式是将在多个传输时间间隔TTI中接收或发送信号所按照的多个带宽部分的顺序。通信设备包括电路,该电路评估跳变模式指示符以确定跳变模式。收发单元根据跳变模式在多个TTI中接收或发送信号。

应当注意,一般或特定实施例可以被实现为系统、方法、集成电路、计算机程序、存储介质或其任意选择性组合。

从说明书和附图中,所公开的实施例的附加益处和优点将变得显而易见。益处和/或优点可以通过说明书和附图的各种实施例和特征单独获得,为了获得一个或多个这样的益处和/或优点,不需要提供全部这些实施例和特征。

附图说明

图1是3GPP NR系统的示例性架构的示意图;

图2是用于LTE eNB、NR gNB和UE的示例性用户和控制平面架构的框图;

图3是示出大规模机器类型通信(mMTC)和超可靠低等待时间通信(URLLC)的使用场景的示意图;

图4是通信设备和基站的框图;

图5是用于重复的带宽部分跳变模式的示意图;

图6是用于重传的带宽部分跳变模式的示意图;

图7是在多个DCI(下行链路控制信息)中用信号通知的带宽部分跳变模式的示意图;

图8A是在下行链路上接收数据的方法和发送数据的方法的流程图;以及

图8B是在上行链路上发送数据的方法和接收数据的方法的流程图。

具体实施方式

URLCC在可靠性方面的范围包括针对高可靠性的CQI(信道质量指示符)和MCS(调制和编码方案)表设计的规范。URLLC支持N个单独的CQI表。具体地,N的值在1和2之间向下选择。URLLC支持两个目标BLER(块错误率)。由gNB(gNodeB,NR中的、与LTE(长期演进)的eNodeB(增强型NodeB)相对应的基站的示例性名称)使用RRC(无线电资源控制)信令来选择两个目标BLER中的一个。目标BLER或CQI表的配置是CSI(信道状态信息)报告设置的一部分。

此外,如果标识出增益,则指定:首先,定义新的DCI(下行链路控制信息)格式(或新的DCI格式),其具有比DCI格式0-0和DCI格式1-0单播数据更小的DCI有效载荷大小;第二,对于给定的载波,PDCCH(物理下行链路控制信道)在CORESET(配置资源集)和搜索空间的相同或多个PDCCH监视场合重复,第三,处理具有不同可靠性要求的传输的UL(上行链路)复用(包括UL UE(用户设备)先占(pre-emption)的潜在需要)。

上述URLLC的可靠性范围是有限的。然而,范围变得更广,并且在将来的RAN1讨论中考虑与可靠性相关的其他方面。

如背景部分所示,3GPP正在开发第五代蜂窝技术(简称为5G)的下一个版本,包括开发一种新的无线电接入技术(NR),它在高达100GHz的频率范围内工作。3GPP必须标识和开发成功标准化NR系统所需的技术组件,及时满足紧迫的市场需求和更长期的要求。为了实现这一点,在研究项目“New Radio Access Technology”中考虑了无线电接口以及无线电网络架构的演变。结果和协议收集在技术报告TR 38.804v14.0.0中。

除其他事项外,已经就整个系统架构达成了临时协议。NG-RAN(下一代无线电接入网络)包括gNB,其提供朝向UE的NG无线电接入用户平面、SDAP/PDCP/RLC/MAC/PHY(服务数据适配协议/分组数据融合协议/无线电链路控制/媒体接入控制/物理)和控制平面、RRC(无线电资源控制)协议终端。基于TS 38.300v.15.0.0,第4章节,图1中示出NG-RAN架构。gNB通过Xn接口彼此互连。gNB还通过下一代(NG)接口连接到NGC(下一代核心),更具体地,通过NG-C接口连接到AMF(接入和移动管理功能)(例如,执行AMF的特定核心实体),通过NG-U接口连接到UPF(用户平面功能)(例如,执行UPF的特定核心实体)。

目前正在讨论各种不同的部署场景以得到支持,如在例如3GPP TR38.801V14.0.0中所反映的。例如,其中呈现了非集中式部署场景(TR 38.801的第5.2章节;第5.4章节示出了集中式部署),其中可以部署支持5G NR的基站。图2示出了示例性的非集中式部署场景,并且基于所述TR 38.801的图5.2.-1,同时另外示出了LTE eNB以及连接到gNG和LTE eNB两者的用户设备(UE)。如前所述,用于NR 5G的新eNB可以示例性地称为gNB。

同样如上所述,在第三代合作伙伴项目新无线电(3GPP NR)中,考虑了三种用例,这些用例被设想为在通过IMT-2020支持各种各样的服务和应用(参见建议ITU-R M.2083:IMT愿景-“Framework and overall objectives of the future development of IMTfor 2020and beyond”,2015年9月)。3GPP最近于2017年12月完成了增强型移动宽带(eMBB)的阶段1的规范。除了进一步扩展eMBB支持,未来的工作将涉及超可靠和低等待时间通信(URLLC)和大规模机器类型通信的标准化。(来自建议ITU-R M.2083的)图3示出了2020及以后的IMT的设想使用场景的一些示例。

URLLC用例对诸如吞吐量、等待时间和可用性的能力有严格的要求,并已被设想为未来垂直应用(诸如工业制造或生产过程的无线控制、远程医疗手术、智能电网中的配电自动化、运输安全等)的促成因素(enabler)之一。在目前的WID(工作项目描述)RP-172115中,协定了通过标识出满足TR38.913设定的要求的技术来支持URLLC的超可靠性。分组(packet)的一次传输的一般URLLC要求是对于32字节:10-5,用户平面为1ms。从RAN1的角度来看,可以通过多种可能的方式来改善可靠性。用于改善可靠性的当前范围在RP-172817中有所体现,包括为URLLC定义单独的CQI表、更紧凑的DCI格式、PDCCH的重复等。然而,随着NR变得更加稳定和成熟,实现超可靠性的范围可能会扩大。

mMTC的用例的特征在于很大数量的连接设备通常发送相对少量的非延迟敏感数据。设备可能成本较低,并且电池寿命很长。从UE的角度来看,利用非常窄的带宽部分是一种可能的节能解决方案,并且能够在NR系统中实现长电池寿命。

如上所述,预计NR中的可靠性范围将变得更宽。例如,对所有情况且对URLLC和mMTC尤其必要的一个要求是高可靠性或超可靠性。从无线电和网络的角度来看,可以考虑几种机制来改善可靠性。几乎没有潜在的领域可以帮助改善可靠性。这些领域包括紧凑的控制信道信息、数据/控制信道重复以及关于频率、时间和/或空间域的分集(diversity)。这些领域适用于可靠性,无论特定的通信场景如何。

在下面的讨论中,提出了通过利用带宽部分(BWP)的概念来开发(exploit)频率和时间的分集,并以有效的方式提出相关的信令机制。

在本公开中,考虑了将频率/时间分集用于DL/UL数据的重传/重复,以改善NR的可靠性。提出了使用带宽部分切换,例如,用于数据和控制信道的重传和重复,以实现频率分集增益,从而改善可靠性。特别是,当BWP很窄时,BWP内的分集增益可能非常有限。在这种情况下,通过允许在BWP之间跳变来增加分集增益可能非常有用。

如TS 38.211V15.0.0(2017-12)第4.4.5章节所定义的,带宽部分(或载波带宽部分)是第4.4.4.3项中定义的物理资源块的连续集合,从第4.4.4.2项中为给定载波上的给定参数集定义的公共资源块的连续子集中选择。

在规范TS 38.211V15.0.0中定义了UE可以在下行链路中配置有多达四个载波带宽部分,其中单个下行链路载波带宽部分在给定时间是活动的。不期望UE在活动带宽部分之外接收PDSCH(物理下行链路共享信道)、PDCCH(物理下行链路控制信道)、CSI-RS(用于估计信道状态信息的下行链路参考信号)或TRS(用于信道的精细时间和频率跟踪的跟踪参考信号)。

规范中还定义了UE可以在上行链路中配置有多达四个载波带宽部分,其中单个上行链路载波带宽部分在给定时间是活动的。如果UE被配置有补充上行链路,则UE还可以在补充上行链路中配置有多达四个载波带宽部分,其中单个补充上行链路载波带宽部分在给定时间是活动的。UE不得在活动带宽部分之外发送PUSCH或PUCCH。

参数集由子载波间隔和循环前缀(CP)来定义。资源块通常被定义为频域中的12个连续子载波。物理资源块(PRB)在BWP内编号,BWP的PRB编号从0开始。

BWP的大小可以从最小1个PRB到最大系统带宽大小。目前,针对每个DL(下行链路)和UL(上行链路),可以通过更高层参数配置多达四个BWP,其中单个活动下行链路和上行链路BWP在给定TTI(传输时间间隔)中。然而,本公开不限于在TS 38.211中定义的UE被配置有多达四个带宽部分的情况。在上行链路和/或下行链路中,带宽部分的数量可以大于4。例如,UE可以被配置有8个BWP。

TTI(传输时间间隔)确定调度分配的定时粒度。一个TTI是其中给定信号被映射到物理层的时间间隔。TTI长度可以从14个符号(基于时隙的调度)到高达2个符号(非基于时隙的调度)变化。下行链路和上行链路传输被指定为被组织成由10个子帧(1ms持续时间)组成的帧(10ms持续时间)。在基于时隙的传输中,子帧进而被分成时隙,时隙的数量由参数集/子载波间隔来定义,并且指定的值在15kHz的子载波间隔的10个时隙到240kHz的子载波间隔的320个时隙之间的范围内。每一时隙的OFDM符号的数量对于正常循环前缀为14,对于扩展循环前缀为12(参见3GPP TS 38.211V15.0.0(2017-12)的第4.1章节(通用帧结构)、第4.2章节(参数集)、第4.3.1章节(帧和子帧)和第4.3.2章节(时隙))。然而,传输也可以是非基于时隙的。在非基于时隙的通信中,TTI的最小长度可以是2个OFDM符号。

NR中的BWP概念允许为较小的数据分组动态配置相对较小的活动带宽,这允许为UE节能,因为对于较小的活动BWP,UE需要监视较少的频率或使用较少的频率进行传输。

在LTE技术中,跳频已经被用于实现分集增益,从而改善覆盖范围和可靠性。跳频也被讨论作为改善URLLC可靠性的潜在途径之一。在NR中,活动BWP内的跳频已经被协定用于PUSCH(物理上行链路共享信道)和PUCCH(物理上行链路控制信道)。本公开提出了进一步利用分集的方法,并与诸如重复和重传的其他机制相结合,以改善整体可靠性。

用户设备的活动带宽部分(例如,由UE为在TTI中发送和接收信号所使用的带宽部分)可以在配置的BWP之间切换。例如,根据当前的需要,活动BWP可以被切换到较大的BWP,或者,为了节省UE的电池功率,切换到较小的BWP。这可以通过要在下一个TTI中使用的活动BWP的DCI中的动态指示而成为可能。DCI传输下行链路和上行链路调度信息(例如,资源分配和/或授权)、对不定期的CQI报告的请求、或者对于一个小区和一个RNTI的上行链路功率控制命令。DCI编码包括信息元素复用、CRC(循环冗余校验)附接、信道编码和速率匹配。DCI携载传输参数,诸如MCS、冗余版本或HARQ进程号。DCI包括携载不同类型的控制信息或控制参数的几个字段(例如,比特字段/比特图)。某个参数的位置和编码相应参数的比特数对于发送DCI的基站和接收DCI的UE是已知的。

然而,活动BWP的这种切换增加了等待时间,因为UE需要解码DCI,然后开启硬件调谐到新的活动BWP。这种增加的等待时间可能不利于分集的益处,因为如果在信道特性没有显著变化的足够小的时间跨度中开发不同频率/带宽上的信道特性,分集尤其有用。因此,由于等待时间的增加,通过分集获得的增益可能是有限的。

本公开的提议是在上行链路和下行链路两者中用于一系列传输(例如,重复或重传)的已配置的BWP之间跳变,并且通过用信号通知跳变模式而不是仅仅一个活动BWP来开发频率分集。通过用信号通知BWP跳变模式而不是单个BWP,解决了上面讨论的等待时间问题。还提出了利用DCI中现有的BWP相关比特(例如,当前用于指示单个活动BWP的比特),而不是增加另外的比特,从而增加DCI开销。这允许保持DCI紧凑,其从可靠性的角度来看是理想的。

通常,本公开提供了用于从/向基站410接收或发送信号的通信设备460,以及用于向/从通信设备460发送或接收信号的基站410。图4中示出了通信设备460和基站410。本公开还提供了一种用于从/向基站接收或发送信号的方法,该方法由图8A所示的通信设备执行,向/从图8B所示的通信设备发送或接收信号。下面将描述所提供的装置和方法。

通常,通信设备460被适配于在无线通信系统中在多个带宽部分的至少一个中接收或发送信号。例如,通信设备接收或发送信号(在本公开中,包括在被适配于执行给定任务的设备中的设备或单元被称为“在操作中”执行给定任务)。其中,如上所述,带宽部分由至少一个物理资源块形成。通信设备460包括收发单元470,其适配于从基站接收跳变模式。跳变模式是将在多个传输时间间隔(TTI)中接收或发送信号所按照的多个带宽部分的顺序。通信设备还包括电路480,该电路480评估跳变模式指示符以确定跳变模式。收发单元470还根据跳变模式在多个TTI中接收或发送信号。

基站410被适配于在无线通信系统中在多个带宽部分的至少一个中向/从的通信设备460发送或接收信号,带宽部分由至少一个物理资源块形成。基站410包括电路430,该电路430定义跳变模式,跳变模式是将在多个传输时间间隔TTI中发送或接收信号所按照的多个带宽部分的顺序。电路430还生成跳变模式指示符。基站410还包括收发单元420,该收发单元420向通信设备460发送跳变模式指示符。收发单元420还根据跳变模式在多个TTI中发送或接收信号。

如图4所示,基站410和通信设备460在无线通信系统中通过无线信道450(例如,无线电信道)进行通信。无线通信系统可以是依据5G技术规范的通信系统,特别是NR通信系统。因此,基站可以是与LTE的eNodeB或其变体(“HeNodeB”、“MeNodeB”)相对应的“gNB”或“gNodeB”。通信设备460可以是用户装置、用户设备(UE)或移动站,诸如移动电话/智能手机、平板电脑或膝上型计算机(术语“UE”或“用户设备”通常用作通信设备的替代)。此外,特别是关于URLLC的用例;eMBB和mMTC,通信设备也可以是传感器设备、可穿戴设备、或联网车辆、或工业工厂中自动化机器的控制器。此外,通信设备460可能能够用作基站410和另一通信设备之间的中继(例如,本公开不限于通信“终端”或用户“终端”)。

在本公开中,术语“收发单元”被用于允许通信设备460或基站410分别通过无线信道450发送和/或接收无线电信号的硬件和软件组件。因此,收发单元对应于接收单元、发送单元、或接收单元和发送单元的组合。通常,假设基站和通信设备能够发送和接收无线电信号。然而,特别是关于图3中描绘的eMBB、mMTC和URLLC的一些应用(智能家居、智能城市、工业自动化等),可以想到设备(诸如传感器)仅接收信号的情况。此外,术语“电路”包括由一个或多个处理器或处理单元等形成的处理电路。

本公开适用于上行链路信令和下行链路信令两者。一方面,在下行链路情况下,基站410向通信设备发送信号,通信设备460接收该信号。因此,下行链路信令的跳变模式是在后续TTI中基站410发送以及通信设备460接收信号所按照的带宽部分的顺序。另一方面,在上行链路情况下,通信设备460发送基站410接收的信号。因此,用于上行链路信令的跳变模式是在后续TTI中通信设备460发送以及基站410接收信号所按照的带宽部分的顺序。

跳变模式是在一系列TTI上发送信号以及接收信号的带宽部分的顺序,例如,时间顺序或序列。该信号包括多个传输,诸如数据或控制信息的重复或重传(重复和重传将在下面更详细地说明)。因此,跳变模式将发送/接收信号的多个TTI中的每一个分配(映射)到为相应的用户设备和相应的链路(例如,上行链路或下行链路)配置的BWP之一。换句话说,BWP跳变模式是BWP和TTI之间的映射,多个BWP中的BWP被映射到多个TTI之一。从先前TTI到(通过BWP跳变模式将BWP分配给的)下一个/后续TTI,活动BWP从先前BWP切换到下一个TTI。根据BWP跳变模式发送信号的后续TTI不需要在时间上连续,例如,BWP跳变模式的TTI,例如,通过跳变模式将BWP映射到的TTI,不需要在时域中相邻(例如,连续)的TTI。

已经提到,活动BWP内的跳频可以被用于PUSCH和/或PUCCH。因此,在BWP内,跳频可以应用于给定TTI内的符号中的PRB标度(scale)。例如,当在PRB标度上应用跳频时,跳变模式可以定义PRB的部分和TTI内的符号或符号组之间的映射。例如,如果存在7符号的TTI,则TTI的前四个符号可以在PRB的前半部分具有PUSCH和/或PUCCH,而TTI的后三个符号可以在活动BWP内的PRB的后半部分具有PUSCH和/或PUSCH。然而,在本公开中描述的BWP跳变可以替代跳频而被执行或除跳频之外被执行。

图5中示出了用于下行链路信令的跳变模式的示例,其中跳变模式将四个后续TTI中的信号传输分配给相应的带宽部分。假设为发送或接收信号的通信设备配置四个BWP(表示为BWP1、BWP2、BWP3、BWP4)。在四个TTI的第一个中,传输在BWP1中进行,在TTI中,传输在BWP4中进行,在第三个TTI,传输再次在BWP1中进行,在第四个TTI中,使用BWP3。跳变模式由跳变模式指示符指定。如图所示,跳变模式指示符例如在四个TTI的第一个中被发送。具体地,在第一个TTI中,信号包括PDCCH和PDSCH两者,并且跳变模式指示符被包括在PDCCH中(例如,PDCCH被包括在TTI的时间上的前两个OFDM符号中,随后是剩余符号中的PDSCH)。具体地,在所示的示例中,跳变模式指示符被包括在由PDCCH携载的DCI中。在该图中,这由分别指向后续TTI中使用的BWP的箭头来表示。通信设备知道它在各个TTI中从第一TTI接收信号的带宽部分。因此,在第一个TTI之后的TTI中不需要BWP指示。因此,在剩余TTI中,分别发送PDSCH,但不发送PDCCH。

如图5所示,在两个后续TTI之间有一个BWP跳变时间(或BWP切换时间)。这种跳变时间在LTE系统中不存在。然而,将通信设备(例如,诸如滤波器和振荡器的硬件)重新校准到另一BWP需要跳变时间。例如,如果带宽是100MHz,并且通信设备切换到BWP或从该BWP切换,则跳变时间或切换时间可以是一微秒或几百微秒。取决于例如滤波器的分辨率,不同的通信设备/用户设备可以允许不同的跳变/切换时间。因此,基站可以根据当前在基站所服务的小区中注册的通信设备来定义跳变时间。

例如,跳变模式指示符可以是比特图,如下表1所示。

索引 比特图 BWP跳变模式
0 00 BWP1、BWP4、BWP1、BWP4
1 01 BWP1、BWP4、BWP2、BWP3
2 10 BWP1、BWP3、BPW1、BWP4
3 11 BWP1、BWP3、BWP2、BWP4

表1:作为2比特图的BWP跳变模式指示符

从表1中可以看出,特定的跳变模式不需要包括所有配置的BWP(例如,具有索引0的跳变模式不包括BWP2和BWP3)。并且,相同的BWP可以被映射到多个TTI中的至少两个(例如,在具有索引0和2的跳变模式中的BWP1)。如表1所示,使用两比特跳变模式指示符是有益的,因为还需要两个比特来指示为通信设备配置的四个活动BWP中的单个活动BWP,这在3GPP TS 38.212V15.0.0(2017-12)中规定,并在表2中示出(来自TS 38.212,表7.3.1.1.2-1)。具体地,当前针对在一个小区中调度PUSCH(物理上行链路共享信道)的DCI格式0_1以及针对用于在一个小区中调度PDSCH的DCI格式1_1指定如表2所示的BWP指示符。从表中可以看出,一比特指示符和两比特指示符被指定,这取决于配置的BWP的数量(例如,两个,或者在将来可能的规范中,多于两个)。字段的比特宽可以是例如使用指定的更高层参数BandwidthPart-Config来半静态地用信号通知的(针对DCI格式0_1和1_1,分别参见第7.3.1.1.2章节和第7.3.1.2.2章节)。

Figure BDA0002639742910000101

表2:活动BWP的带宽部分指示符(TS 38.212V15.0.0(2017-12))

因此,如果用信号通知跳变模式指示符,而不是指示活动BWP的带宽部分指示符,则BWP跳变模式可以用与单个活动BWP相同的比特数来指示。例如,不需要用于BWP信令的附加比特。此外,虽然跳变模式提供频率分集,但是如上所述,由于BWP切换导致的等待时间的增加可以被减轻,因为跳变模式解码只需要由通信设备在第一TTI中执行。

因为两比特映射跳变模式指示符不能表示作为跳变模式被分别分配给多个TTI的多个(例如,两个或四个)不同BWP的所有可能序列,所以需要在所有可能的组合中选择跳变模式。有利的是,为了利用频率分集,在两个后续TTI中使用的BWP应该彼此充分隔开,例如,它们之间应该具有足够大的带宽间隔。

尽管图5示出了下行链路传输的情况,但是本公开也适用于将BWP跳变模式用于上行链路传输。具体地,针对下行链路传输和上行链路传输可以有各自不同的频谱部分。此外,对于为DL配置的每个BWP,可以有用于上行链路传输的对应BWP。因此,相同的跳变模式指示符可以被用于下行链路上的BWP或上行链路上的对应跳变模式。可替换地,表示BWP跳变模式的索引可以为上行链路和下行链路指定不同的相应的BWP顺序。此外,为DL配置的BWP和为UL配置的BWP可以分别在带宽方面或频谱中的相对位置方面有所不同。

如上参考图5所述,跳变模式指示符可以例如包括在经由PDCCH用信号通知的DCI中。PDCCH是携载DCI的物理信道(物理资源集)。由通信设备通过对物理信道进行盲解码来获得/解码DCI。因此,在一些实施例中,基站的电路430生成包括跳变模式指示符的DCI。基站的收发单元420发送包括跳变模式指示符的DCI,通信设备460的收发单元470接收该DCI。

如上所述,本公开的可靠性例如在URLLC的用例中尤其相关。在下文中,作为示例性实施例,描述了用于NR中的URLLC的信令机制的细节。其中,假设DCI通常包括与带宽部分相关的字段。

作为第一步,可以通过RNTI(无线电网络临时标识符)来标识URLLC相关的DCI。然后,作为下一步,通信设备460(例如,处理电路480)解释DCI中的BWP相关字段。如果通信设备460(电路480)确定DCI不是URLLC相关的DCI,则电路480将BWP相关字段解释为活动BWP的指示符,如表2所示。例如,BWP相关字段携载带宽部分指示符,该带宽部分指示符指示在至少一个TTI中要在其上接收或发送信号的活动BWP。然而,如果通信设备460标识出DCI与URLLC相关,则通信设备460不同地解释BWP相关比特字段。具体地,BWP相关字段将被解释为用信号通知BWP跳变模式,而不是在下一次传输中仅用信号通知活动BWP,例如,如表1所示,其中配置了四个BWP。例如,BWP相关字段携载跳变模式指示符。

虽然该示例是指用于URLLC的信令机制,但是所描述的机制不限于URLLC。可替换地,如果标识出一些其他类型的DCI,例如,与mMTC相关的DCI,则BWP相关字段可以被解释为跳变模式指示符。

上述示例性信令机制的好处在于,无论是在DCI还是在更高层信令中,都不需要附加的BWP相关信令。然而,这种机制将总是要求应用BWP跳变模式(而不是单个活动BWP)并在URLLC中或者在信令机制的特定用例中用信号通知BWP跳变模式(而不是单个活动BWP)。

本公开不限于在将BWP相关比特字段(在DCI或更高层信令中)解释为BWP指示符之前标识一种DCI。例如,更高层信令可以指示通信设备460将如何解释DCI相关比特字段。为了提供BWP使用的更大可变性,在进一步的公开中将描述信令机制的不同变化。

例如,BWP跳变模式可以应用于PDCCH和PDSCH传输两者。对于PDCCH和PDSCH,BWP跳变模式还可以是相同的(例如,如果信号在其上应用了跳变模式的每个TTI中包括PDCCH和PDSCH)。

在一些实施例中,在更高层信令中添加新的比特字段,以具体指示是否应用了BWP跳变。具体地,除了BWP相关字段(例如,根据或类似于上述示例性信令机制中的BWP相关字段的BWP相关字段)之外,跳变存在指示符被半静态地用信号通知。跳变存在指示符根据跳变模式指示信号是否将被接收或发送(由基站410和通信设备460,取决于信号是上行链路信号还是下行链路信号)。跳变模式指示符在更高层信令中被半静态地用信号通知,特别是在例如在协议规范3GPP TS 38.331V0.0.1(2017-03)中定义的RRC(无线电资源控制)信令中。

例如,跳变存在指示符可以在RRC中用一比特字段来用信号通知。值“1”指示信号将根据跳变模式被发送或接收(UL或DL)。例如,在值“1”的情况下,DCI中的字段携载跳变模式指示符,例如,如表1所示。值“0”指示根据跳变模式不发送或接收信号。根据值“0”,BWP相关字段携载BWP指示符(如表2所示),该BWP指示符指示在至少一个TTI中在其上接收或发送信号的活动BWP(当然,“0”和“1”的值仅是示例,具体地,它们是可互换的)。因此,取决于跳变存在指示符的值,通信设备460的电路480将BWP相关比特字段解释为跳变模式指示符或BWP指示符。

例如,BWP相关字段可以包括在DCI中。因此,基站410的电路430生成包括该字段的DCI,并且基站410的收发单元420将DCI发送到通信设备460。通信设备460的收发单元470接收包括该字段的DCI,并且电路480评估/解释该字段。如果电路480确定信号将根据跳变模式(跳变存在指示符值“1”)被接收或发送,则该字段携载跳变模式指示符,并且基站根据跳变模式接收或发送信号。否则,如果电路确定信号将根据跳变模式不被接收或发送,则DCI中的字段携载BWP指示符。

在后一示例中,更高层信令中的跳变存在指示符指示是否应用了根据BWP跳变模式的BWP跳变,并且经由DCI指示特定的跳变模式。关于上述URLLC信令机制。这提供了不需要对每个发送和接收的信号应用BWP跳变的好处,因为仅当BWP跳变的存在由更高层配置时,例如,当BWP跳变通过跳变存在指示符被开启时,才应用BWP跳变。此外,关于URLLC机制,后一示例不限于诸如URLLC的特定用例,因此可以应用于其他场景。这是因为通信设备的电路480基于跳变存在指示符来确定DCI中的BWP相关字段是要被解释为跳变模式指示符还是BWP指示符。例如,相同的DCI类型/格式可以被用于BWP跳变和活动BWP的简单切换两者。

在一些其他示例性实施例中,由更高层半静态地配置所有BWP跳变模式相关的信令,而不是在DCI中用信号通知BWP跳变模式指示符。这意味着跳变模式指示符也是半静态地用信号通知的。通信设备460的电路480评估跳变存在指示符,以确定跳变模式指示符是否被用信号通知。因此,跳变模式指示符在RRC信令中被半静态地用信号通知。例如,RRC中的BWP跳变相关比特以这种方式排序,即携载跳变存在指示符的比特字段后面是携载跳变模式指示符的比特字段。然而,如果跳变存在指示符指示跳变模式指示符不被用信号通知,例如,信号将根据跳变模式不被接收或发送,则跳变模式指示符不包括在更高层信令中。

例如,如果跳变模式不被用信号通知,则在RRC信令中不包括其他BWP相关比特,并且跳变存在指示符之后的比特携载与BWP跳变无关的控制信息(在这种情况下,如果没有跳变模式被用信号通知,则RRC信令可以包含更少比特)。此外,即使没有跳变模式被用信号通知,无论是在RRC信令中还是在DCI中,BWP指示符仍然可以在DCI中用信号通知,例如,活动BWP从一个配置的BWP切换到另一配置的BWP仍然是可能的。可替换地,如果没有BWP跳变模式指示符被用信号通知,并且不期望BWP从BWP跳变切换,则DCI中的任何BWP相关比特可以被省略,并且相应地,较短的DCI被基站410发送并且被通信设备接收。短DCI可能有利于DCI传输的可靠性。这是因为如果在DCI中包括更少比特,则如果控制信道(PDCCH)的大小是固定的,可以使用更低的编码速率来编码/解码DCI。

半静态地用信号通知BWP跳变模式提供了可以应用增加数量的BWP跳变模式的好处。由于在DCI没有发送/接收跳变模式指示符,所以解码DCI的等待时间不受影响。因此,可以以较少限制的方式来处理跳变模式指示符的大小,并且可以使用比特图中包括的更多比特来提供更多跳变模式的指示。作为另一种选择,跳变模式指示符可以在更高层信令和DCI之间划分。例如,更高层信令中的一个或多个比特指示配置的组中的一组跳变模式,而DCI中的一个或两个比特指示由更高层信令所指示的组中的跳变模式。

根据一些另外的示例性实施例,跳变模式指示符包括在DCI中。通信设备460的收发单元470接收DCI,并且通信设备460的电路480通过评估DCI的长度来确定。例如,DCI的长度可以取决于BWP相关比特的数量。例如,如果不存在BWP相关的比特,则不应用活动BWP的切换或BWP跳变。两个BWP相关的比特指示跳变模式将被应用于信号的发送/接收,并且两个比特的值指示将被使用的特定模式。此外,如上所讨论的,两个比特的解释可以再次取决于更高层信令,并且这些比特可以被解释为跳变模式指示符或者BWP指示符。可替换地,BWP相关比特的数量可以在0、1和2之间变化,其中存在指示在这两个比特中发送BWP跳变模式指示符,并且一个比特的存在指示在两个配置的BWP之间的BWP切换由一个比特来指示。

如果由基站410发送的信号将由通信设备460根据跳变模式在多个后续TTI中接收,并且跳变模式指示符包括在经由PDCCH在多个后续TTI的初始TTI(例如,按时间顺序的多个TTI中的第一个)中用信号通知的DCI中,则通信设备460需要将在其上接收包括跳变模式指示符的信号的BWP的初始TTI的开始时间之前就知道该跳变模式指示符。为此,在一些示例性实施例中,基站410生成并发送初始带宽部分指示符,该初始带宽部分指示符指定在初始TTI中接收或发送信号的带宽部分。通信设备460的收发单元接收由基站410发送的初始BWP指示符,并且通信设备460的电路480评估初始带宽部分指示符,以确定将在初始TTI中接收信号的带宽部分。收发单元470还在多个TTI中接收或发送信号,其中,在初始TTI中,信号如初始BWP指示符所指定的那样被接收或发送。然而,为了避免在初始BWP中指示用于传输的BWP的附加信令,可以选择BWP跳变模式,所有这些模式都将相同的BWP分配给初始TTI(例如,表1中的所有跳变模式都以“BWP1”开始)。

如上所述,在一些实施例中,在上行链路或下行链路上发送/接收的信号是一系列(例如,序列)重复或重传。例如,在多个TTI中,通过在各个传输中重复同一(例如,相同)的信息,或者通过发送数据或信息的不同版本(例如,冗余版本),相同的原始信息(例如,数据或控制信息)在多个传输中被发送。

具体地,一方面,术语“重复”是指重复发送相同的原始信息,并且重传是指发送原始数据或控制信息的不同版本,例如,相同信息的副本。通常,重复是在没有请求的情况下被发送的。也就是说,信息在不同的TTI中重复预定的次数,并且在发送单元侧不知道信息何时(例如,在哪个TTI中)在接收单元侧被成功解码(术语发送单元侧和接收单元侧被用于表示特定传输的发送或接收实体,并且分别指基站和通信设备,取决于方向(上行链路/下行链路))。

图5以下行链路传输为例示出了重复的情况。可以看出,在初始TTI中,在PDSCH之前发送PDCCH。该初始PDCCH调度整个系列的重传,例如,初始TTI中的第一传输和后续TTI中的后续重复。此外,BWP跳变模式经由包括在初始PDCCH中的DCI来用信号通知。除了该初始PDCCH,用于包括初始传输的一系列重复的带宽模式不能被切换。

另一方面,术语“重传”是指不同冗余版本的一系列传输,不同冗余版本通过前向纠错编码(FEC)而获得。可以使用HARQ(混合自动重复请求)来处理重传。重传可以根据请求进行传输。例如,在接收到传输并判断数据是否已被成功解码之后,如果接收方能够解码该信息,则通过发回(肯定的)确认(ACK)进行回复,或者如果不能解码该信息,则通过发回否定的确认(NACK)进行回复。在ACK的情况下,不需要并不发送重传,并且在NACK的情况下,响应于NACK,发送另一冗余版本的重传。然而,重传不一定与诸如HARQ的反馈机制相关联。也可以使用无HARQ(HARQ-less)重传,例如,没有ACK/NACK信令的重传。

如上所述,根据本公开,BWP跳变模式的TTI,例如,通过跳变模式将带宽映射到的TTI,不需要是时域中相邻的TTI。例如,如果根据跳变模式发送/接收的信号是HARQ过程,其中接收单元侧(UL中的基站410或DL中的通信设备460)用信号通知ACK或NACK,则ACK/NACK可以是在信号的初始传输或先前传输之后的TTI的预定数量(例如,发送单元侧和接收单元侧两者都知道的数量)。因此,在NACK的情况下,在NACK的信令之后,下一次重传被用信号通知TTI的预定数量(或者接收单元侧和发送单元侧两者都知道的另一预定数量)。

重传的情况如图6所示。其中,在用于初始传输和重传的每个TTI中,PDCCH和PDSCH被发送。PDCCH在多个TTI的下一个中调度下一个相应的重传。然而,仅在第一个TTI中的初始PDCCH中用信号通知BWP跳变模式。因此,在后续TTI中的PDCCH中的DCI中不需要BWP相关的比特。

此外,本公开不限于使用单个跳变模式和用信号通知单个跳变模式指示符。在一些示例性实施例中,用信号通知至少两个跳变模式指示符。因此,基站410的电路430生成指示第一信号的第一跳变模式的第一跳变模式指示符和指示第二信号的第二跳变模式的第二跳变模式指示符。基站410的收发单元420将第一跳变模式指示符和第二跳变模式指示符发送到通信设备460,在通信设备460中,它们被收发单元470接收。通信设备460的电路480除了评估第一跳变模式指示符之外,还评估第二跳变模式指示符以确定第二跳变模式。收发单元470根据第一跳变模式接收(DL)或发送(UL)第一信号,并根据第二跳变模式接收或发送第二信号。

上述关于跳变模式指示符的信令以及关于根据跳变模式的信号发送/接收的实施例可以单独应用于第一跳变模式和第二跳变模式。第二跳变模式不同于第一跳变模式,例如,关于BWP和/或关于TTI。例如,第一跳变模式中的BWP的顺序(例如,BWP被映射到TTI的时间序列)可以不同于第二跳变模式中的BWP的顺序。此外,在第二跳变模式中TTI被映射到的至少一个BWP可以不同于通过第一跳变模式TTI映射到的带宽部分。并且,第一跳变模式可以部分地或完全地涉及(refer to)与第二TTI不同的TTI。此外,尽管两个跳变模式可以指定相同的链路/方向(上行链路或下行链路),但是第一跳变模式也可以指定下行链路传输,并且第二跳变模式指定上行链路传输。

并且,可以在不同的级别上用信号通知第一跳变模式指示符和第二跳变模式指示符。例如,第一跳变模式指示符可以半静态地用信号通知,并且第二跳变模式指示符可以在DCI中用信号通知。可替换地,两个跳变模式都是半静态地用信号通知的,或者两个跳变模式指示符都是在各自的DCI中用信号通知的。

此外,第一跳变模式和第二跳变模式可以分别有关于不同类型的信号。具体地,例如,第一信号可以是数据,并且第二跳变模式可以是控制信息。例如,第一跳变模式指定一系列PDSCH传输,并且第二跳变模式指定一系列PDCCH传输。在本公开中,“信号”是涵盖数据和控制信息的通用术语。术语“数据”用于指诸如用户数据(包括来自高于PHY的层的报头)的数据,其也被称为“有效载荷”。

在一些特定示例中,根据第二跳变模式用信号通知的控制信息包括第一跳变模式指示符,例如,控制信息指定了指定数据信令的第一跳变模式。具体地,控制信息可以包括第一跳变模式指示符的重复或重传。

图7中示出了其中第二跳变模式指定第一跳变模式的重复(例如,初始传输和至少一次重传)的示例。第一跳变模式指定在PDSCH上用信号通知的数据信号的顺序(在图中,第二跳变模式BWP1->BWP4->BWP1->BWP3从所示的左边第二个TTI开始)。PDSCH信号的跳变模式被包括在图中所示的最左边的TTI和左边第二个TTI中的PDCCH中用信号通知的DCI中。例如,跳变模式在初始TTI中的PDCCH的初始传输中被发送,并且在后续TTI中使用跳变模式BWP4->BWP1被重复或重传(形成跳变模式指示符的比特的重复或整个PDCCH的重复)。用于PDCCH的初始传输及其重复的BWP跳变模式是半静态地由更高层配置的,并且用于PDSCH重传或重复的BWP跳变模式是由初始PDCCH中的DCI动态地用信号通知的。初始PDCCH传输和重传之间的BWP跳变模式(BWP4->BWP1)是半静态地配置的。如果必要的话,这些PDCCH被组合(例如,HARQ组合),并且经由DCI用信号通知BWP跳变模式,以用于下一个PDSCH传输和对应的重复(或重传)。不同跳变模式的这种组合使用可能是有益的,因为关于不同的信道(诸如控制信道和数据信道),可靠性得到增强。

在上面参考图7描述的示例中,为彼此相关的两个过程(例如,数据信令和与数据信令相关联的控制信息的控制信令)指定两个跳变模式。然而,两个跳变模式也可以定义相同通信设备的彼此独立的过程,诸如在PDSCH上用信号通知的不同HARQ过程。具体地,如上所述,可以根据第一BWP跳变模式发送/接收第一信号,并且可以根据第二跳变模式接收第二信号。第一信号和第二信号可以是各自的重传或重复序列。第一信号和第二信号两者都可以是重传,或者第一信号和第二信号两者都可以是重复,或者可替换地,一个信号可以是一系列重复,并且另一信号可以是一系列重复。

尽管上述实施例中的一些有关于URLLC和/或重传或重复,但是本公开不限于此,并且所提出的技术也适用于可能的未来情况。其中一些用例可以与mMTC相关。机器通信可能需要配置非常窄的带宽部分和高能效设备。在这种用例下,应用BWP跳变模式将特别有益。

此外,跳变模式可以包括分别具有不同带宽的不同BWP。例如,对于信号的初始传输,可以使用其带宽比用于后续传输的BWP的带宽更宽的BWP。这可以有助于减少诸如HARQ过程的过程中所需的重复或重传的数量。另一方面,较窄的BWP也可以被用于更多的先前传输,以便仅在需要几次重传或重复的情况下,对于过程需要较大的带宽。此外,可以使用TTI内的单个BWP执行可能包括不同通信类型和/或多个通信设备的多个通信过程。BWP跳变可以被用于促进不同通信过程之间的负载平衡。

根据当前的NR规范,为通信设备配置单个活动BWP。然而,NR规范的未来版本可能会允许多个活动BWP。因此,如果已经为BWP信令定义了附加比特,这也拓宽了将这些比特用于BWP跳变的信令的可能性,而不会由于BWP跳变模式而产生额外的开销。

如上所述,在一些示例性实施例中,不同的跳变模式可以应用于不同的信道,诸如数据信道(PDSCH)和控制信道(PDCCH)。不同跳变模式的这种应用并不限于图7所示的情况,其中,在从左边起的第二个TTI中,相同的BWP携载PDCCH信号和PDSCH信号两者。如果配置多个活动BWP,则不同信道上的通信过程也可以分别映射到相同TTI中的不同BWP上。此外,多个HARQ过程(可能属于相同信道)可以在一个或多个TTI内使用不同的BWP来应用不同的跳变模式。

对应于上述基站和发送单元,它们的实施例是用于基站的方法和用于通信设备的方法。这些方法对于下行链路传输在图8A中示出,并且对于上行链路传输在图8B中示出。

在图8A(下行链路)和图8B(上行链路)的左手侧中分别示出了用于在无线通信系统中在多个BWP中的至少一个中向/从通信设备发送(下行链路)或接收(上行链路)信号的方法,该方法包括由基站执行的以下步骤。在步骤S810,定义跳变模式。在步骤S820,生成指定跳变模式的跳变模式指示符。在步骤S830,将跳变模式指示符发送到通信设备。在下行链路方法中,在步骤S850中,根据跳变模式将信号发送到通信设备。在上行链路情况下,在步骤S865中,基站接收由通信设备发送的信号。

在图8A(下行链路)和图8B的右手侧分别示出了用于在无线通信系统中在多个带宽部分的至少一个中从/向基站接收(下行链路)或发送(上行链路)跳变模式的方法。该方法包括由通信设备执行的以下步骤。在步骤S840中,接收指定跳变模式的跳变模式指示符(在步骤S830中由基站发送)。然后,在步骤S845中,评估跳变模式指示符以确定根据哪个跳变模式来接收(下行链路)或发送(上行链路)信号。在下行链路方法中,在步骤S860中,根据跳变模式接收信号(在步骤S850中由基站发送)。在上行链路方法中,在步骤S855中,根据跳变模式将信号发送到基站。

可以通过软件、硬件或与硬件协作的软件来实现本公开。在上述每个实施例的描述中使用的每个功能块可以由诸如集成电路的LSI部分地或全部地实现,并且在每个实施例中描述的每个过程可以由相同的LSI或LSI的组合部分地或全部地控制。LSI可以单独地形成为芯片,或者可以形成一个芯片以包括部分或全部功能块。LSI可以包括耦合到其的数据输入和输出。根据集成度的不同,这里的LSI可以被称为IC(集成电路)、系统LSI、超级LSI或超LSI。然而,实现集成电路的技术不限于LSI,并且可以通过使用专用电路、通用处理器或专用处理器来实现。另外,可以使用在制造LSI之后可以编程的FPGA(现场可编程门阵列)或其中可以重新配置布置在LSI内部的电路单元的连接和设置的可重新配置处理器。本公开可以实现为数字处理或模拟处理。如果由于半导体技术或其他衍生技术的发展而使未来的集成电路技术取代LSI,则可以使用未来的集成电路技术来集成功能块。生物技术也可以应用。

在一个实施例中,本公开提供了一种用于在无线通信系统中在多个带宽部分的至少一个中从/向基站接收或发送信号的通信设备,带宽部分由至少一个物理资源块形成。该通信设备包括收发单元,该收发单元从基站接收指定跳变模式的跳变模式指示符,该跳变模式是将在多个传输时间间隔(TTI)中接收或发送信号所按照的多个带宽部分的顺序。通信设备还包括电路,该电路评估跳变模式指示符以确定跳变模式。收发单元还根据跳变模式在多个TTI中接收或发送信号。

例如,收发单元接收包括跳变模式指示符的下行链路控制信息(DCI)。

在一些实施例中,收发单元还从基站接收跳变存在指示符,该跳变存在指示符指示信号是否将根据跳变模式被接收或发送,该跳变存在指示符是半静态地用信号通知的,并且电路还评估跳变存在指示符以确定信号是否将根据跳变模式被接收或发送。

例如,收发单元接收包括字段的下行链路控制信息(DCI),并且如果电路确定信号将根据跳变模式被接收或发送,则该字段携载跳变模式指示符,否则如果电路确定信号将不根据跳变模式被接收或发送,则该字段携载带宽部分指示符,该带宽部分指示符指示在至少一个TTI中信号将在其上被接收或发送的活动带宽部分。

在一些实施例中,收发单元接收包括跳变模式指示符的下行链路控制信息(DCI),并且电路评估DCI的长度以确定跳变模式指示符是否被用信号通知。

在一些示例性实施例中,跳变模式指示符是半静态地用信号通知的,并且电路评估跳变存在指示符以确定跳变模式指示符是否被用信号通知。

在一些实施例中,收发单元还接收初始带宽部分指示符,该初始带宽部分指示符是半静态地用信号通知的,并且指定在多个TTI的初始TTI中信号将在其上被接收或发送的带宽部分。该电路还评估初始带宽部分指示符,以确定在初始TTI中信号将在其上被接收的带宽部分。此外,收发单元在由初始带宽部分指示符指定的带宽部分中在初始TTI中接收或发送信号。

在一些示例性实施例中,在多个TTI中接收或发送的信号是重复或重传的序列。

此外,在一些实施例中,从基站接收的跳变模式指示符是指示第一信号的第一跳变模式的第一跳变模式指示符。收发单元还从基站接收指定第二信号的第二跳变模式的第二跳变模式指示符,第二跳变模式不同于第一跳变模式。该电路还评估第二跳变模式指示符以确定第二跳变模式。收发单元还根据第二跳变模式接收或发送第二信号。

例如,第一信号是数据,并且第二信号是控制信息。

在一些特定示例中,控制信息(第二信号)包括第一跳变模式指示符的重复。

此外,例如,第一信号和第二信号是相应的传输或重传的序列。

在一个实施例中,本公开提供了一种用于在无线通信系统中在多个带宽部分的至少一个中向/从通信设备发送或接收信号的基站,带宽部分由至少一个物理资源块形成。基站包括电路,该电路定义跳变模式,跳变模式是将在多个传输时间间隔(TTI)中发送或接收信号所按照的多个带宽部分的顺序,并且生成指定跳变模式的跳变模式指示符。基站还包括收发单元,该收发单元向通信设备发送跳变模式指示符,并根据跳变模式在多个TTI中发送或接收信号。

例如,收发单元发送包括跳变模式指示符的下行链路控制信息(DCI)。

在一些实施例中,电路还生成跳变存在指示符,该跳变存在指示符指示信号是否将根据跳变模式被接收或发送,并且收发单元向通信设备发送跳变存在指示符。跳变存在指示器是半静态地用信号通知的。

例如,收发单元发送包括字段的下行链路控制信息(DCI),并且如果信号将根据跳变模式被接收或发送,则该字段携载跳变模式指示符,否则如果信号将不根据跳变模式被接收或发送,则该字段携载带宽部分指示符,该带宽部分指示符指示在至少一个TTI中信号将在其上被接收或发送的活动带宽部分。

在一些实施例中,电路生成包括跳变模式指示符的下行链路控制信息(DCI),DCI长度指示确定跳变模式指示符是否被用信号通知。

在一些实施例中,跳变模式指示符是半静态地用信号通知的,并且跳变存在指示符确定跳变模式指示符是否被用信号通知。

在一些实施例中,电路还生成初始带宽部分指示符,该初始带宽部分指示符指定在多个TTI的初始TTI中信号将在其上被接收或发送的带宽部分。收发单元还向通信设备发送初始带宽部分指示符,该初始带宽部分指示符是半静态地用信号通知的。此外,收发单元在由初始带宽部分指示符指定的带宽部分中在初始TTI中接收或发送信号。

在一些示例性实施例中,在多个TTI中接收或发送的信号是重复或重传的序列。

此外,在一些实施例中,发送到通信设备的跳变模式指示符是指示第一信号的第一跳变模式的第一跳变模式指示符。电路还生成指定第二信号的第二跳变模式的第二跳变模式指示符,第二跳变模式不同于第一跳变模式。收发单元还将第二跳变模式指示符发送到通信设备。收发单元还根据第二跳变模式接收或发送第二信号。

例如,第一信号是数据,并且第二信号是控制信息。

在一些特定示例中,控制信息(第二信号)包括第一跳变模式指示符的重复。

此外,例如,第一信号和第二信号是相应的传输或重传的序列。

在一个实施例中,本公开提供了一种用于在无线通信系统中在多个带宽部分的至少一个中从/向基站接收或发送信号的方法,带宽部分由至少一个物理资源块形成。该方法包括由通信设备执行的以下步骤:从基站接收指定跳变模式的跳变模式指示符,跳变模式是在多个传输时间间隔(TTI)中接收或发送信号所按照的多个带宽部分的顺序;评估跳变模式指示符以确定跳变模式;以及根据跳变模式在多个TTI中接收或发送信号。

在一个实施例中,提供了一种用于在无线通信系统中在多个带宽部分的至少一个中向/从通信设备发送或接收信号的方法,带宽部分由至少一个物理资源块形成。该方法包括由基站执行的以下步骤:定义跳变模式,跳变模式是将在多个传输时间间隔中发送或接收信号所按照的多个带宽部分的顺序;生成指定跳变模式的跳变模式指示符;向通信设备发送跳变模式指示符;以及根据跳变模式在多个TTI中发送或接收信号。

在一个实施例中,提供了一种存储可执行指令的计算机可读介质。这些指令在被执行时,使得通信设备执行用于向/从基站发送或接收信号的上述方法的步骤。

在一个实施例中,提供了一种存储可执行指令的计算机可读介质。这些指令在被执行时,使得基站执行用于向/从通信设备发送或接收信号的上述方法的步骤。

总之,本公开涉及一种用于在无线通信系统中在多个带宽部分中的至少一个中从/向基站接收或发送信号的通信设备、基站以及用于通信设备和基站的相应方法,其中带宽部分由至少一个物理资源块形成。该通信设备包括收发单元,该收发单元从基站接收指定跳变模式的跳变模式指示符,该跳变模式是在多个传输时间间隔(TTI)中接收或发送信号所按照的多个带宽部分的顺序。通信设备还包括电路,该电路评估跳变模式指示符以确定跳变模式。收发单元还根据跳变模式在多个TTI中接收或发送信号。

26页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:无线通信装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!