减震器

文档序号:1078185 发布日期:2020-10-16 浏览:27次 >En<

阅读说明:本技术 减震器 (Shock absorber ) 是由 张凯 久保田直喜 三轮昌弘 于 2019-03-08 设计创作,主要内容包括:减震器(10)包括:轴承单元(140),其具有轴承(142)和轴承保持构件(141);以及密封单元(130),其具有密封构件(132)和密封保持构件(131),密封保持构件(131)具有收纳密封构件(132)的密封收纳部(134)和供活塞杆(3)贯穿的贯穿孔(138),密封构件(132)被伸长侧室(61)的工作流体压按压于活塞杆(3)的外周面和密封收纳部(134),轴承(142)设为轴承(142)的与密封构件(132)相对的一端面(142a)与轴承保持构件(141)的贯通孔(160)的开口面(160a)对齐或自贯通孔(160)的开口面(160a)突出。(The shock absorber (10) includes: a bearing unit (140) having a bearing (142) and a bearing holding member (141); and a seal unit (130) having a seal member (132) and a seal holding member (131), the seal holding member (131) having a seal housing section (134) housing the seal member (132) and a through-hole (138) through which the piston rod (3) passes, the seal member (132) being pressed against the outer peripheral surface of the piston rod (3) and the seal housing section (134) by the working fluid of the extension-side chamber (61), the bearing (142) being such that one end surface (142a) of the bearing (142) facing the seal member (132) is aligned with an opening surface (160a) of the through-hole (160) of the bearing holding member (141) or protrudes from the opening surface (160a) of the through-hole (160).)

减震器

技术领域

本发明涉及一种减震器。

背景技术

在日本JP2011-214639A中公开了一种缓冲器,该缓冲器在有底圆筒状的缸的开口部安装有杆引导件和油封。在形成于杆引导件的引导孔中压入有作为滑动构件的衬套,在衬套中贯穿有活塞杆。在杆引导件与油封之间形成有油室,该油室经由在轴向上贯通杆引导件的通路而与缸上室连通。

发明内容

在日本JP2011-214639A所记载的缓冲器中,在引导孔的上端部形成有间隙,因此异物易于积存于衬套与油封之间。因此,存在积存的异物进入油封与活塞杆之间,导致油封损伤的可能。

此外,在日本JP2011-214639A所记载的缓冲器中,在保持油封的加强构件与活塞杆之间设有间隙。该间隙若过大,则存在油封的主密封件进入,导致油封损伤的可能。

本发明的目的在于防止密封构件的损伤。

根据本发明的一个技术方案,提供一种减震器,其中,该减震器包括:缸,其封入有工作流体;活塞,其滑动自如地设于所述缸内,将所述缸内划分为伸长侧室和压缩侧室;活塞杆,其进退自如地***于所述缸并连结于所述活塞;轴承单元,其具有内周与所述活塞杆滑动接触的轴承和设有供所述轴承***的贯通孔的轴承保持构件;密封单元,其具有与所述活塞杆的外周滑动接触并防止工作流体的泄漏的密封构件和保持所述密封构件的密封保持构件;以及压力室,其设于所述密封单元与所述轴承单元之间,在所述轴承保持构件设有将所述伸长侧室的工作流体向所述压力室引导的连通通路,所述密封保持构件具有:密封收纳部,其收纳所述密封构件;以及贯穿孔,其供所述活塞杆贯穿,所述密封构件被所述伸长侧室的被引导至所述压力室的工作流体压按压于所述活塞杆的外周面和密封收纳部,所述轴承设为所述轴承的与所述密封构件相对的一端面与所述轴承保持构件的所述贯通孔的开口面对齐或自所述贯通孔的开口面突出。

附图说明

图1是本发明的第1实施方式的减震器的剖视图。

图2是表示本发明的第1实施方式的减震器的杆引导组件的放大剖视图。

图3是表示本发明的第1实施方式的减震器的衬套与活塞杆-密封壳间的间隙的位置关系的图。

图4是表示第1实施方式的比较例的减震器的衬套与活塞杆-密封壳间的间隙的位置关系的图。

图5是表示本发明的第2实施方式的减震器的杆引导组件的放大剖视图。

图6是表示本发明的第3实施方式的减震器的杆引导组件的放大剖视图,杆引导件的截面表示沿着图7的VI-VI线的截面。

图7是从图6的VII方向观察到的杆引导件的后视图。

图8是表示本发明的第3实施方式的减震器的轴承单元以正确的方向配置的状态的剖视图。

图9是表示本发明的第3实施方式的减震器的轴承单元以错误的方向配置的状态的剖视图。

图10是表示减震器的杆引导组件的组装步骤的流程图。

图11是表示本发明的第3实施方式的减震器伸长最大程度时的状态的剖视图。

图12是表示本发明的第4实施方式的减震器的轴承单元以正确的方向配置的状态的剖视图。

图13是表示本发明的第4实施方式的减震器的轴承单元以错误的方向配置的状态的剖视图。

图14是表示本发明的实施方式的变形例的减震器的杆引导组件的放大剖视图。

图15是本发明的实施方式的另一变形例的减震器的杆引导件的后视图。

图16是本发明的实施方式的又一变形例的减震器的与缸的支承突起卡合的杆引导件的外侧角部的放大剖视图。

具体实施方式

<第1实施方式>

以下,参照附图,说明本发明的第1实施方式的减震器10。本实施方式的减震器10应用于汽车等车辆,设定为缸1与具有车轮和车轴的行驶装置连结且自缸1突出的活塞杆(以下,也简记作杆)3的端部与车身框架连结的正立型。因此,在由路面的凹凸引起的冲击向车轮输入时,杆3出入缸1而减震器10进行伸缩动作。

减震器10也可以应用于汽车以外的车辆,也可以设定为缸1连结于车身侧且杆3连结于车轮侧的倒立型。在以下的说明中,以正立型的减震器10为例而说明,将杆3的与车身框架连结的顶端部设为减震器10的上端部,将缸1的与行驶装置连结的顶端部设为减震器10的下端部,由此规定减震器10的上下方向。

减震器10是安装于车身框架与行驶装置之间且产生阻尼力而抑制车身的振动的装置。如图1所示,减震器10包括有底圆筒状的缸1、固定于缸1的上侧开口部的杆引导组件100、进退自如地***于缸1的圆柱状的杆3以及与杆3的下端部连结的环状的活塞2。

活塞2滑动自如地设于缸1内,将缸1内划分为伸长侧室61和压缩侧室62。伸长侧室61由缸1的内周面、活塞2的上表面以及后述的杆引导件141(参照图2)的下表面形成。压缩侧室62由缸1的内周面、活塞2的下表面以及后述的自由活塞4的上表面形成。杆3被杆引导组件100支承为滑动自如。伸长侧室61和压缩侧室62是封入有作为工作流体的工作油的液室(作用室)。

减震器10是具备滑动自如地***于缸1并划分形成气室63的自由活塞4的单筒式减震器。在自由活塞4的外周设有保持气室63的气密性的密封构件4a。

缸1的气室63侧的下端部封闭。在缸1的下端部设有用于将减震器10安装于车辆的连结构件1a。

在减震器10收缩而杆3进入缸1时,自由活塞4向气室63侧移动,气室63的气体压缩与杆3的进入的部分的体积相应的量。在减震器10伸长而杆3自缸1退出时,自由活塞4向压缩侧室62侧移动,气室63的气体膨胀与杆3的退出的部分的体积相应的量。由此,补偿减震器10工作时的缸1内的容积变化。

杆3的上端部从缸1伸出,杆3的下端部***于缸1。在杆3的上端部形成有用于将减震器10安装于车辆的外螺纹3a,在杆3的下端部形成有供螺母8螺纹结合的外螺纹3b。

活塞2具有将伸长侧室61和压缩侧室62连通的通路2a、2b。在活塞2的伸长侧室61侧设有具有多个环状的叶片阀的阻尼阀5。在活塞2的压缩侧室62侧设有具有多个环状的叶片阀的阻尼阀6。活塞2、阻尼阀5以及阻尼阀6利用螺母8固定于杆3的端部。

阻尼阀5在减震器10收缩时利用伸长侧室61与压缩侧室62之间的压力差开阀而开放通路2a,并且对从压缩侧室62经由通路2a而向伸长侧室61移动的工作油的流动施加阻力。阻尼阀5在减震器10伸长时闭阀而封闭通路2a。也就是说,阻尼阀5是在减震器10收缩时产生阻尼力的阻尼力产生元件。

阻尼阀6在减震器10伸长时开阀而开放通路2b,并且对从伸长侧室61经由通路2b而向压缩侧室62移动的工作油的流动施加阻力。阻尼阀6在减震器10收缩时闭阀而封闭通路2b。也就是说,阻尼阀6是在减震器10伸长时产生阻尼力的阻尼力产生元件。

如图2所示,杆引导组件100具有:防尘密封单元120,其是具有防尘密封件122的密封单元;油封单元130,其是具有油封132的密封单元;以及轴承单元140,其将杆3轴支承为在轴向上移动自如。另外,轴向是指沿着杆3的中心轴线的方向,即杆3的移动方向。

在缸1的内周形成有沿着周向的环状的槽1c,在该槽1c嵌合有相对于缸1独立地设置的作为卡定件的挡圈(弹簧销)109。挡圈109是具有圆形状的截面的环状的构件,是卡合于轴承单元140并限定轴承单元140的轴向的位置的位置限定部。在自缸1的内周面突出的挡圈109的上侧依次层叠轴承单元140、油封单元130、防尘密封单元120,将缸1的上端部向内侧翻边(日文:かしめ),形成翻边部1b。由此,在翻边部1b与挡圈109之间,轴承单元140、油封单元130、防尘密封单元120以层叠状态固定于缸1的上侧开口部。

轴承单元140具有:衬套142,其具有供杆3的外周面滑动接触的内周面;以及杆引导件141,其作为轴承保持构件,保持衬套142。杆引导件141具有供衬套142***的贯通孔160。衬套142是在由金属形成为圆筒状的圆筒部(基体金属部分)的内周面涂覆有聚四氟乙烯(PTFE)等树脂的轴承。衬套142压入固定于在杆引导件141设置的贯通孔160。

防尘密封单元120具有金属制的嵌入构件121和包覆于嵌入构件121的橡胶制的橡胶构件,该橡胶构件具有防尘密封件122和外周密封件123。防尘密封件122与杆3的外周面滑动接触,防止尘埃、雨水等异物进入缸1内。外周密封件123与缸1的内周面接触,防止缸1内的工作油经由杆引导组件100的外周而向外部泄漏。防尘密封件122和外周密封件123利用连结橡胶部(未图示)连结。

油封单元130具有:油封132,其与杆3的外周面滑动接触,作为密封构件,防止缸1内的工作油经由杆3的外周而向外部泄漏;密封保持件133,其设于油封132的径向外侧,作为密封构件,保持油封132;以及密封壳131,其作为密封保持构件,保持油封132和密封保持件133。

在金属制的密封壳131设有密封收纳凹部134,该密封收纳凹部134是收纳油封132和密封保持件133的凹形状的密封收纳部。密封收纳凹部134具有小径凹部135和与小径凹部135相比内径较大的大径凹部136,呈下端面(轴承单元140侧的端面)开口的台阶形状。密封保持件133以抵接于大径凹部136的底面和侧面及杆引导件141的状态保持。油封132以被密封保持件133按压于小径凹部135的底面135a和杆3的外周面的状态保持。

在密封壳131形成有在轴向上支承油封132的支承部137,该油封132被引导至后述的油室151的工作油压向上方按压。也就是说,支承部137的下端面(轴承单元140侧的端面)相当于上述的小径凹部135的底面135a。在该支承部137形成有供杆3贯穿的贯穿孔138。贯穿孔138是在从小径凹部135的底面135a到密封壳131的上端面的范围沿着轴向贯通的贯通孔。在贯穿孔138的内周面与杆3的外周面之间有形成环状的间隙139。

环状的油封132***于小径凹部135,环状的密封保持件133压入于大径凹部136。油封132由氟橡胶等弹性构件形成。密封保持件133由丁腈橡胶等弹性构件形成。

杆引导件141配置于挡圈109上,划分伸长侧室61,从下方支承油封单元130。也就是说,轴承单元140作为不仅将杆3支承为在轴向上滑动自如而且支承油封单元130的密封壳131的支承构件发挥功能。在杆引导件141的与伸长侧室61相反的一侧的端面(油封单元130侧的端面)具有与密封保持件133接触的接触部143和与密封保持件133分开的非接触部144。

接触部143与密封保持件133的外周部和密封壳131接触。非接触部144与密封保持件133的内周部在轴向上分开。在油封单元130与轴承单元140之间设有油室151。油室151由杆引导件141、油封单元130的下端面以及杆3的外周面划分形成为大致环状的压力室。在油室151形成有在轴向上凹陷的环状槽147。环状槽147是积极地积存油室151内的异物(污染物)的凹部,抑制异物积存于杆3的周围。

在杆引导件141形成有将油室151和伸长侧室61连通的连通通路146。连通通路146由贯通通路146a和径向通路146b构成,该贯通通路146a沿着轴向贯通杆引导件141,该径向通路146b沿着径向延伸地形成于杆引导件141的与密封壳131相对的端面。连通通路146将伸长侧室61的工作油向油室151引导,将伸长侧室61侧的压力向密封保持件133和油封132传递。

对于密封保持件133的端面,作用伸长侧室61的被引导至油室151的工作油压,密封保持件133在轴向上压缩而在径向上鼓出。因此,油封132被按压于杆3的外周面和小径凹部135的底面135a。由此,杆3的外周面被油封132密封。油封132被小径凹部135的底面135a(支承部137的下端面)在轴向上支承,因此被不错位地按压于杆3。因而,能够提高减震器10的密封性。

如图3所示,在杆引导件141设有供衬套142压入的贯通孔160。贯通孔160具有供衬套142***的大径部161和在大径部161的下方连续地设置的小径部162。小径部162具有随着朝向下方而内径逐渐变小的锥形部和从锥形部的下端向下方延伸的直部。直部的轴向的任意位置的内径相同。

衬套142设为衬套142的与油封132在轴向上相对的轴向一端面即上端面142a与杆引导件141的贯通孔160的轴向一端侧的开口面即上部开口面160a对齐。衬套142的上端面142a与油封132的下端面之间的分开距离设定为在减震器10的工作过程中油封132与衬套142不接触的尺寸。

与图4所示的本实施方式的比较例的减震器910进行比较而具体地说明通过采用这样的结构而获得的本实施方式的作用效果。

如图4所示,在本实施方式的比较例中,衬套142设为衬套142的轴向另一端面即下端面142b与杆引导件141的贯通孔960的轴向另一端侧的开口面即下部开口面960b对齐。也就是说,在本实施方式的比较例中,衬套142配置为衬套142的上端面142a位于比贯通孔960的上部开口面960a靠下侧,即贯通孔960的内侧的位置。

这样,在本实施方式的比较例中,在贯通孔960的上部(衬套142的上端面142a侧)处,在杆3的外周面与贯通孔960的内周面之间形成有间隙969。也就是说,在杆3的周围形成有环状的凹部,因此异物易于积存于衬套142与油封132之间。在减震器10的杆3自缸1退出的伸长时,工作油由于粘性阻力而粘附于杆3而进入油封132与杆3之间。因此,在本实施方式的比较例中,存在积存于杆3的周围的异物与工作油一同进入油封132与杆3之间而导致油封132损伤的可能。

相对于此,在本实施方式中,如图3所示,在贯通孔160的上部(衬套142的上端面142a侧)处,在杆3的外周面与贯通孔160的内周面之间未形成间隙。因此,在本实施方式中,能够抑制异物积存于衬套142与油封132之间。其结果,能够防止油封132的损伤。

并且,在本实施方式中,与比较例相比,能够使衬套142的上端面142a位于杆3的外周面与贯穿孔138的内周面之间的间隙139的附近。具体而言,图3所示的本实施方式的间隙139的上端A1与衬套142的上端B1之间的轴向距离x1小于图4所示的比较例的间隙939的上端A9与衬套142的上端B9之间的轴向距离x9(x1<x9)。

如图4所示,在本实施方式的比较例中,在对杆3作用横向力而杆3以衬套142的上端B9为固定支点而挠曲时,间隙939的上端A9处的杆3的挠曲量(径向的变形量)比本实施方式的挠曲量大。若杆3与密封壳131干涉,则产生异响和磨损。因此,在本实施方式的比较例中,为了避免杆3与密封壳131的干涉,需要将贯穿孔938的内径设定得比本实施方式的贯穿孔138的内径大。但是,油封132被工作油压按压于密封收纳凹部134的底面135a。因此,若贯穿孔938的内周面与杆3的外周面之间的间隙939过大,则存在油封132进入间隙939而导致油封132损伤的可能。

相对于此,在本实施方式中,如上所述,衬套142配置于贯通孔160的上部,设定为图3所示的轴向距离x1小于比较例的轴向距离x9(参照图4)。因而,在本实施方式中,在杆3以衬套142的上端B1为固定支点而挠曲时,间隙139的上端A1处的杆3的挠曲量比比较例的挠曲量小。因此,在本实施方式中,能够将形成于支承部137的贯穿孔138的内径设定得比比较例的贯穿孔938的内径小。由此,本实施方式的间隙139小于比较例的间隙939。其结果,在本实施方式中,能够防止油封132进入贯穿孔138的内周面与杆3的外周面之间的间隙139,防止油封132损伤。

衬套142从上部开口面160a***于贯通孔160的内侧。小径部162的内径小于大径部161的内径和衬套142的外径,因此在将衬套142安装于贯通孔160时,衬套142不会自贯通孔160脱离。

如图1所示,在杆3的自活塞2向上方分开预定距离的位置固定有环状的止挡件171。止挡件171支承环状的回弹缓冲件170。回弹缓冲件170由橡胶等能够弹性变形的弹性构件形成,设于杆3的外周。回弹缓冲件170在减震器10伸长最大程度时与杆引导件141(参照图2)接触而弹性变形,缓和伸长最大程度时的减震器10的冲击。

在回弹缓冲件170与图2所示的杆引导件141接触而弹性变形时,有时回弹缓冲件170的局部进入贯通孔160的内侧。

在本实施方式中,如图3所示,衬套142的下端面142b位于比下部开口面160b靠上侧,即贯通孔160的轴向内侧的位置。衬套142的下端面142b与贯通孔160的下部开口面160b之间的距离设定为在杆3伸长最大程度时回弹缓冲件170与衬套142不接触的距离。也就是说,在本实施方式中,能够防止因在杆3伸长最大程度时回弹缓冲件170与衬套142接触而导致衬套142被向上方推压(即,朝向油封132推压)。

并且,在本实施方式中,在比供衬套142***的大径部161靠回弹缓冲件170侧(下侧)的位置设有与大径部161相比内径较小的小径部162。换言之,在衬套142的下端面142b与贯通孔160的下部开口面160b之间设有内径比衬套142的外径小的小径部162。利用小径部162,抑制回弹缓冲件170进入贯通孔160的量,因此能够更有效地防止回弹缓冲件170与衬套142接触。此外,由此,能够减小衬套142的下端面142b与贯通孔160的下部开口面160b之间的距离。也就是说,根据本实施方式,与不设置小径部162的情况相比,能够将衬套142的轴向长度设定得较长,能够抑制杆3的偏心。

根据上述的第1实施方式,起到以下的作用效果。

衬套142设为其上端面142a与杆引导件141的贯通孔160的上部开口面160a对齐,因此在衬套142的上端面142a侧处,在杆引导件141的贯通孔160的内周面与杆3的外周面之间未形成间隙。在贯通孔160的上部未形成间隙,因此抑制异物积存于衬套142与油封132之间。因而,能够防止因积存于衬套142与油封132之间的异物与油封132接触而导致的油封132的损伤。

并且,抑制杆3的以衬套142的上端B1为固定支点的挠曲,因此能够将密封壳131的贯穿孔138的内周面与杆3的外周面之间的间隙139设定得较小。由此,能够防止因油封132进入密封壳131与杆3之间的间隙139而导致的油封132的损伤。

<第2实施方式>

参照图5,说明本发明的第2实施方式的减震器10A。以下,以与上述第1实施方式的不同点为中心而说明,图中,对于与在上述第1实施方式中说明的结构相同的结构或相当的结构,标注相同的附图标记并省略说明。

在第1实施方式中,以衬套142的上端面142a与杆引导件141的贯通孔160的上部开口面160a对齐的方式对衬套142进行定位。相对于此,在第2实施方式中,以衬套142的上端面142a自杆引导件141的贯通孔160的上部开口面160a突出的方式对衬套142进行定位。也就是说,衬套142的上端面142a位于比贯通孔160的上部开口面160a靠上侧,即贯通孔160的外侧的位置。衬套142的突出量(突出高度)设定为在减震器10A的工作过程中油封132与衬套142不接触的尺寸。

这样,在第2实施方式中,衬套142的上端部自贯通孔160朝向油封132突出,因此在衬套142的上端面142a侧处,在杆引导件141的贯通孔160的内周面与杆3的外周面之间未形成间隙。在贯通孔160的上部未形成间隙,因此与第1实施方式同样,抑制异物积存于衬套142与油封132之间,防止油封132的损伤。

并且,衬套142的上端B2同密封壳131的贯穿孔138的内周面与杆3的外周面之间的间隙139的上端A2之间的轴向距离x2小于第1实施方式的轴向距离x1(参照图3)(x2<x1)。因而,在第2实施方式中,将密封壳131与杆3之间的间隙139设定得比第1实施方式小。由此,能够比第1实施方式更有效地防止因油封132进入密封壳131与杆3之间的间隙139而导致的油封132的损伤。

<第3实施方式>

参照图6~图11,说明本发明的第3实施方式的减震器10B。以下,以与上述第1实施方式的不同点为中心而说明,图中,对于与在上述第1实施方式中说明的结构相同的结构或相当的结构,标注相同的附图标记并省略说明。

如图6和图7所示,杆引导件141是圆环状的构件。以下,将如图6所示那样杆引导组件100B适当地组装的状态时的上表面设为正面141f,将如图6所示那样杆引导组件100B适当地组装的状态时的下表面设为反面141b,由此定义杆引导件141的正反。

在杆引导件141中,将正面141f设为上侧并将反面141b设为下侧的方向是正确的方向,相反,将正面141f设为下侧并将反面141b设为上侧的方向是错误的方向。杆引导件141是圆环状的构件,因此即使颠倒正反也能够***于缸1。因此,在组装杆引导组件100B时,存在发生在错误地反向配置杆引导件141的状态下进行缸上端部的翻边加工的错误组装的可能。

因此,在该第3实施方式中,为了防止错误组装的发生,以在杆引导件141以错误的方向***于缸1内的情况下,与杆引导件141以正确的方向***于缸1内的情况相比,对缸1的上端部进行翻边时的突出量X较短的方式形成杆引导件141。由此,通过在进行缸上端部的翻边加工的前工序中测定突出量X,能够进行错误组装的判断。以下,详细地说明。

如图6所示,杆引导件141通过外侧角部148a抵接于挡圈109而被挡圈109支承。第3实施方式的杆引导件141具有多个突出部110,在杆引导件141以杆引导件141的正反正确的方向***于缸1时,该多个突出部110自面对伸长侧室61的反面141b向伸长侧室61侧(下侧)突出。

如图6和图7所示,多个突出部110沿着周向等间隔地配置。各突出部110在俯视时形成为以杆3的中心轴线为中心的圆弧状。突出部110的截面为梯形状,以随着从其基端朝向顶端面110a而宽度(两侧的侧面110b间的尺寸)变小的方式形成。顶端面110a是与杆3的中心轴线正交的平坦的面,一对两侧侧面110b是以随着从顶端面110a朝向基端而突出部110的宽度扩大的方式倾斜的锥形面。

图8是表示减震器10B的轴承单元140以正确的方向配置的状态的剖视图,图9是表示减震器10B的轴承单元140以错误的方向配置的状态的剖视图。

如图8所示,在轴承单元140以正确的方向配置于挡圈109上的情况下,将杆引导件141的与密封壳131接触的圆环状的面定义为接触区域C1。突出部110以其顶端面110a位于比杆引导件141抵接于挡圈109的抵接部P0靠径向内侧(中心侧)且比圆环状的接触区域C1的内周靠径向外侧的位置的方式形成。换言之,突出部110以在从轴向观察时顶端面110a位于圆环状的接触区域C1内的方式形成。

由此,如图9所示,在轴承单元140以错误的方向组装于缸1内的情况下,突出部110的顶端面110a抵接于密封壳131。因此,与轴承单元140以正确的方向配置时相比,突出量X变短。

另外,突出部110若在从轴向观察时突出部110的顶端面110a的局部与圆环状的接触区域C1重叠,则在轴承单元140以错误的方向配置的情况下,能够使突出部110的顶端面110a的局部抵接于密封壳131。也就是说,突出部110以其顶端面110a的局部位于比圆环状的接触区域C1的内周靠径向外侧的位置的方式形成即可。

另外,在缸1的上端部的翻边加工之前,当在挡圈109上层叠有多个部件的状态下,在层叠的各部件间形成有微小的间隙。因此,例如,层叠的各部件的公差的合计与层叠的各部件间的间隙的合计的总和越大,对缸1的上端部进行翻边时的突出量X越小。也就是说,缸端部的突出量X根据各部件的公差的合计与各部件间的间隙的合计的总和而变化。

在以往的减震器中,有时挡圈的截面的直径小于各部件的公差的合计与各部件的间隙(最大值)的合计的总和。在日本JP2015-218819A中记载了如下内容:作为缓冲器的组装方法,在设于缸的内周的挡圈的上侧依次层叠座、杆引导组件以及密封构件,将缸的上端部向内侧翻边。此外,在日本JP2015-218819A中公开了如下内容:在座30设置供挡圈14接触的卡挂槽30f,从卡挂槽30f的底部到外周部30b的作用室L侧的端面的距离小于挡圈14的截面的直径。

但是,在日本JP2015-218819A所记载的技术中,从供挡圈14接触的卡挂槽30f的底部到外周部30b的作用室L侧的端面的距离小于各部件的公差的合计与各部件的间隙(最大值)的合计的总和。因此,在日本JP2015-218819A所记载的技术中,座30以正确的方向配置的情况的缸端部的突出量X与座30以错误的方向配置于挡圈14上的情况的缸端部的突出量X之差较小,无法进行座30的错误组装的判断。也就是说,在日本JP2015-218819A所记载的技术中,存在无法进行以正确的方向配置的情况与以错误的方向配置的情况的突出量X之差是由公差、部件间的间隙的影响导致还是由错误组装导致的判断。因此,在日本JP2015-218819A所记载的缓冲器中,在层叠座、杆引导组件以及密封构件时,存在发生各部件以错误地反向配置的状态组装于缸的错误组装的可能。

在突出部110的轴向长度即突出高度H1小于层叠的各部件的公差的合计与层叠的各部件间的间隙(最大值)的合计的总和时,难以进行错误组装判断。因此,为了容易地进行错误组装判断,优选的是,如图8所示,突出部110的突出高度H1设定为其顶端面110a位于比挡圈9的下端靠下方的位置。此外,更优选的是,突出部110的突出高度H1设定为比挡圈109的截面的直径大的尺寸。例如,突出部110的突出高度H1设定为1mm以上的尺寸。由此,在以正确的方向配置轴承单元140的情况和以错误的方向配置轴承单元140的情况下,能够使突出量X变化层叠的各部件的公差的合计与各部件间的间隙(最大值)的合计的总和以上,能够更容易地进行错误组装的判断。

说明该第3实施方式的减震器10B的杆引导组件100B的组装方法。图10是表示减震器10B的杆引导组件100B的组装步骤的流程图。如图10所示,杆引导组件100B的组装方法包括准备工序S100、位置限定部形成工序S110、轴承单元配置工序S120、油封单元配置工序S130、防尘密封单元配置工序S140、错误组装判断工序S150以及翻边加工工序S160。

在准备工序S100中,准备构成杆引导组件100B的各部件。向杆引导件141的贯通孔160压入衬套142,形成轴承单元140。向密封壳131的密封收纳凹部134***油封132,接着***密封保持件133,形成油封单元130。在嵌入构件121上包覆具有防尘密封件122和外周密封件123的橡胶构件,形成防尘密封单元120。

在位置限定部形成工序S110中,使挡圈109嵌合于在缸1的内周沿着周向形成的槽1c。

轴承单元配置工序S120在位置限定部形成工序S110之后进行。在轴承单元配置工序S120中,从缸1的上侧开口部向缸1的内侧***轴承单元140,将轴承单元140载置于挡圈109上。

油封单元配置工序S130在轴承单元配置工序S120之后进行。在油封单元配置工序S130中,从缸1的上侧开口部向缸1的内侧***油封单元130,将油封单元130载置于轴承单元140上。

防尘密封单元配置工序S140在油封单元配置工序S130之后进行。在防尘密封单元配置工序S140中,从缸1的上侧开口部向缸1的内侧***防尘密封单元120,将其载置于油封单元130上。

错误组装判断工序S150在防尘密封单元配置工序S140之后进行。在错误组装判断工序S150中,如图8和图9所示,测定从防尘密封单元120的嵌入构件121的上端到缸1的上端的突出量X,判断测定的突出量X是否在预先确定的阈值Xt1以上。阈值Xt1是为了判断轴承单元140是否以正确的方向配置而设定的。

如图8所示,在轴承单元140以正确的方向组装于缸1内的情况下,平坦的接触部143的端面抵接于密封壳131。此时,从挡圈109与杆引导件141的外侧角部148a的抵接部P0到接触部143与密封壳131的抵接面的距离成为L0。

杆引导件141的正面141f侧的外侧角部148b是与杆引导件141的反面141b侧的外侧角部148a同样的形状。因此,如图9所示,在轴承单元140以错误的方向组装于缸1内的情况下,外侧角部148b抵接于挡圈109,利用挡圈109限定轴承单元140的轴向的位置。此时,从挡圈109与杆引导件141的外侧角部148b的抵接部P1到突出部110的顶端面110a与密封壳131的抵接面的距离成为L1。

轴承单元140以错误的方向组装于缸1内时的距离L1比轴承单元140以正确的方向组装于缸1内时的距离L0长与突出部110的突出高度H1相应的长度(L1>L0,L1=L0+H1)。

因而,轴承单元140以错误的方向组装于缸1内时的突出量X1比轴承单元140以正确的方向组装于缸1内时的突出量X0短与突出部110的突出高度H1相应的长度(X1<X0,X1=X0-H1)。

上述阈值Xt1设定为比X1大且比X0小的值(X1<Xt1<X0)。如图10所示,在错误组装判断工序S150中,在测定的突出量X为阈值Xt1以上的情况下,判断为轴承单元140以正确的方向配置,进入翻边加工工序S160。在错误组装判断工序S150中,在测定的突出量X小于阈值Xt1的情况下,判断为轴承单元140以反向(错误的方向)配置,进入单元取出工序S155。

在单元取出工序S155中,从缸1取出防尘密封单元120、油封单元130以及轴承单元140,返回到轴承单元配置工序S120。

在错误组装判断工序S150中,在判断为轴承单元140以正确的方向配置的情况下,在翻边加工工序S160中,将缸1的上端部向内侧翻边,形成翻边部1b。由此,杆引导组件100B完成。

这样,突出部110具有使轴承单元140以正确的方向配置于挡圈109上的情况的缸端部的突出量X(X=X0)与轴承单元140以错误的方向配置于挡圈109上的情况的缸端部的突出量X(X=X1)不同的功能。由此,在错误组装判断工序S150中,能够容易地判断杆引导组件100B的错误组装。

突出部110除了具有上述功能以外,具有提高回弹缓冲件170的耐久性的功能。图11是表示减震器10B伸长最大程度时的状态的图。如图11所示,在减震器10B伸长最大程度时,回弹缓冲件170的与轴承单元140相对的端面即环状的接触面170a与杆引导件141的反面141b接触,回弹缓冲件170弹性变形。突出部110的基端部的内径D1大于未弹性变形的状态的回弹缓冲件170的接触面170a的外径D2(D1>D2)。因此,通过在减震器10B伸长最大程度时回弹缓冲件170在径向上扩大,能够有效地缓和减震器10B的冲击。并且,在减震器10B伸长最大程度时,由于弹性变形而在径向上扩大的回弹缓冲件170的外周与突出部110的内侧的侧面110b接触,该回弹缓冲件170的向径向外侧的变形被限制。能够防止回弹缓冲件170过度地变形,因此能够提高回弹缓冲件170的耐久性。

如上所述,突出部110为沿着周向的形状(参照图7),因此能够均匀地抑制回弹缓冲件170的径向的变形。因而,能够更有效地提高回弹缓冲件170的耐久性。如上所述,突出部110的内侧的侧面110b形成为锥形面。因此,回弹缓冲件170不会因抵接于突出部110的内侧的侧面110b而损伤。

如图7所示,贯通通路146a的伸长侧室61侧的开口面配置于在周向上相邻的突出部110间。此外,贯通通路146a的伸长侧室61侧的开口面配置于比突出部110的径向内缘110i靠径向外侧的位置。另外,贯通通路146a的伸长侧室61侧的开口面不必全部配置于比突出部110的径向内缘110i靠径向外侧的位置。也就是说,贯通通路146a的伸长侧室61侧的开口面的局部配置于比突出部110的径向内缘110i靠径向外侧的位置即可。

由此,如图11所示,在减震器10B伸长最大程度时,能够防止贯通通路146a的开口被回弹缓冲件170堵塞。因此,能够使伸长侧室61的压力持续作用于油封132,因此能够维持油封132的密封性能。此外,在杆引导件141的反面141b中,能够将供回弹缓冲件170的轴向端面接触的区域设为上述贯通通路146a的开口等没有凹凸的平坦的面。由此,在回弹缓冲件170与杆引导件141碰撞时,能够防止回弹缓冲件170损伤。因而,能够提高回弹缓冲件170的耐久性。

根据这样的第3实施方式,除了起到上述第1实施方式的作用效果以外,起到以下的作用效果。

杆引导件141以如下方式形成:在如图8所示那样以杆引导件141的正反正确的方向***于缸1时,与设有突出部110的面(反面141b)相反的一侧的面(正面141f)与密封壳131接触,在如图9所示那样以与杆引导件141的正反正确的方向相反的错误的方向***于缸1时,突出部110的顶端面110a与密封壳131接触。

根据这样的结构,能够使轴承单元140以正确的方向配置于挡圈109上的情况的缸端部的突出量X(X=X0)与轴承单元140以错误的方向配置于挡圈109上的情况的缸端部的突出量X(X=X1)不同。由此,能够容易地进行错误组装的判断,因此能够防止错误组装的发生。其结果,能够防止因错误组装而导致的漏油。

<第4实施方式>

参照图12和图13,说明本发明的第4实施方式的减震器10C。以下,以与上述第3实施方式的不同点为中心而说明,图中,对于与在上述第3实施方式中说明的结构相同的结构或相当的结构,标注相同的附图标记并省略说明。图12是表示减震器10C的轴承单元240以正确的方向配置的状态的剖视图,图13是表示减震器10C的轴承单元240以错误的方向配置的状态的剖视图。

在上述第3实施方式中,说明了通过设置突出部110而使杆引导件141以正确的方向配置的情况的突出量X(X=X0)与杆引导件141以错误的方向配置的情况的突出量X(X=X1)不同的例子。相对于此,在该第4实施方式中,代替形成于杆引导件141的突出部110而在杆引导件241形成台阶部249。

台阶部249在杆引导件241的正面241f的外周部处在杆引导件241的整周的范围形成。台阶部249具有与轴向平行的侧面249b和与轴向正交的底面249a。

如图13所示,台阶部249以在杆引导件241以错误的方向配置时其底面249a抵接于挡圈109的方式形成。在该第4实施方式中,通过形成台阶部249,台阶部249的径向内侧的接触部143形成为突出部210。

也就是说,该第4实施方式的杆引导件241在如图13所示那样以杆引导件241的正反错误的方向***于缸1时,与设有突出部210的面(正面241f)相反的一侧的面(反面241b)与密封壳131接触。此外,杆引导件241在如图12所示那样以杆引导件241的正反正确的方向***于缸1时,突出部210的顶端面210a与密封壳131接触。

如图13所示,突出部210设于比在杆引导件241以错误的方向***于缸1时抵接于挡圈109的抵接部P2靠径向内侧(中心侧)的位置。突出部210的突出高度H2设定为其顶端面210a位于比挡圈109的下端靠下方的位置。

如图12所示,在轴承单元240以正确的方向组装于缸1内的情况下,平坦的接触部143的端面抵接于密封壳131。此时,从挡圈109与杆引导件141的外侧角部148a的抵接部P0到接触部143与密封壳131的抵接面的距离成为L0。

另一方面,如图13所示,在轴承单元240以错误的方向组装于缸1内的情况下,原本回弹缓冲件170所接触的反面241b抵接于密封壳131。

如上所述,在杆引导件241的正面241f侧的外周部形成有台阶部249。因此,在轴承单元240以错误的方向组装于缸1内的情况下,台阶部249的底面249a抵接于挡圈109,轴承单元240被支承。从挡圈109与杆引导件241的台阶部249的抵接部P2到杆引导件241的反面241b与密封壳131的抵接面的距离成为L2。

轴承单元240以错误的方向组装于缸1内时的距离L2比轴承单元240以正确的方向组装于缸1内时的距离L0短(L2<L0)。

因而,轴承单元240以错误的方向组装于缸1内时的突出量X2比轴承单元240以正确的方向组装于缸1内时的突出量X0长(X2>X0)。

该第4实施方式的杆引导组件100C的组装步骤与上述第3实施方式的杆引导组件100B的组装步骤同样。但是,组装错误判断工序如以下这样进行。

在该第4实施方式中,在错误组装判断工序中,判断测定的突出量X是否小于预先确定的阈值Xt2。阈值Xt2是为了判断轴承单元240是否以正确的方向配置而设定的。阈值Xt2设定为比X0大且比X2小的值(X0<Xt2<X2)。

在错误组装判断工序中,在测定的突出量X小于阈值Xt2的情况下,判断为轴承单元240以正确的方向配置,进入翻边加工工序S160。在错误组装判断工序中,在测定的突出量X为阈值Xt2以上的情况下,判断为轴承单元240以反向(错误的方向)配置,进入单元取出工序S155。

根据这样的该第4实施方式,与上述第3实施方式同样,能够使轴承单元240以正确的方向配置于挡圈109上的情况的缸端部的突出量X(X=X0)与轴承单元240以错误的方向配置于挡圈109上的情况的缸端部的突出量X(X=X2)不同。由此,能够容易地进行错误组装的判断,因此能够防止错误组装的发生。其结果,能够防止因错误组装而导致的漏油。

以下这样的变形例也在本发明的范围内,也能够将变形例所示的结构和在上述的实施方式中说明的结构组合,将在上述不同的实施方式中说明的结构相互组合,将在以下的不同的变形例中说明的结构相互组合。

<变形例1>

杆引导件141的贯通孔160的形状不限定于在上述实施方式中说明的形状。例如,也可以如图14所示,在贯通孔360中以小径部362的内周面与杆3的外周面之间的距离尽量靠近的方式形成小径部362。在该变形例1中,在大径部161与小径部362之间形成有与杆3的中心轴线正交的台阶面。这样,将小径部362形成为从大径部161的下端朝向径向内侧突出,从而与第1实施方式相比,能够提高杆引导件141的耐久性。此外,在第1实施方式中,在能够充分地确保图3所示的贯通孔160的下部开口面160b与衬套142的下端面142b之间的距离的情况下,也可以省略贯通孔160的小径部162。

<变形例2>

也能够将本发明应用于不具备回弹缓冲件170的减震器10。在该情况下,也可以将衬套142的轴向长度设定得较长,使衬套142的下端面142b与贯通孔160的下部开口面160b对齐。至少,衬套142配置为衬套142的上端面142a与杆引导件141的贯通孔160的上部开口面160a对齐或自贯通孔160的上部开口面160a突出即可。

<变形例3>

在上述第3实施方式中,说明了在杆引导件141中多个突出部110隔开预定的间隔地沿着周向设置的例子(参照图7),但本发明不限定于此。例如,也可以如图15所示,在杆引导件341中,设置圆环状的单一的突出部310。此外,在该变形例3中,代替在第3实施方式中说明的贯通通路146a而在杆引导件341的外周设有沿着轴向延伸的槽346a。槽346a与径向通路146b连通,构成将伸长侧室61的工作油向油室151引导的连通通路。根据这样的变形例,起到与在上述第3实施方式中说明的效果同样的效果。

<变形例4>

在上述第3实施方式中,说明了突出部110的截面为梯形状的例子,但本发明不限定于此。例如,突出部110的截面也可以为半圆形状。此外,也可以设置多个半球状的突出部。

<变形例5>

在上述实施方式中,说明了挡圈109作为限定杆引导件141、241的轴向的位置的位置限定部发挥功能的例子,但本发明不限定于此。例如,也可以如图16所示,通过利用旋铆(日文:ロールかしめ)使圆筒状的缸1的局部向内侧突出而形成作为位置限定部的支承突起509。支承突起509例如形成为截面半圆形。支承突起509既可以在缸1的整周的范围形成,也可以在周向上等间隔地形成多个。

<变形例6>

在上述实施方式中,以单筒式的减震器10、10A、10B、10C为例而进行了说明,但本发明不限定于此。也可以将本发明应用于在两个缸的间隙形成有气室的双筒式的减震器、在缸的外部设有工作流体箱作为气室的减震器等。

<变形例7>

在上述实施方式中,说明了封入于缸1的工作流体是工作油的例子,但本发明不限定于此。也能够采用水等各种各样的工作流体。

以下,归纳说明本发明的实施方式的结构、作用以及效果。另外,括号内的结构是例示。

减震器10、10A、10B、10C包括:缸1,其封入有工作流体;活塞2,其滑动自如地设于缸1内,将缸1内划分为伸长侧室61和压缩侧室62;活塞杆3,其进退自如地***于缸1并连结于活塞2;轴承单元140,其具有内周与活塞杆3滑动接触的轴承(衬套142)和设有供轴承(衬套142)***的贯通孔160的轴承保持构件(杆引导件141);密封单元(油封单元130),其具有与活塞杆3的外周滑动接触并防止工作流体的泄漏的密封构件(油封132)和保持密封构件(油封132)的密封保持构件(密封壳131);以及压力室(油室151),其设于密封单元(油封单元130)与轴承单元140之间。在轴承保持构件(杆引导件141)设有将伸长侧室61的工作流体向压力室(油室151)引导的连通通路146。密封保持构件(密封壳131)具有:密封收纳部(密封收纳凹部134),其收纳密封构件(油封132);以及贯穿孔138,其供活塞杆3贯穿。密封构件(油封132)被伸长侧室61的被引导至压力室(油室151)的工作流体压按压于活塞杆3的外周面和密封收纳部(密封收纳凹部134)。轴承(衬套142)设为轴承(衬套142)的与密封构件(油封132)相对的一端面(上端面142a)与轴承保持构件(杆引导件141)的贯通孔160的开口面(上部开口面160a)对齐。或者,轴承(衬套142)设为轴承(衬套142)的与密封构件(油封132)相对的一端面(上端面142a)自轴承保持构件(杆引导件141)的贯通孔160的开口面(上部开口面160a)突出。

在该结构中,轴承(衬套142)设为轴承(衬套142)的一端面(上端面142a)与轴承保持构件(杆引导件141)的贯通孔160的开口面(上部开口面160a)对齐或自贯通孔160的开口面(上部开口面160a)突出,因此在轴承(衬套142)的一端面(上端面142a)侧处,在轴承保持构件(杆引导件141)与活塞杆3之间未形成间隙。因此,抑制异物积存于轴承(衬套142)与密封构件(油封132)之间。因而,能够防止因积存于轴承(衬套142)与密封构件(油封132)之间的异物与密封构件(油封132)接触而导致的密封构件(油封132)的损伤。并且,抑制活塞杆3的以轴承(衬套142)的一端(上端B1、B2)为支点的挠曲,因此能够将密封保持构件(密封壳131)与活塞杆3之间的间隙139设定得较小。由此,能够防止因密封构件(油封132)进入密封保持构件(密封壳131)与活塞杆3之间的间隙139而导致的密封构件(油封132)的损伤。

减震器10、10A、10B、10C还包括能够弹性变形的回弹缓冲件170,该回弹缓冲件170设于活塞杆3的外周,在活塞杆3伸长最大程度时与轴承保持构件(杆引导件141)接触,衬套142的另一端面(下端面142b)位于贯通孔160的轴向内侧。

在该结构中,能够防止因在活塞杆3伸长最大程度时回弹缓冲件170与轴承(衬套142)接触而导致轴承(衬套142)被朝向密封构件(油封132)推压。

在减震器10、10A、10B、10C中,贯通孔160具有:大径部161,其供轴承(衬套142)***;以及小径部162、362,其设于比大径部161靠回弹缓冲件170侧的位置,与大径部161相比内径较小。

在该结构中,能够利用小径部162、362防止轴承(衬套142)自贯通孔160脱离,利用小径部162、362更有效地防止回弹缓冲件170与轴承(衬套142)接触。

在减震器10、10A、10B、10C中,密封保持构件(密封壳131)具有在轴向上支承密封构件(油封132)的支承部137,在支承部137形成有贯穿孔138。

在该结构中,利用支承部137在轴向上支承密封构件(油封132),能够防止被按压于活塞杆3的密封构件(油封132)的错位,因此能够提高减震器10、10A、10B、10C的密封性。并且,轴承(衬套142)设为其一端面(上端面142a)与轴承保持构件(杆引导件141)的贯通孔160的开口面(上部开口面160a)对齐或自贯通孔160的开口面(上部开口面160a)突出,因此能够使轴承(衬套142)的一端面(上端面142a)位于活塞杆3的外周面与贯穿孔138的内周面之间的间隙139的附近。由此,抑制活塞杆3以轴承(衬套142)的一端(上端B1、B2)为支点而挠曲时的上述间隙139处的活塞杆3的挠曲量,因此能够将上述间隙139设定得较小。通过将活塞杆3的外周面与形成于支承密封构件(油封132)的支承部137的贯穿孔138的内周面之间的间隙139设定得较小,能够防止因密封构件(油封132)进入间隙139而导致的密封构件(油封132)的损伤。

在减震器10B、10C中,轴承单元140、240是支承密封单元(油封单元130)的支承构件,该减震器10B、10C还包括:位置限定部(挡圈109、支承突起509),其设于缸1的内周,限定支承构件(轴承单元140、240)的轴向的位置;以及翻边部1b,其形成于缸1的端部,在该翻边部1b与位置限定部(挡圈109、支承突起509)之间,以层叠状态固定支承构件(轴承单元140、240)和密封单元(油封单元130)。支承构件(轴承单元140、240)具有突出部110、210、310,该突出部110、210、310在比在支承构件(轴承单元140、240)以正反为第1方向的方向***于缸1时抵接于位置限定部(挡圈109、支承突起509)的位置靠中心侧的位置向伸长侧室61侧突出。支承构件(轴承单元140、240)在支承构件(轴承单元140、240)以正反为第1方向的方向***于缸1时,与设有突出部110、210、310的面相反的一侧的面与密封保持构件(密封壳131)接触,在支承构件(轴承单元140、240)以正反为与第1方向相反的第2方向的方向***于缸1时,突出部110、210、310的顶端部与密封保持构件(密封壳131)接触。

在该结构中,能够使支承构件(轴承单元140、240)以正确的方向配置于位置限定部(挡圈109、支承突起509)上的情况的缸端部的突出量X与支承构件(轴承单元140、240)以错误的方向配置于位置限定部(挡圈109、支承突起509)上的情况的缸端部的突出量X不同。因而,能够容易地进行支承构件(轴承单元140、240)的错误组装的判断。由此,能够防止错误组装的发生,因此能够防止因错误组装而导致的漏油。

减震器10B还包括能够弹性变形的环状的回弹缓冲件170,该回弹缓冲件170设于活塞杆3的外周,具有在减震器10B伸长最大程度时与支承构件(轴承单元140)接触的接触面170a,突出部110、310在减震器10B伸长最大程度时与回弹缓冲件170的外周接触。

在该结构中,能够利用突出部110、310抑制回弹缓冲件170的径向的变形,因此能够提高回弹缓冲件170的耐久性。

在减震器10B、10C中,位置限定部是相对于缸1独立地设置并具有圆形状的截面的环状的挡圈109,在缸1的内周设有供挡圈109嵌合的环状的槽1c,突出部110、210、310的轴向长度即突出高度H1大于挡圈109的截面的直径。

在该结构中,突出部110、210、310的突出高度H1、H2大于挡圈109的截面的直径,因此能够更容易地进行错误组装的判断。

在减震器10B中,突出部110、310沿着周向设置。

在该结构中,能够利用突出部110、310均匀地抑制回弹缓冲件170的径向的变形,因此能够更有效地提高回弹缓冲件170的耐久性。

在减震器10B中,突出部110、310的基端部的内径D1大于未弹性变形的状态的回弹缓冲件170的接触面170a的外径D2。

在该结构中,在减震器10B伸长最大程度时回弹缓冲件170在径向上扩大,从而能够有效地缓和减震器10B的冲击。

在减震器10B中,在支承构件(轴承单元140)设有将伸长侧室61的压力向密封构件(油封132)传递的连通通路146,连通通路146的伸长侧室61侧的开口的局部配置于比突出部110、310的径向内缘110i靠径向外侧的位置。

在减震器10B中,突出部110为圆弧状,沿着周向设有多个,在相邻的突出部110间配置有连通通路146的伸长侧室61侧的开口。

在这些结构中,能够防止连通通路146的伸长侧室61侧的开口被回弹缓冲件170堵塞。因此,能够使伸长侧室61的压力持续作用于密封构件(油封132),因此能够维持密封构件(油封132)的密封性能。

以上,说明了本发明的实施方式,但上述实施方式只不过示出了本发明的应用例的一部分,主旨并非将本发明的保护范围限定于上述实施方式的具体结构。

本申请主张基于在2018年3月15日向日本国特许厅提出申请的日本特愿2018-048219和在2018年3月15日向日本国特许厅提出申请的日本特愿2018-048220的优先权,这些申请的全部内容通过参照编入本说明书。

34页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有电磁致动器的阻尼器

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类