N型电池正面se结构的制备方法

文档序号:1129737 发布日期:2020-10-02 浏览:15次 >En<

阅读说明:本技术 N型电池正面se结构的制备方法 (Preparation method of positive SE structure of N-type battery ) 是由 瞿辉 曹玉甲 杨松波 张强 袁玲 杨三川 于 2020-07-01 设计创作,主要内容包括:本发明涉及一种N型电池正面SE结构的制备方法,具体为在制绒后的N型硅片上生长一层氧化层,然后按照细栅线的图形位置在氧化层上利用激光进行开槽,再进行硼扩散,后续则进行常规电池制备流程后,在开槽处印刷金属电极。由于氧化层对于硼扩散具有一定的阻挡作用,因此在硼扩散过程中,氧化层覆盖区掺杂浓度较低,可形成浅掺杂区;而开槽处则无氧化层或氧化层极薄,则形成重掺杂区,从而形成硼扩散面SE结构。(The invention relates to a preparation method of an SE structure on the front surface of an N-type battery, which particularly comprises the steps of growing an oxide layer on a textured N-type silicon wafer, then slotting on the oxide layer by utilizing laser according to the pattern position of a fine grid line, then carrying out boron diffusion, and then printing a metal electrode at the slotting after carrying out a conventional battery preparation process. Because the oxide layer has a certain barrier effect on boron diffusion, the doping concentration of the oxide layer covering area is low in the boron diffusion process, and a shallow doping area can be formed; and no oxide layer or extremely thin oxide layer is formed at the groove, and a heavily doped region is formed, so that a boron diffusion surface SE structure is formed.)

N型电池正面SE结构的制备方法

技术领域

本发明属于太阳能电池生产技术,具体涉及一种N型电池正面SE结构的制备方法。

背景技术

太阳能是一种清洁、安全、取之不尽用之不竭的能源。开发利用太阳能可有效解决现有的环境污染和能源危机等问题。太阳能电池是将太阳能直接转换成电能的装置。目前,我国太阳能电池转换效率和量产规模在全世界均处于领先地位。N型太阳能电池具有高少数载流子寿命以及对某些金属杂质不敏感等特性,所以具有更高的效率和稳定性。此外,N型太阳能电池还有弱光响应好和温度系数低等优点,可以提高对太阳光的利用效率,N型太阳能电池已经成为光伏行业研究热点之一。

选择性发射极(selective emitter,SE)太阳能电池,即在金属栅线与硅片接触部分及其附近进行高浓度掺杂,而在电极以外的区域进行低浓度掺杂,其结构如图1所示。SE结构太阳能电池具有以下几个优势:一、非SE区域可以进行低浓度的掺杂,载流子复合速率与杂志浓度的平方成反比,因此SE的低浓度掺杂可以有效减少载流子在扩散层的横向流动,减小载流子复合速率,提高电池的开压和电流。二、根据金属-半导体接触电阻理论,接触电阻与金属势垒和表面掺杂浓度有关,掺杂浓度越高,接触电阻越小,填充因子越高,因此B扩面SE结构的高浓度掺杂可以有效提升电池的填充因子。

目前SE的制作技术主要有以下几种方法:1、激光法SE,即利用激光能量将PSG或BSG中的掺杂源进行二次推进,形成重掺杂区,未激光区则形成浅掺杂区。该方法工艺步骤少,除激光外无需增加其他设备,目前大多数PERC电池厂家都是采用的此方法,但由于于BSG中的B源较难推进,因此所需激光功率较大,对硅片损伤也较大,电池效率提升不明显且生产良率较低。2、反刻法,即在重扩散后的片子上打印与前栅线图案一样的有机材料掩膜作为腐蚀阻挡层,再利用腐蚀液对掩膜外的重扩区进行腐蚀形成浅结。此法产量大,碎片率低,易于产业化,但反刻步骤较难控制,且增加工序设备较多。3、印刷硼源单步扩散法,即丝网印刷硼源,通过高温加热进行扩散,在与栅线接触位置形成重掺杂,其他位置形成浅掺杂。改法工艺简单,不需要增加设备。但扩散工艺较难调整,且丝网印刷硼源,容易引入金属离子,污染电池和扩散炉管。

发明内容

为了克服上述缺陷,本发明的目的在于提供一种N型电池正面SE结构的制备方法,其工艺简单,在电池表面有效形成高浓度掺杂区和低浓度掺杂区,从而提高太阳能电池的转化效率。

为了实现上述目的,本发明的技术方案为:

一种N型电池正面SE结构的制备方法,包括如下步骤:

S1:制绒;

S2:氧化:在硅片表面生长一层60-80nm的氧化层;

S3:激光开槽:按照细栅线的图形位置在氧化层上进行激光开槽,使对应的氧化层消融,同时在消融后的硅表面在激光热量作用下形成一个厚度在5-7nm的热氧化层;

S4:硼扩散。

作为本发明的进一步改进:步骤S2中所述氧化层厚度为70-75nm。

在本发明中氧化层厚度至关重要,氧化层厚度如果较薄,则对硼扩散的阻挡作用较弱,无法形成有效的浅掺杂区;氧化层如果较厚,则对硼扩散的阻挡作用过强,导致硼源无法掺进硅片或掺杂工艺时间过长影响电池性能。

本发明中,步骤S3中所述激光开槽采用激光器进行,激光器功率控制与消融氧化层,并形成热氧化层厚度有关;激光功率过低,则氧化层的消融厚度较薄,扩散后开槽区域无法形成有效的重掺杂区。激光功率过高,则自发热生长的氧化层厚度越厚,同时容易对硅片造成损伤,载流子复合加重,影响电池效率。;根据理论计算和实验,作为本发明的优选实施例:激光器功率控制在10-15W,优选12-14W。

本发明中,由于硼扩散前预生长了一层氧化层,因此后续的硼扩散温度控制在950℃-980℃,温度过低,则推进时间较长或硼源无法推进硅片;温度过高,会对硅片造成晶格损伤。

本发明的原理为:在制绒后的N型硅片上生长一层氧化层,然后按照细栅线的图形位置在氧化层上利用激光进行开槽,再进行硼扩散,后续则按照常规电池制备流程进行,在开槽处印刷金属电极等。由于氧化层对于硼扩散具有一定的阻挡作用,因此在硼扩散过程中,氧化层覆盖区掺杂浓度较低,可形成浅掺杂区;而开槽处则无氧化层或氧化层极薄,则形成重掺杂区,从而形成硼扩散面SE结构。

本发明的有益效果:

1、本发明涉及的制备方法可以在N型电池金属栅线与硅片接触区域进行局部高浓度掺杂,而在电极以外的区域进行低浓度掺杂。SE结构的低浓度掺杂可以有效减少载流子在扩散层的横向流动,减小载流子复合速率,提高开压和电流,SE结构的高浓度掺杂则可以有效提升填充因子,从而提高太阳能电池的转化效率。此外,B扩散前生长氧化层也可以提高B扩方阻的均匀性。

2、在生长氧化层的基础上再进行硼扩散,有利于提高硼扩方阻的均匀性。

3、本发明涉及的制备方法,方法简单,所需设备和工艺与现有PERC生产设备兼容性高,有利于实现大规模量产,大大降低了生产成本。

附图说明

图1为传统N型电池结构;

图2为N型硼扩面SE电池结构。

具体实施方式

下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。

实施例1:

如图2所示:本实施例涉及的N型电池正面SE结构的制备方法为:N型硅片制绒后,在其表面生长一层60nm厚的氧化层,生长氧化层的方法可以为热氧化法,湿化学法或臭氧氧化法;在生长氧化层后,按照细栅线的图形位置在氧化层上进行激光开槽;激光开槽采用激光功率为10W的激光器进行,其将氧化层全部消融,消融后的硅表面在激光热量作用下,自发形成一个薄厚度在5nm的热氧化层;然后进行硼扩散,硼扩散温度为950℃,硼扩散后氧化层区浅掺杂方阻120Ω,开槽区重掺杂方阻为90Ω,BL方阻100;后续则再按照常规电池制备流程进行,在开槽处印刷金属电极等。

经检测,所得电池的电性能如下表:

实施例2:

本实施例涉及的N型电池正面SE结构的制备方法为:N型硅片制绒后,在其表面生长一层70nm厚的氧化层,然后利用激光对氧化层按照金属电极细栅线位置进行开槽,所用激光功率为12W,然后进行硼扩散,扩散温度为960℃,硼扩散后氧化层区浅掺杂方阻170Ω,开槽区重掺杂方阻为70Ω,BL方阻100。

经检测,所得电池的电性能如下表:

实施例3:

本实施例涉及的N型电池正面SE结构的制备方法为:N型硅片制绒后,在其表面生长一层80nm厚的氧化层,然后利用激光对氧化层按照金属电极细栅线位置进行开槽,所用激光功率为15W,然后进行硼扩散,扩散温度为970℃,硼扩散后氧化层区浅掺杂方阻150Ω,开槽区重掺杂方阻为100Ω,BL方阻100。

经检测,所得电池的电性能如下表:

Figure DEST_PATH_IMAGE006

由此可见,本发明可以在电池表面有效形成高浓度掺杂区和低浓度掺杂区,从而提高太阳能电池的转化效率;同时本发明涉及的工艺简单,所需设备和工艺与现有PERC生产设备兼容性高,有利于实现大规模量产。

6页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种高效碲化镉薄膜太阳能电池及其制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类