Engineered IL-2 FC fusion proteins

文档序号:1145498 发布日期:2020-09-11 浏览:32次 中文

阅读说明:本技术 经过工程化的il-2 fc融合蛋白 (Engineered IL-2 FC fusion proteins ) 是由 M·J·伯尼特 J·德贾莱斯 R·瓦尔马 R·拉希德 S·舒伯特 于 2018-11-30 设计创作,主要内容包括:本发明提供了包括IL-2变体的IL-2-Fc融合蛋白。(The present invention provides IL-2-Fc fusion proteins that include IL-2 variants.)

1. A polypeptide composition comprising a variant human IL-2 protein, wherein the amino acid sequence of SEQ ID NO: 2, the variant IL-2 protein comprises one or more amino acid substitutions selected from the group of T3A/D20N/T37R and T3A/D20N/N71K.

2. The polypeptide composition of claim 1, wherein the variant IL-2 protein further comprises a C125S variant.

3. The polypeptide composition of claim 1, wherein the IL-2 variant further comprises a C125A variant.

4. The polypeptide composition of claim 1, 2 or 3, wherein the polypeptide composition is a homodimeric protein complex wherein each protein monomer comprises the variant IL-2 protein covalently linked to an Fc domain.

5. The polypeptide composition of claim 4, wherein each of the Fc domains is a variant Fc domain.

6. The polypeptide composition of claim 1, 2 or 3, wherein the polypeptide composition is a heterodimeric protein complex comprising a first protein monomer comprising the variant IL-2 protein covalently linked to a first variant Fc domain and a second protein monomer comprising a second variant Fc domain.

7. The polypeptide composition of claim 5 or 6, wherein the variant Fc domain is a variant human IgG 1Fc domain comprising the amino acid substitutions M428L/N434S.

8. The polypeptide composition of claim 5 or 6, wherein the variant Fc domain is a variant human IgG 1Fc domain comprising the amino acid substitutions E233P/L234V/L235A/G236 del/S267K.

9. The polypeptide composition of claim 6, 7 or 8, wherein said first variant Fc domain and said second variant Fc domain comprise a set of heterodimerization variants selected from the group consisting of the heterodimerization variants depicted in FIG. 2.

10. The polypeptide composition of claim 9, wherein said set of heterodimerization variants is selected from the group consisting of: L368D/K370S: S364K/E357Q; L368D/K370S: S364K; L368E/K370S: S364K; T411E/K360E/Q362E: D401K; and T366S/L368A/Y407V: T366W.

11. The polypeptide composition of claim 6, 7,8, 9 or 10 wherein one of the variant Fc domains comprises a pI variant set selected from the group consisting of the pI variants depicted in figure 3.

12. The polypeptide composition according to claim 11 wherein the set of pI variants is a 295E/N384D/Q418/N421D.

13. The polypeptide composition of claim 6, wherein the polypeptide composition is selected from the group consisting of: XENP27564(SEQ ID NOS: 297 and 298), XENP27563(SEQ ID NOS: 295 and 296), XENP26105(SEQ ID NOS: 245 and 246) and XENP26109(SEQ ID NOS: 249 and 250).

14. A nucleic acid composition comprising a nucleic acid encoding the variant human IL-2 protein according to claim 1.

15. A nucleic acid composition, comprising: respectively, the number of the first and second electrodes,

a) a first nucleic acid encoding the first protein monomer of any one of claims 6 to 13; and

b) a second nucleic acid encoding the second protein monomer of any one of claims 6 to 13.

16. An expression vector composition comprising:

a) a first expression vector comprising the first nucleic acid of claim 15; and

b) a second expression vector comprising the second nucleic acid of claim 15.

17. A host cell comprising the expression vector composition of claim 16.

18. A method of making a polypeptide composition, the method comprising: culturing the host cell of claim 1 under conditions to produce the composition and recovering the composition.

Background

Immune system homeostasis depends on a good balance between multiple immune cell populations, including CD8+ T cells and CD4+ T cells (CD3+ CD25-FOXP3-) as well as regulatory T cells (Treg; CD3+ CD4+ CD25+ FOXP3 +). Disruption of this balance may lead to diseases such as autoimmune diseases in which T cells remain unregulated and attack the body's own tissues. Under normal conditions, tregs regulate T cell differentiation and effector and cytotoxic functions. Thus, a major prerequisite in this regard is that defects in Treg cell number and/or function are contributing factors to the disease state. Thus, the ability to alter the balance between cytotoxicity and regulation by fine-tuning T cell responses has great potential in the treatment of autoimmune and other diseases.

IL-2 contributes to the proliferation and differentiation of B cells, T cells and NK cells. IL-2 is also essential for Treg function and survival. IL-2 exerts its cell signaling function by binding to a high affinity trimeric receptor complex composed of three different proteins: a common gamma chain shared with IL-15 (yc; CD132) and the IL-2 receptor B chain (IL-2R β; CD122), and a unique alpha chain receptor (IL-2R γ; CD 25). IL-2 can also exert its cell signaling function by binding to an intermediate affinity dimeric receptor complex consisting only of IL-2R β and γ c (IL-2R β γ).

Due to the low concentration of IL-2 that is usually present in tissues, IL-2 preferentially activates cells expressing the high affinity receptor complex (CD 25: CD 122: CD 132; IL-2R γ β γ) and thus favors FOXP3+ Treg, which constitutively expresses CD 25. However, IL-2 can also activate and induce proliferation of FOXP 3-T cells expressing the intermediate affinity receptor complex (CD 122: CD 132; IL-2R. beta. gamma.). FOXP 3-T cells such as CD4+ T cells or CD8+ T cells can cause inflammation, autoimmunity, organ transplant rejection or graft versus host disease. Because of the potential of IL-2 to promote or reduce both T cells and tregs under limited selection, there is a strong need in the art to generate more selective Treg modulators. In addition, as a potential drug, IL-2 clearance rate is very fast, its half-life is several minutes, which hinders the favorable drug delivery. The present invention solves both problems by providing novel IL-2-Fc fusion proteins.

Thus, there is a need to provide useful IL-2 variants and Fc fusion proteins.

Disclosure of Invention

Thus, in some aspects, the present disclosure provides compositions comprising a variant human IL-2 protein (as compared to SEQ ID NO: 2), wherein the variant IL-2 protein comprises one or more amino acid substitutions selected from the group consisting of: T3A, R38A; R38D; R38E; R38F; R38G; R38H; R38I; R38K; R38L; R38M; R38N; R38P; R38Q; R38S; R38T; R38V; R38W; R38Y; T41A; T41D; T41E; T41F; T41G; T41H; T41I; T41K; T41L; T41M; T41N; T41P; T41Q; T41R; T41S; T41V; T41W; T41Y; F42A; F42D; F42E; F42G; F42H; F42I; F42K; F42L; F42M; F42N; F42P; F42Q; F42R; F42S; F42T; F42V; F42W; F42Y; R38Q/T41K; R38Q/T41Q; R38E/T41K; R38Q/T41R; R38N/T41Q; R38Q/T41V; R38N/T41V; R38Q/T41M; R38Q/T41S; R38Q/T41L; R38N/T41M; T41I/F42Y; T41E/F42Y' T41D/F42Y; T41M/F42Y; 41Q/F42Y; T41E/F42H; T41E/F42L; T41E/F42P; R38Q/F42Y; R38N/T41R; R38N/T41K; R38V/T41R; R38P/T41R; T41E/F42K; T41D/F42K; T41M/F42K; T41Q/F42K; R38Q/F42K; T41I/F42K; R38N/F42K; T41H/F42K; R38Q/T41K/F42Y; R38Q/T41R/F42Y; R38Q/T41Q/F42Y; R38Q/T41V/F42Y; R38N/T41K/F42K; R38Q/T41H/F42K; R38Q/T41K/F42K; R38Q/T41Q/F42K; 38Q/T41V/F42K; R38Q/T41R/F42K; Q11E; L12D; Q13E; E15Q; H16Y; L19D; D20N; N29S/Y31H/K35R/T37A/R38L/K48E/V69A/N71R/Q74P/N88D/I89V/Q126T; Q22E; K35R; T37S; K43R; F44Y; Y45F; K48R; K49E; E61Q; E62Q; K64R; E68Q; V69L; L72I; R81D; D84N; S87T; N88D; V91L; I92L; E95Q; Y107F; E116R; N119D; R120D; T123S; C125S/Q126E; C125S/S127T; C125S/I129L; C125S/S130T; C125S/T133S; T3A; F42A/Y45A/L72G; N29S/Y31H/K35R/T37A/K48E/V69A/N71R/Q74P/N88D/I89V; V69A/Q74P/I128T; N29S/Y31H/K35R/T37A/K48E/V69A/N71R/Q74P/N88D/I89V/Q126T; C125S/Q126T; N88R; R38I; L80F/R81D/L85V/I92F; L18R/L80F/R81D/L85V/I92F/Q126T; L18R/L80F/R81D/L85V/I92F/Q126T/S130R; F42A/Y45A/L72G/N88R; F42A/Y45A/L72G/Q126T; F42A/Y45A/L72G/N88R/Q126T; L19D; D20N; N88D; N88K; N88R; N88R; N88R; F42A/Y45A/L72G; N29S/Y31H/K35R/T37A/K48E/N71R/N88D/I89V; L19D/N29S/Y31H/K35R/T37A/K48E/N71R; D20N/N29S/Y31H/K35R/T37A; K48E/N71R; L19D/N29S/Y31H/K35R/T37A/K48E; D20N/N29S/Y31H/K35R/T37A; K48E; L19D K35R; L19D/T37R; D20N/T37R; L19D/N71K; D20N/N71K; D20N/R38I; D20N/T37R; 38I; D20N/R38I/N71K; D20N/N71K; D20N; D20N/T37R; D20N/R38I; D20N/T37R R38I; D20N/R38I/N71K; D20N; D20N/T37R; D20N/N71K; D20N/R38I; D20N/T37RR 38I; D20N/R38I/N71K; D20N; D20N/T37R; D20N/N71K; D20N/R38I; D20N/T37R/R38I; D20N/R38I/N71K; N29S/Y31H/K35R/T37A/K48E/V69A/N71R/Q74P/N88D/I89V/Q126T, R38A/C125S; R38D/C125S; R38E/C125S; R38F/C125S; R38G/C125S; R38H/C125S; R38I/C125S; R38K/C125S; R38L/C125S; R38M/C125S; R38N/C125S; R38P/C125S; R38Q/C125S; R38S/C125S; R38T/C125S; R38V/C125S; R38W/C125S; R38Y/C125S; T41A/C125S; T41D/C125S; T41E/C125S; T41F/C125S; T41G/C125S; T41H/C125S; T41I/C125S; T41K/C125S; T41L/C125S; T41M/C125S; T41N/C125S; T41P/C125S; T41Q/C125S; T41R/C125S; T41S/C125S; T41V/C125S; T41W/C125S; T41Y/C125S; F42A/C125S; F42D/C125S; F42E/C125S; F42G/C125S; F42H/C125S; F42I/C125S; F42K/C125S; F42L/C125S; F42M/C125S; F42N/C125S; F42P/C125S; F42Q/C125S; F42R/C125S; F42S/C125S; F42T/C125S; F42V/C125S; F42W/C125S; F42Y/C125S; R38Q/T41K/C125S; R38Q/T41Q/C125S; R38E/T41K/C125S; R38Q/T41R/C125S; R38N/T41Q/C125S; R38Q/T41V/C125S; R38N/T41V/C125S; R38Q/T41M/C125S; R38Q/T41S/C125S; R38Q/T41L/C125S; R38N/T41M/C125S; T41I/F42Y/C125S; T41E/F42Y/C125S' T41D/F42Y/C125S; T41M/F42Y/C125S; 41Q/F42Y/C125S; T41E/F42H/C125S; T41E/F42L/C125S; T41E/F42P/C125S; R38Q/F42Y/C125S; R38N/T41R/C125S; R38N/T41K/C125S; R38V/T41R/C125S; R38P/T41R/C125S; T41E/F42K/C125S; T41D/F42K/C125S; T41M/F42K/C125S; T41Q/F42K/C125S; R38Q/F42K/C125S; T41I/F42K/C125S; R38N/F42K/C125S; T41H/F42K/C125S; R38Q/T41K/F42Y/C125S; R38Q/T41R/F42Y/C125S; R38Q/T41Q/F42Y/C125S; R38Q/T41V/F42Y/C125S; R38N/T41K/F42K/C125S; R38Q/T41H/F42K/C125S; R38Q/T41K/F42K/C125S; R38Q/T41Q/F42K/C125S; 38Q/T41V/F42K/C125S; R38Q/T41R/F42K/C125S; N29S/Y31H/K35R/T37A/R38L/K48E/V69A/N71R/Q74P/N88D/I89V/C125S/Q126T; Q11E/C125S; L12D/C125S; Q13E/C125S; E15Q/C125S; H16Y/C125S; L19D/C125S; D20N/C125S; Q22E/C125S; K35R/C125S; T37S/C125S; K43R/C125S; F44Y/C125S; Y45F/C125S; K48R/C125S; K49E/C125S; E61Q/C125S; E62Q/C125S; K64R/C125S; E68Q/C125S; V69L/C125S; L72I/C125S; R81D/C125S; D84N/C125S; S87T/C125S; N88D/C125S; V91L/C125S; 192L/C125S; E95Q/C125S; Y107F/C125S; E116R/C125S; N119D/C125S; R120D/C125S; T123S/C125S; C125S/Q126E; C125S/S127T; C125S/I129L; C125S/S130T; C125S/T133S; T3A/C125S; T3A/F42A/Y45A/L72G/C125A: N29S/Y31H/K35R/T37A/K48E/V69A/N71R/Q74P/N88D/I89V/C125S; V69A/Q74P/I128T/C125S; N29S/Y31H/K35R/T37A/K48E/V69A/N71R/Q74P/N88D/I89V/C125S/Q126T; C125S/Q126T; N88R/C125S; R38I/C125S; L80F/R81D/L85V/I92F/C125S; L18R/L80F/R81D/L85V/I92F/C125S/Q126T; L18R/L80F/R81D/L85V/192F/C125S/Q126T/S130R; T3A/F42A/Y45A/L72G/N88R/C125A; T3A/F42A/Y45A/L72G/C125A/Q126T; T3A/F42A/Y45A/L72G/N88R/C125A/Q126T; T3A/L19D/C125S; T3A/D20N/C125S; T3A/N88D/C125S; T3A/N88K/C125S; N88R/C125S; N88R/C125S; N88R/C125S; T3A/F42A/Y45A/L72G/C125A; N29S/Y31H/K35R/T37A/K48E/N71R/N88D/I89V/C125S; L19D/N29S/Y31H/K35R/T37A/K48E/N71R/C125S: D20N/N29S/Y31H/K35R/T37A; K48E/N71R/C125S; L19D/N29S/Y31H/K35R/T37A/K48E/C125S; D20N/N29S/Y31H/K35R/T37A; K48E/C125S; T3A/L19D K35R/C125S; T3A/L19D/T37R/C125S; T3A/D20N/T37R/C125S; T3A/L19D/N71K/C125S; T3A/D20N/N71K/C125S; T3A/D20N/R38I/C125S; T3A/D20N/T37R; 38I/C125S; T3A/D20N/R381/N71K/C125S; F3A/D20N/N71K/C125S; T3A/D20N/C125S; T3A/D20N/T37R/C125S; T3A/D20N/R38I/C125S; T3A/D20N/T37R R38I/C125S; T3A/D20N/R38I/N71K/C125S; T3A/D20N/C125S; T3A/D20N/T37R/C125S; T3A/D20N/N71K/C125S; T3A/D20N/R38I/C125S; T3A/D20N/T37R R38I/C125S; T3A/D20N/R38I/N71K/C125S; T3A/D20N/C125S; T3A/D20N/T37R/C125S; T3A/D20N/N71K/C125S; T3A/D20N/R38I/C125S; T3A/D20N/T37R/R38I/C125S; T3A/D20N/R38I/N71K/C125S; and N29S/Y31H/K35R/T37A/K48E/V69A/N71R/Q74P/N88D/I89V/C125S/Q126T.

In a further aspect, the present disclosure provides an IL-2-Fc fusion dimeric protein comprising: a) a first monomer comprising, from N-terminus to C-terminus: i) the variant IL-2 protein of any one of claims a1 to a 4; ii) a first domain linker; and iii) a first variant Fc domain; and b) a second monomer comprising a second variant Fc domain.

In a further aspect, the invention provides an IL-2-Fc fusion dimeric protein, wherein the second monomer comprises, from N-terminus to C-terminus: a) the variant IL-2 protein of any one of claims a1 to a 4; b) a second domain linker; and c) the second variant Fc domain.

In a further aspect, the IL-2-Fc fusion dimeric protein has a first variant Fc domain and a second variant Fc domain, the first variant Fc domain and the second variant Fc domain comprising a heterodimerization variant selected from the group consisting of: L368D/K370S: S364K/E357Q; L368D/K370S: S364K; L368E/K370S: S364K; /T411E/K360E/Q362E: D401K; and T366S/L368A/Y407V: T366W. In some cases, the IL-2-Fc fusion protein further comprises an ablative variant comprising P233P/L234V/L235A/G236 _/S267K. In some aspects, the fusion protein further comprises an Fc domain having amino acid substitutions M428L/N434S or M428L/N434A. In some aspects, the domain linker is an IGG1 hinge, and in other aspects, may comprise a linker selected from the group consisting of (GS) n, (GSGGS) n, (GGGGS) n, and (GGGS) n, wherein n is an integer of at least one.

In a further aspect, the invention includes a polypeptide composition comprising a variant human IL-2 protein, wherein the amino acid sequence of seq id NO: 2, the variant IL-2 protein comprises one or more amino acid substitutions selected from the group of T3A/D20N/T37R and T3A/D20N/N71K. In some cases, the variant IL-2 protein further comprises a C125S variant or a C125A variant.

In a further aspect, the polypeptide composition is a homodimeric protein complex wherein each protein monomer comprises the variant IL-2 protein covalently linked to an Fc domain. In some aspects, each of the Fc domains is a variant Fc domain.

In a further aspect, the polypeptide composition is a heterodimeric protein complex comprising a first protein monomer comprising the variant IL-2 protein covalently linked to a first variant Fc domain and a second protein monomer comprising a second variant Fc domain.

In a further aspect, the polypeptide composition has a variant Fc domain that is a variant human IgG 1Fc domain that includes the amino acid substitution M428L/N434S.

In a further aspect, the polypeptide composition has a variant Fc domain that is a variant human IgG 1Fc domain that includes the amino acid substitutions E233P/L234V/L235A/G236 del/S267K.

In a further aspect, the polypeptide composition has a first variant Fc domain and a second variant Fc domain, the first and second variant Fc domains comprising a set of heterodimerization variants selected from the group consisting of the heterodimerization variants depicted in figure 2. In some embodiments, the set of heterodimerization variants is selected from the group consisting of: L368D/K370S: S364K/E357Q; L368D/K370S: S364K; L368E/K370S: S364K; T411E/K360E/Q362E: D401K; and T366S/L368A/Y407V: T366W.

In further aspects, the polypeptide composition is selected from the group consisting of: XENP27564(SEQ ID NOS: 297 and 298), XENP27563(SEQ ID NOS: 295 and 296), XENP26105(SEQ ID NOS: 245 and 246) and XENP26109(SEQ ID NOS: 249 and 250).

Also provided are nucleic acid compositions comprising: separately a) a first nucleic acid encoding the first protein monomer of any one of claims 6 to 13; and b) a second nucleic acid encoding the second protein monomer of any one of claims 6 to 13. Additionally provided is an expression vector composition comprising: a) a first expression vector comprising the first nucleic acid; and b) a second expression vector comprising the second nucleic acid, and a host cell comprising the nucleic acid composition and/or expression vector composition. Further provided is a method of making a polypeptide composition, the method comprising: culturing said host cell of the invention under conditions to produce said composition and recovering said composition.

In a further aspect, the IL-2-Fc fusion dimer protein is selected from the following: XENP 24635; XENP 24636; XENP 24637; XENP 24638; XENP 24639; XENP 24640; XENP 24641; XENP 24642; XENP 24643; XENP 24725; XENP 24728; XENP 24729; XENP 24730; XENP 24731; XENP 24732; XENP 25717; XENP 25720; XENP 25725; XENP 25727; XENP 25910; XENP 25911; XENP 25912; XENP 26086; XENP 26088; XENP 26089; XENP 26092; XENP 26093; XENP 26096; XENP 26104; XENP 26105; XENP 26108; XENP 26109; XENP 26835; XENP 26839; XENP 26840; XENP 26841; XENP 26986; XENP 26987; XENP 26989; XENP26990, XENP26991, XENP25906, XENP 25907; XENP 25908; XENP 25909; XENP 26992; XENP 26993; XENP 26994; XENP 26995; XENP 26996; XENP 27001; XENP 27002; XENP 27003; XENP 27004; XENP 27005; XENP27006 and XENP 27007.

Further aspects provide methods of activating a CD25+ cell, the method comprising contacting the cell with an IL-2-Fc fusion dimeric protein of the invention; and methods of treating autoimmune diseases comprising administering to a patient in need thereof a protein composition herein.

Drawings

FIG. 1 depicts human IL-2 and its receptor: the amino acid sequences of IL-2R α (also known as CD25), IL-2R β (also known as CD122), and the common γ chain (also known as IL-2R γ or CD132) (as well as GenBank accession numbers).

Figure 2 depicts a useful set of Fc heterodimerization variants (including skewed and pI variants). In fig. 2, there are variants that do not correspond to the "monomer 2" variant; these variants are pI variants that can be used alone on either monomer.

Figure 3 depicts a list of isosteric variant antibody constant regions and their corresponding substitutions, pI (-) indicates the lower pI variant, and pI _ (+) indicates the higher pI variant. These can be optionally and independently combined with other heterodimerization variants of the invention (as well as other variant types, as outlined herein).

Figure 4 depicts a useful ablative variant (sometimes referred to as a "knock-out" or "KO" variant) of ablative Fc γ R binding. Typically, the ablative modification is visible on two monomers, but in some cases it may be located on only one monomer.

FIG. 5 shows a particularly useful embodiment of the "non-cytokine" component of the present invention.

FIG. 6 shows the sequences of several useful IL-2-Fc fusion format backbones based on human IgG, rather than cytokine sequences. Backbone 1 is based on human IgG1(356E/358M allotype) and comprises: C220S, S364K/E357Q on both chains: an L368D/K370S skew variant, a Q295E/N384D/Q418E/N421D pI variant on the strand with an L368D/K370S skew variant, and an E233P/L234V/L235A/G236del/S267K ablation variant on both strands. Backbone 2 is based on human IgG1(356E/358M allotype) and comprises: C220S, S364K/E357Q on both chains: an L368D/K370S skew variant, a Q295E/N384D/Q418E/N421D pI variant on the strand with an L368D/K370S skew variant, and an E233P/L234V/L235A/G236del/S267K ablation variant on both strands. Backbone 3 is based on human IgG1(356E/358M allotype) and comprises: C220S, S364K/E357Q on both chains: an L368E/K370S skew variant, a Q295E/N384D/Q418E/N421D pI variant on the strand with an L368E/K370S skew variant, and an E233P/L234V/L235A/G236del/S267K ablation variant on both strands. Backbone 4 is based on human IgG1(356E/358M allotype) and comprises: C220S, D401K on both chains: a K360E/Q362E/T411E skew variant, a Q295E/N384D/Q418E/N421D pI variant on a strand with a K360E/Q362E/T411E skew variant, and an E233P/L234V/L235A/G236del/S267K ablation variant on both strands. Backbone 5 is based on human IgG1(356D/358L allotype) and comprises: C220S, S364K/E357Q on both strands: an L368D/K370S skew variant, a Q295E/N384D/Q418E/N421D pI variant on the strand with an L368D/K370S skew variant, and an E233P/L234V/L235A/G236del/S267K ablation variant on both strands. Backbone 6 is based on human IgG1(356E/358M allotype) and comprises: C220S, S364K/E357Q on both chains: an L368D/K370S skew variant, a Q295E/N384D/Q418E/N421D pI variant on the strand with an L368D/K370S skew variant, and an E233P/L234V/L235A/G236del/S267K ablation variant on both strands, and an N297A variant on both strands. Backbone 7 is identical to backbone 6, except that the mutation is N297S. Alternative formats of backbone 6 and backbone 7 may exclude the ablative variant E233P/L234V/L235A/G236del/S267K in both strands. Backbone 8 is based on human IgG4 and comprises: S364K/E357Q: the L368D/K370S skew variant, the Q295E/N384D/Q418E/N421D pI variant on the chain with the L368D/K370S skew variant, and the S228P (EU numbering, which is S241P in Kabat) variant on both chains with ablated Fab arm exchange as known in the art. Backbone 9 is based on human IgG2 and comprises: S364K/E357Q: the skew variant of L368D/K370S, the variant of Q295E/N384D/Q418E/N421D pI on the chain with the skew variant of L368D/K370S. Backbone 10 is based on human IgG2 and comprises: S364K/E357Q: an L368D/K370S skew variant, a Q295E/N384D/Q418E/N421D pI variant on the strand with an L368D/K370S skew variant, and a S267K variant on both strands. Backbone 11 is identical to backbone 1, except that it contains the M428L/N434S Xtend mutation. Backbone 12 is based on human IgG1(356E/358M allotype) and comprises: C220S on two identical strands, E233P/L234V/L235A/G236del/S267K ablative variants on two identical strands. Backbone 13 is based on human IgG1(356E/358M allotype) and comprises: C220S, S364K/E357Q on both chains: an L368D/K370S skew variant, a P217R/P229R/N276K pI variant on a strand with an S364K/E357Q skew variant, and an E233P/L234V/L235A/G236del/S267K ablation variant on both strands.

As will be appreciated by those skilled in the art and outlined below, any IL-2 variant can be incorporated into the backbones of fig. 6 in any combination. Each of these backbones comprises within it a sequence that is 90%, 95%, 98% and 99% identical to the recited sequences (as defined herein), and/or contains 1, 2, 3, 4, 5, 6, 7,8, 9 or 10 additional amino acid substitutions (as compared to the "parent" of the figure, which additional amino acid substitutions already contain multiple amino acid modifications as compared to the parent human IgG1 (or IgG2 or IgG4, depending on the backbone), as would be understood by a person skilled in the art). That is, in addition to skew, pI, and ablative variants contained within the backbones of this figure, the enumerated backbones may contain additional amino acid modifications (typically amino acid substitutions). In particular, FcRn variants may also be included, such as M428L/N434S.

Fig. 7 depicts a plurality of exemplary variable length connectors. In some embodiments, these linkers can be used to link the C-terminus of IL-2 to the N-terminus of the Fc region (in some cases, comprising a hinge domain).

FIGS. 8A and 8B depict A) a structural model of IL-2 complexed with a high affinity IL-2 receptor (IL-2R α β γ), and B) the positions of the three IL-2 residues that contact IL-2R α where substitutions are predicted to attenuate pH-dependent binding of IL-2 to IL-2R α.

FIG. 9 depicts the amino acid sequence of an illustrative IL-2 variant engineered to attenuate pH-dependent binding to IL-2R α. It is important to note that these variants were generated using a polyhistidine (Hisx8 or HHHHHHHH) C-terminal tag that had been removed from the sequences depicted herein.

FIG. 10 depicts the association rate (k) of IL-2 variants with IL-2R α at pH 6.0a) Dissociation rate (k)d) Anddissociation constant (K)D) And fold improvement in KD and KD compared to XENP14135 (wild type IL-2 with the C125S mutation). NB indicates no measurable binding.

FIG. 11 depicts the association rate (k) of IL-2 variants with IL-2R α at pH 7.4a) Dissociation rate (k)d) And dissociation constant (K)D) And fold improvement in KD and KD compared to XENP14135 (wild type IL-2 with the C125S mutation). NB indicates no measurable binding.

FIG. 12 depicts IL-2 off-rates (k) at pH 6.0 relative to IL-2R α achieved by various point mutationsd) Is increased by a factor of two.

FIG. 13 depicts IL-2 off-rates (k) at pH 7.4 relative to IL-2R α achieved by various point mutationsd) Is increased by a factor of two.

FIG. 14 depicts Biacore sensorgrams of A) XENP14135 (wild-type IL-2 with mutation of C125S) and B) XENP14142 (variant IL-2 with R38I and C125S).

Figure 15 depicts the amino acid sequences of additional prior art IL-2 variants (mutants 2-4 with Q126T as described in WO 2009/061853 published on 5/14 of 2009) that do not comprise R38L (XENP14277) and comprise R38L (XENP14381) to attenuate pH-dependent binding to IL-2 ra. It is important to note that these variants were generated using a polyhistidine (Hisx8 or HHHHHHHH) C-terminal tag that had been removed from the sequences depicted herein.

FIG. 16 depicts the association rates (k) of IL-2 variants with and without IL-2R α with R38L substitution at pH 7.4 and pH 6.0a) Dissociation rate (k)d) And dissociation constant (K)D)。

FIG. 17 depicts an amino acid sequence of an illustrative IL-2 variant engineered to alter binding to IL-2R α, IL-2R β, γ c, or IL-2R β γ. It is important to note that these variants were generated using a polyhistidine (Hisx8 or HHHHHHHH) C-terminal tag that had been removed from the sequences depicted herein.

FIG. 18 depicts normalized BLI responses (relative to XENP14135) for illustrative IL-2 variants of various IL-2 receptors as determined by Octet. The objective is to increase binding to IL-2R α, or to decrease binding to the interface of IL-2R β and IL-2R γ or to IL-2R β γ, or both.

FIG. 19 depicts several formats of IL-2-Fc fusions of the present invention. A monovalent IL-2-Fc or "monovIL-2-Fc" (FIG. 19A) comprises IL-2 recombinantly fused to the N-terminus of a heterodimeric Fc region, with the other side of the molecule being an "Fc-only" or "empty Fc". A bivalent IL-2-Fc or "bivIL-2-Fc" (FIG. 19B) includes IL-2 recombinantly fused to the N-terminus on both sides of the homodimeric Fc region. Monovalent IL-2-Fc or "monovIL-2-Fc with linker" (fig. 19C) includes IL-2 recombinantly fused via a domain linker to the N-terminus of the heterodimeric Fc region, with the other side of the molecule being "Fc only" or "empty Fc". Bivalent IL-2-Fc or "bivIL-2-Fc (with linker)" with linker (FIG. 19D) includes IL-2 recombinantly fused via domain linkers to the N-termini on both sides of the homodimeric Fc region. Non-limiting examples of domain linkers suitable for use in the monovIL-2-Fc (with linker) and bivIL-2-Fc (with linker) formats are depicted in FIG. 7.

FIG. 20 depicts the amino acid sequence of an illustrative monovIL-2-Fc fusion of the present invention. The slash (/) indicates the boundary between IL-2 and the Fc region (in this case, the Fc region contains the hinge as well as the C220S variant).

FIG. 21 depicts the affinity of illustrative IL-2-Fc fusions to IL-2R α, IL-2R β, and IL-2R β γ as determined by Octet (K)D) Association rate (k)a) And dissociation rate (k)d)。

FIGS. 22A-22F depict induction of CD4 by A) XENP24636, B) XENP24638, C) XENP24641, D) XENP24642, E) XENP24643, and F) XENP24731+CD45RA-T cell, CD4+CD45RA+T cell, CD8+CD45RA-T cell, CD8+CD45RA+STAT5 is phosphorylated on T cells and tregs.

FIG. 23 depicts the amino acid sequence of an illustrative bivIL-2-Fc fusion of the present invention. The slash (/) indicates the boundary between IL-2 and the Fc region, again where the Fc region comprises the hinge domain of IgG1 with the C220S variant.

FIGS. 24A and 24B depict a view through A) XENP25906 and B) XENP25907 induces CD4+CD45RA-T cell, CD4+CD45RA+T cell, CD8+CD45RA-T cell, CD8+CD45RA+STAT5 is phosphorylated on T cells and tregs.

FIG. 25 depicts the amino acid sequence of an illustrative IL-2-Fc fusion with domain linkers. The slash (/) indicates the boundary between IL-2, linker and Fc region, again where the Fc region comprises the hinge domain of IgG1 with the C220S variant. The connection sub-bands are double underlined.

FIGS. 26A-26E depict the induction of CD4 by A) XENP25908, B) XENP25909, C) XENP25910, D) XENP25911 and E) XENP25912+CD45RA-T cell, CD4+CD45RA+T cell, CD8+CD45RA-T cell, CD8+CD45RA+STAT5 is phosphorylated on T cells and tregs.

FIG. 27 depicts the amino acid sequence of an additional IL-2-Fc fusion with IL-2 engineered to increase affinity for CD25 and decrease affinity for CD 122. The slash (/) indicates the boundary between IL-2 and the Fc region, again where the Fc region comprises the hinge domain of IgG1 with the C220S variant.

FIGS. 28A-28T depict CD8 by+T cells and CD4+Phosphorylation of STAT5 on T cells and tregs serves as an indicator of activation: A) XENP24635, B) XENP24636, C) XENP24637, D) XENP24638, E) XENP24642, F) XENP25717, G) XENP25720, H) XENP25725, I) XENP25727, J) XENP26086, K) XENP26088, L) XENP26089, M) XENP26092, N) XENP26093, O) XENP26096, P) XENP26104, Q) XENP26105, R) XENP26108, S) XENP26109, and T) recombinant human IL-2.

FIGS. 29A and 29B depict the A) Treg and B) CD4 by an illustrative IL-2-Fc fusion pair+STAT5 on (CD45RA-) T cells was phosphorylated as an indicator of activation.

FIG. 30 depicts the amino acid sequence of additional IL-2-Fc fusions. The slash (/) indicates the boundary between IL-2, the domain linker (double underlined), and the Fc region, again where the Fc region comprises the hinge domain of IgG1 with the C220S variant.

Fig. 31 depicts some preferred embodiments.

Figure 32 depicts some preferred embodiments of variants engineered with a) pH switch substitution, B) Treg selective substitution, and C) a combination of pH switch substitution and Treg selective substitution.

FIG. 33 depicts the affinity of illustrative IL-2-Fc fusions to IL-2R α, IL-2R β, and IL-2R β γ as determined by Octet (K)D) Association rate (k)a) And dissociation rate (k)d). N.b. indicates no binding.

Figure 34 depicts the sequence of Fc-IL-2(V91K/C125A) fusion XENP27193 engineered to increase the ratio of tregs to non-regulatory T cells as described in WO 2014/153111. The slash (/) indicates the boundary between IL-2, domain linker, and Fc region (again where the Fc region comprises the hinge domain of IgG1 with the C220S variant); and the connecting sub-bands are double underlined.

FIGS. 35A-E depict the induction of A) CD4 by the variant monovIL-2-Fc fusions XENP24638, XENP24642, XENP26105, XENP26109, XENP26835, XENP26839, XENP26991, and XENP25702+CD45RA-T cells, B) CD8+CD45RA-T cells, C) NK cells, D) γ T cells, and E) STAT5 phosphorylation on tregs. The data show that compared to recombinant IL-2 and monovalent WT IL-2-Fc fusions (XENP24635) and the prior art bivalent IL-2-Fc fusion described in WO 2014/153111 (XENP27193), CD4+Memory T cell (CD45RA-), CD8+Memory T cells (CD45RA-), NK cells, and gamma T cells, the variant monovIL-2-Fc fusion preferentially induced STAT5 phosphorylation on tregs.

FIG. 36 depicts the induction of CD4 by IL-2 variants with N88R/C125S substitutions formatted as monovIL-2-Fc with no linker (XENP24642) and bivIL-2-Fc with linker (XENP25908)+CD45RA-STAT5 is phosphorylated on T cells and tregs.

FIG. 37 depicts IL-2 changes by T3A/D20N/C125S substitutions with monovIL-2-Fc formatted without a linker (XENP25720), bivIL-2-Fc without a linker (XENP26992), and bivIL-2-Fc with a linker (XENP27002)In vivo induced CD4+CD45RA-STAT5 is phosphorylated on T cells and tregs.

FIG. 38 depicts the induction of CD4 by IL-2 variants with T3A/D20N/T37R/C125S substitutions formatted as monovIL-2-Fc with no linker (XENP26105), bivIL-2-Fc with no linker (XENP26993), and bivIL-2-Fc with a linker (XENP27003)+CD45RA-STAT5 is phosphorylated on T cells and tregs.

FIG. 39 depicts the induction of CD4 by IL-2 variants with T3A/D20N/N71K/C125S substitutions formatted as monovIL-2-Fc with no linker (XENP26109), bivIL-2-Fc with no linker (XENP26994), and bivIL-2-Fc with linker (XENP27004)+CD45RA-STAT5 is phosphorylated on T cells and tregs.

FIG. 40 depicts the induction of CD4 by IL-2 variants with T3A/D20N/R38I/C125S substitutions formatted as monovIL-2-Fc with no linker (XENP26835), bivIL-2-Fc with no linker (XENP26995), and bivIL-2-Fc with a linker (XENP27005)+CD45RA-STAT5 is phosphorylated on T cells and tregs.

FIG. 41 depicts the induction of CD4 by IL-2 variants with T3A/D20N/T37R/R38I/C125S substitutions formatted as monovIL-2-Fc with no linker (XENP26839), bivIL-2-Fc with no linker (XENP26996), and bivIL-2-Fc with a linker (XENP27006)+CD45RA-STAT5 is phosphorylated on T cells and tregs.

FIG. 42 depicts the induction of CD4 by IL-2 variants with T3A/D20N/R38I/N71K/C125S substitutions formatted as monovIL-2-Fc with linkers (XENP26991), bivIL-2-Fc without linkers (XENP27001), and bivIL-2-Fc with linkers (XENP27007)+CD45RA-STAT5 is phosphorylated on T cells and tregs.

FIG. 43 depicts the amino acid sequence of an illustrative bivalent IL-2-Fc fusion comprising Xtend (M428L/N434S) Fc (again comprising a hinge and C220S variant) of the invention. The slash (/) indicates the boundary between IL-2 and the Fc region.

FIG. 44 depicts the amino acid sequence of an illustrative monovalent IL-2-Fc fusion comprising Xtend (M428L/N434S) Fc of the present invention. The slash (/) indicates the boundary between IL-2 and the Fc region.

FIGS. 45A to E depict the induction of STAT5 phosphorylation on various lymphocyte populations by A) XENP26105, B) XENP26109, C) XENP24635, D) XENP25908, and E) XENP 27193.

FIG. 46 depicts the immunophenotype of rapamycin Treg cultures treated with XENP27564 or recombinant IL-2. The data show higher CD25 expression with XENP27564 treatment.

Fig. 47 rapamycin tregs treated with XENP27564 or recombinant IL-2 are presented as histograms to assess the relative expression of CD 25. The data show that rapamycin Treg cultures treated with XENP27564IL-2-Fc showed higher CD25 expression.

FIG. 48 depicts individual CD4 comprising Tregs following incubation with rapamycin and XENP27564 or recombinant IL-2+And (4) separating the zones. The data show that cultures expanded with XENP27564 showed a larger population of effector Tregs (CD45RA-FoxP 3) compared to cultures expanded with recombinant IL-2mid-high)。

Figures 49A and B depict inhibition of a) CD8 responder T cell proliferation and B) CD4 responder T cell proliferation by rapamycin Treg cultures expanded with XENP27564 or recombinant IL-2. The data indicate that tregs expanded by XENP27564 may have enhanced suppressive function.

FIG. 50 depicts the expression of CD25 on Tregs as determined by A) CD25MFI on Tregs and B) CD25 in the inhibition assay depicted in FIG. X+The percentage of tregs is indicated.

Fig. 51A and B depict the expression of CD127 on tregs in the inhibition assay depicted in fig. X, as indicated by a) CD127MFI on tregs and B) the percentage of CD127+ tregs.

FIGS. 52A to E depict the proliferation of individual lymphocyte populations (as determined by CFSE or Tag-it Violet dilutions) after incubation of PBMCs and Tregs with A) XENP27563, B) XENP27564, C) XENP24635, D) recombinant IL-2, and E) recombinant IL-15. The data show that XENP27563 and XENP27564 show Treg selectivity.

Figures 53A to B depict proliferation of CD8+ T cells after incubation of PBMCs and tregs with XENP27563, XENP27564, XENP24635, recombinant IL-2, recombinant IL-15 and the negative control anti-RSV mAb XENP15074 as indicated by a) proliferating cells (as determined by CFSE or Tag-it Violet dilution) and B) total cell count. The data show that XENP27563 and XENP27564 are less effective at inducing CD8+ T cell proliferation compared to recombinant IL-2 and IL-15 and IL-2-Fc fusions that include WT IL-2 (with the C125S mutation).

Figure 54 depicts the proliferation of CD4+ T cells after incubation of PBMCs and tregs with XENP27563, XENP27564, XENP24635, recombinant IL-2, recombinant IL-15 and the negative control anti-RSV mAb XENP15074 as indicated by a) proliferating cells (as determined by CFSE or Tag-it Violet dilution) and B) total cell counts. The data show that XENP27563 and XENP27564 are less effective at inducing CD4+ T cell proliferation compared to recombinant IL-2 and IL-15 and IL-2-Fc fusions that include WT IL-2 (with the C125S mutation).

FIG. 55 depicts proliferating CD8 after incubation of PBMCs with indicated test items at indicated concentrations and A)5ng/ml, B)10ng/ml or C)20ng/ml plate-bound anti-CD 3(OKT3)+T cells (as indicated by the percentage of cells expressing Ki 67). The data show that XENP27563 and XENP27564 (IL-2-Fc fusions selectively engineered against CD25) are inducing CD8+Function is impaired in T cell proliferation.

FIG. 56 depicts proliferation of CD4 after incubation of PBMCs with indicated test items at indicated concentrations and A)5ng/ml, B)10ng/ml, or C)20ng/ml plate-bound anti-CD 3(OKT3)+T cells (as indicated by the percentage of cells expressing Ki 67). The data show that XENP27563 and XENP27564 (IL-2-Fc fusions selectively engineered against CD25) are inducing CD4+Function is impaired in T cell proliferation.

FIG. 57 depicts proliferating CD8 after incubation of PBMCs with indicated test items at indicated concentrations and A)5ng/ml, B)10ng/ml, or C)20ng/ml plate-bound anti-CD 3(OKT3)+CD45RA-T cells (as indicated by the percentage of cells expressing Ki 67). The data show that XENP27563 and XENP27564 (IL-2-Fc fusions selectively engineered against CD25) are inducing CD8+CD45RA-Function is impaired in T cell proliferation.

FIG. 58 depicts proliferating CD8 after incubation of PBMCs with indicated test items at indicated concentrations and A)5ng/ml, B)10ng/ml, or C)20ng/ml plate-bound anti-CD 3(OKT3)+CD45RA+T cells (as indicated by the percentage of cells expressing Ki 67). The data show that XENP27563 and XENP27564 (IL-2-Fc fusions selectively engineered against CD25) are inducing CD8+CD45RA+Function is impaired in T cell proliferation.

FIG. 59 depicts proliferation of CD4 after incubation of PBMCs with indicated test items at indicated concentrations and A)5ng/ml, B)10ng/ml, or C)20ng/ml plate-bound anti-CD 3(OKT3)+CD45RA-T cells (as indicated by the percentage of cells expressing Ki 67). The data show that XENP27563 and XENP27564 (IL-2-Fc fusions selectively engineered against CD25) are inducing CD4+CD45RA-Function is impaired in T cell proliferation.

FIG. 60 depicts proliferation of CD4 after incubation of PBMCs with indicated test items at indicated concentrations and A)5ng/ml, B)10ng/ml or C)20ng/ml plate-bound anti-CD 3(OKT3)+CD45RA+T cells (as indicated by the percentage of cells expressing Ki 67). The data show that XENP27563 and XENP27564 (IL-2-Fc fusions selectively engineered against CD25) are inducing CD4+CD45RA+Function is impaired in T cell proliferation.

Figure 61 depicts proliferating NK cells (as indicated by the percentage of Ki67 expressing cells) after incubation of PBMCs with indicated test items at the indicated concentrations and a)5ng/ml, B)10ng/ml or C)20ng/ml plate-bound anti-CD 3(OKT 3). The data show that XENP27563 and XENP27564 (IL-2-Fc fusion selectively engineered against CD25) are functionally impaired in inducing NK cell proliferation.

Figure 62 depicts tregs (as indicated by the percentage of Ki 67-expressing cells) propagated after incubation of PBMCs with indicated test items at the indicated concentrations and a)5ng/ml, B)10ng/ml or C)20ng/ml plate-bound anti-CD 3(OKT 3). The data show that XENP27563 and XENP27564 (IL-2-Fc fusion selectively engineered against CD25) induce the proliferation of tregs.

FIG. 63 depicts proliferation of CD8 following treatment with indicated concentrations of A) XENP27563, B) XENP27564, C) XENP24635, D) IL-2 and E) IL-15 and 5ng/ml plate-bound anti-CD 3(OKT3)+T cell, CD8+CD45RA-T cell, CD8+CD45RA+T cell, CD4+T cell, CD4+CD45RA-T cell, CD4+CD45RA+T cells, NK cells and tregs (as indicated by the percentage of cells expressing Ki 67).

FIG. 64 depicts proliferation of CD8 following treatment with indicated concentrations of A) XENP27563, B) XENP27564, C) XENP24635, D) IL-2 and E) IL-15 and 10ng/ml plate-bound anti-CD 3(OKT3)+T cell, CD8+CD45RA-T cell, CD8+CD45RA+T cell, CD4+T cell, CD4+CD45RA-T cell, CD4+CD45RA+T cells, NK cells and tregs (as indicated by the percentage of cells expressing Ki 67).

FIG. 65 depicts proliferation of CD8 following treatment with indicated concentrations of A) XENP27563, B) XENP27564, C) XENP24635, D) IL-2 and E) IL-15 and 20ng/ml plate-bound anti-CD 3(OKT3)+T cell, CD8+CD45RA-T cell, CD8+CD45RA+T cell, CD4+T cell, CD4+CD45RA-T cell, CD4+CD45RA+T cells, NK cells and tregs (as indicated by the percentage of cells expressing Ki 67).

FIG. 66 depicts A) CD4 in cynomolgus monkeys dosed with 3X doses of XENP27563 and 3X doses of XENP27564+CD45RA-T cells, B) CD8+CD45RA-T cells, C) CD8 α-CD16+NK cells and D) FoxP3+And (4) expanding Tregs. The data show that both XENP27563 and XENP27564 selectively amplify tregs and that both test items contribute to similar pharmacological effects.

Figure 67 depicts the change in serum concentration levels over time in cynomolgus monkeys dosed with a)3X doses of XENP27563 and B)3X doses of XENP 27564. The data indicate that both test items exhibited similar pharmacokinetic profiles.

Figure 68 depicts the change in serum albumin concentration in cynomolgus monkeys dosed with 3X doses of XENP27563 and 3X doses of XENP 27564. The data show that in one animal dosed with XENP27563, a persistent albumin drop was detected after both the first and second dosing; and in one animal given XENP27564, a transient decrease in albumin was detected only after the second dose, but quickly returned to baseline levels.

Fig. 69 depicts the following blood pressure telemetry data: A) a first cynomolgus monkey dosed with XENP27563 on days 0 and 15, B) a second cynomolgus monkey dosed with XENP27563 on days 0 and 15, and C) a third cynomolgus monkey dosed with XENP27564 on days 0 and 15. The data show that the blood pressure of the first monkey decreased sharply the day after the 2 nd dose, and that the blood pressure of the second monkey decreased sharply the day after the 1 st dose, while the blood pressure of the third monkey remained stable for the entire duration of the study.

FIG. 70 depicts A) CD4 over time in cynomolgus monkeys at 1X dose, 3X dose, and 10X dose of XENP27564+CD45RA-T cells, B) CD8+CD45RA-T cells, C) CD8 α-CD16+NK cells and D) expansion of Tregs.

Figure 71 depicts the expansion of tregs on days 7 and 14 in cynomolgus monkeys dosed with 1X and 3X doses of XENP 27564. The data show that 1X and 3X doses boost similar pharmacological effects in monkeys and indicate that maximal effect can be achieved at lower doses.

Figure 72 depicts the change in serum albumin concentration (as an indicator of vascular leakage) in cynomolgus monkeys after administration of 1X dose, 3X dose, and 10X dose of XENP 27564. The data show that higher doses of XENP27564 increase toxicity.

Figure 73 depicts the change in serum C-reactive protein concentration (as an indicator of vascular leakage) in cynomolgus monkeys after administration of 1X dose, 3X dose, and 10X dose of XENP 27564. The data show that higher doses of XENP27564 significantly increased toxicity.

Figure 74 depicts the changes in a) sodium concentration, B) chloride concentration, C) eosinophil count, and D) basophil count in cynomolgus monkeys dosed with 1X dose, 3X dose, or 10X dose of XENP 27564. The data show that higher doses of XENP27564 increase toxicity, while lower doses are well tolerated in cynomolgus macaques.

Figure 75 depicts the change in serum concentration levels over time in cynomolgus monkeys dosed with 1X dose, 3X dose, or 10X dose of XENP 27564. The data show sustained pharmacokinetic effects in cynomolgus monkeys for up to several days.

Figure 76 depicts the change in a) eosinophil count and B) basophil count in cynomolgus monkeys dosed with 3X dose of XENP27563 or 3X dose of XENP27563 on days 0 and 15. The data show that cynomolgus monkeys tolerated the repeat administration of XENP27564 well.

FIG. 77 depicts the induction of mouse CD4 by A) XENP26105, B) XENP26109, and C) recombinant human IL-2+CD44hiCell, CD8+CD44hiSTAT5 phosphorylation on cells and tregs (in splenocytes from B6 mice). The data indicate that the engineered IL-2-Fc fusion is also selective and potent for tregs in mice, making it suitable for the study of autoimmune diseases using preclinical mouse models.

FIG. 78 depicts the induction of human CD4 by A) XENP27563 and B) XENP27564+CD45RA-T cell, CD4+CD45RA+T cell, CD8+CD45RA-T cell, CD8+CD45RA+T cell, CD56+STAT5 phosphorylation on NK cells, gamma T cells and tregs.

FIG. 79 depicts the induction of cynomolgus monkey CD4 by A) XENP27563 and B) XENP27564+CD45RA-T cell, CD4+CD45RA+T cell, CD8+CD45RA-T cell, CD8+CD45RA+T cell, CD16+NK cells, CD56+STAT5 phosphorylation on NK cells, gamma T cells and tregs. The data indicate that the engineered IL-2-Fc fusion is also selective and potent for tregs in cynomolgus monkeys, making it suitable for usePreclinical mouse model.

Detailed Description

A. Introduction to the design reside in

The present invention relates to compositions and methods directed to engineered IL-2 Fc fusions for the treatment of autoimmune diseases. Autoimmune diseases can be treated using a mechanism that preferentially activates regulatory T cells (commonly referred to as "Treg cells" or "tregs"). Tregs are a subset of immune T cells that are immunosuppressed and regulate the immune system by maintaining tolerance to self-antigens, thereby preventing autoimmune disease. Tregs generally down-regulate the proliferation of effector T cells. Tregs express biomarkers comprising CD4, FOXP3, and CD25(CD25 is also known as IL-2 ra protein).

Tregs can be regulated by IL-2, which is essential for Treg function and survival. Because of the potential of IL-2 to promote or reduce both T cells and tregs under limited selection, there is a strong need in the art to generate more selective Treg modulators. In addition, as a potential drug, IL-2 clearance rate is very fast, its half-life is several minutes, which hinders the favorable drug delivery. The present invention solves both problems by providing novel IL-2-Fc fusion proteins.

Thus, the present invention provides IL-2 proteins engineered in two different ways. The first way is that the IL-2 variants of the invention preferentially activate CD25+ cells, such as tregs, over other T cells that are CD25 "to provide increased Treg selectivity over other T cells and thus cause the composition to suppress immune function and thus allow the treatment of autoimmune diseases. This is typically done by increasing binding to IL-2R α, or decreasing binding to IL-2R β (and/or IL-2R7) or to the interface with IL-2R β γ, or both.

In addition to the selective engineering described above, the present invention also provides IL-2 proteins with increased serum half-life, which is accomplished using Fc fusions. In this case, the addition of an Fc domain will increase the half-life of the IL-2 molecule, as is generally known in the art. However, the present invention provides two additional methods of increasing serum half-life.

The first approach involves the FcRn receptor. In IgG, a site on the Fc between the C γ 2 and C γ 3 domains mediates interaction with the neonatal receptor FcRn. Binding to FcRn recycles endocytosed antibodies from the endosome back to the blood stream (Raghavan et al, 1996, annual review in Cell and developmental biology (Annu Rev Cell Dev Biol) 12: 181-220; Ghetie et al, 2000, annual review in immunology (Annu Rev Immunol) 18: 739-766, both of which are incorporated by reference in their entirety). This process, coupled with the exclusion of renal filtration due to the large size of the full length molecule, produces a favorable antibody serum half-life ranging from one to three weeks. To increase Fc protein retention in vivo, the increase in binding affinity must be around pH 6 while maintaining a lower affinity around pH 7.4. Although still under examination, it is believed that the Fc region has a longer half-life in vivo, since binding to FcRn in endosomes at pH 6 sequesters Fc (Ghetie and Ward, 1997, immunology Today 18 (12): 592. 598, which is incorporated by reference in its entirety). The endosomal compartment then recirculates the Fc to the cell surface. Once the compartment is opened to the extracellular space, the higher pH (-7.4) induces the release of Fc back into the blood.

Thus, increased serum half-life may utilize Fc variants that increase binding to FcRn and in many cases increase half-life.

Additional methods to increase the serum half-life of IL-2 Fc fusion molecules are based on pH engineering to circulate from the endosomal sorting pathway. As is known in the art, endocytosis of a cytokine such as IL-2 into an endosome results in an endocytotic sort in which the cytokine is degraded or recycled back into the blood stream (see Fallon et al, Journal of Biochemistry (JBC) 275 (10): 6790, 2000, which is incorporated herein by reference in its entirety). Following internalization into endosomes, IL-2R β, and γ c are degraded while IL-2R α is constitutively recycled to the cell surface. Since the pH of blood is approximately 7.2 to 7.4 and the pH of endosomes is around pH 6, IL-2/IL-2 Ra is recycled rather than degraded by engineering IL-2 to increase binding to IL-2 Ra ligands at pH 6, resulting in an increase in serum half-life.

In addition, the efficacy of the IL-2 Fc fusion molecules of the invention may also depend on other factors. For example, the invention provides a bivalent IL-2 construct as depicted in FIG. 19B, wherein a homodimer of a variant IL-2-Fc fusion is prepared, thereby providing bivalent binding to the receptor. Alternatively, the invention provides a monovalent IL-2 construct as depicted in figure 19A in which heterodimers are generated in which one monomer is a variant IL-2-Fc fusion and the other is an "empty arm" Fc monomer. In addition, the presence of additional flexible linkers may in some cases increase the potency of the monovalent constructs as shown in fig. 19C and the bivalent constructs shown in fig. 19D.

Accordingly, the present invention provides engineered IL-2 variants and engineered IL-2 Fc fusion proteins that exhibit preferential activation of CD25+ cells, such as tregs, as compared to CD 25-T cells, and exhibit increased serum half-life.

B. Definition of

In order that the present application may be more fully understood, several definitions are set forth below. Such definitions are intended to encompass grammatical equivalents.

By "ablation" herein is meant reducing or removing activity. Thus, for example, "ablative Fc γ R binding" means that the amino acid variant of the Fc region has less than 50% initial binding, preferably less than 70% -80% -90% -95% -98% loss of activity compared to the Fc region without the specific variant, and typically the activity is below the level of detectable binding in a Biacore assay. Specific uses in ablation of Fc γ R binding are as shown in figure 4.

As used herein, "ADCC" or "antibody-dependent cell-mediated cytotoxicity" refers to a cell-mediated reaction in which nonspecific cytotoxic cells expressing Fc γ rs recognize bound antibodies on target cells and subsequently cause lysis of the target cells. ADCC is associated with the Fc region binding to Fc γ RIIIa; increased binding to Fc γ RIIIa increases ADCC activity. As discussed herein, many embodiments of the invention completely ablate ADCC activity.

"modification" herein means amino acid substitution, insertion and/or deletion in the polypeptide sequence or alteration of a moiety chemically linked to a protein. For example, the modification may be an altered carbohydrate or PEG structure attached to the protein. "amino acid modification" herein means amino acid substitution, insertion and/or deletion in a polypeptide sequence. For clarity, unless otherwise indicated, amino acid modifications are always used for amino acids encoded by DNA, e.g., 20 amino acids with codons in DNA and RNA.

By "amino acid substitution" or "substitution" herein is meant the replacement of an amino acid at a particular position in a parent polypeptide sequence with a different amino acid. In particular, in some embodiments, substitutions are made for amino acids that do not naturally occur at a particular position or that do not naturally occur in an organism or in any organism. For example, the substitution S364K refers to a variant polypeptide, in this case an Fc variant in which the serine at position 364 is replaced with lysine. The numbering is based on the numbering of the parent polypeptide. For example, R38W in the context of IL-2 numbering. For clarity, a protein that has been engineered to alter a nucleic acid coding sequence without altering the starting amino acid (e.g., changing CGG (encoding arginine) to CGA (still encoding arginine) to increase expression levels in a host organism) is not an "amino acid substitution"; that is, although a new gene encoding the same protein is produced, if the protein has the same amino acid at a specific position where it starts, the protein is not an amino acid substitution.

As used herein, "amino acid insertion" or "insertion" means the addition of an amino acid sequence at a particular position in a parent polypeptide sequence. For example, -233E or 233E refers to the insertion of glutamic acid after position 233 and before position 234. Additionally, -233ADE or a233ADE refers to the insertion of AlaAspGlu after position 233 and before position 234.

As used herein, "amino acid deletion" or "deletion" means the removal of an amino acid sequence at a particular position in a parent polypeptide sequence. For example, E233-or E233#, E233() or E233del refers to the absence of glutamic acid at position 233. In addition, EDA 233-or EDA233# refers to the deletion of the sequence GluAspAla starting at position 233.

As used herein, "protein" herein means at least two covalently linked amino acids, including proteins, polypeptides, oligopeptides, and peptides. Peptidyl groups may include naturally occurring amino acids and peptide bonds or synthetic peptidomimetic structures, i.e., "analogs," such as peptoids (see Simon et al, Proc. Natl. Acad. Sci. USA (PNAS USA) 89 (20): 9367(1992), which is incorporated by reference in its entirety). The amino acids can be naturally occurring or synthetic (e.g., amino acids not encoded by DNA), as will be understood by those skilled in the art. Typically, the proteins of the invention utilize naturally occurring amino acids. In addition, variant polypeptides may comprise synthetic derivatization of one or more side chains or termini, glycosylation, pegylation, cyclic shifts, cyclization, linkers to other molecules, fusion to proteins or protein domains, and addition of peptide tags or labels.

As used herein, "residue" means a position in a protein and its associated amino acid identity. For example, arginine 38 (also known as Arg38 or R38) is the residue at position 38 (numbered from the mature sequence) in the human IL-2 protein.

As used herein, a "variant protein" or "protein variant" or "variant" means a protein that differs from a parent protein by at least one amino acid modification. A protein variant may refer to the protein itself, a composition comprising the protein, or an amino acid sequence encoding the protein. Preferably, the protein variant has at least one amino acid modification as compared to the parent protein, e.g., from about one to about seventy amino acid modifications, and preferably from about one to about five amino acid modifications as compared to the parent. As described below, in some embodiments, the parent polypeptide (e.g., Fc parent polypeptide) is a human wild-type sequence, such as an Fc region from human IgG1, IgG2, IgG3, or IgG 4. In the context of IL-2 variants, the parent polypeptide is human IL-2, the mature sequence of which is shown in FIG. 1. The protein variant sequences herein will preferably possess at least about 80% identity and most preferably at least about 90% identity, more preferably at least about 95% -98% -99% identity to the parent protein sequence. A variant protein may refer to the variant protein itself, a composition comprising the protein variant, or a DNA sequence encoding the protein variant.

As used herein, "Fc" or "Fc region" or "Fc domain" is meant to include polypeptides of an IgG antibody that do not comprise a constant region other than the first constant region immunoglobulin domain, and in some cases all or a portion of a hinge. For IgG, the Fc domain includes the immunoglobulin domains C γ 2 and C γ 3(CH2 and CH3) and the hinge region between C γ 1(CH1) and C γ 2(CH 2). In the context of IgG antibodies, IgG isotypes each have three CH regions. Thus, in the context of IgG, the "CH" domains are as follows: "CH 1" refers to position 118-. "CH 2" refers to position 237-. Unless otherwise specified, the Fc domain of the invention comprises a hinge starting at position 216(EU numbering) and ending at the C-terminus of the CH3 domain at position 447; this is called "hinge-CH 2-CH 3" for IgG. In some cases, as in the Fc fusions herein, the hinge acts as a domain linker as discussed herein. In some embodiments, the Fc region is amino acid modified, for example to alter binding to one or more fcyr receptors or FcRn receptors or to promote heterodimerization of the Fc domain, as described more fully below.

Thus, as used herein, "Fc variant" or "variant Fc" means a protein that includes amino acid modifications in the Fc domain. The Fc variants of the present invention are defined in terms of the amino acid modifications that make up them. Thus, for example, N434S or 434S is an Fc variant having a serine substitution at position 434 relative to a parent Fc polypeptide, wherein numbering is according to the EU index. Likewise, M428L/N434S defines an Fc variant having substitutions M428L and N434S relative to the parent Fc polypeptide. The identity of the WT amino acids may not be indicated, in which case the above variant is referred to as 428L/434S. It should be noted that the order in which the substitutions are provided is arbitrary, that is, for example, 428L/434S is the same Fc variant as M428L/N434S, and so forth. For all positions discussed herein in relation to antibodies, amino acid position numbering is according to the EU index unless otherwise indicated. The EU index, or EU index as in the Kabat or EU numbering scheme, refers to the numbering of EU antibodies (Edelman et al, 1969, Proc. Natl. Acad. Sci. USA 63: 78-85, which is incorporated herein by reference in its entirety). The modification may be an addition, deletion or substitution. Substitutions may include naturally occurring amino acids, and in some cases synthetic amino acids. Examples include U.S. patent No. 6,586,207; WO 98/48032; WO 03/073238; US2004-0214988a 1; WO 05/35727a 2; WO 05/74524a 2; chin et al, (2002), Journal of the American Chemical Society 124: 9026-9027; chi & p g schultz, (2002), chem biochem 11: 1135-1137; chi et al, (2002) picas (picas United States of america) 99: 11020-11024; and l.wang & p.g.schultz, (2002), "chemical (Chem.)", 1-10, all of which are incorporated by reference in their entirety.

"Interleukin-2" or "IL-2" herein means human IL-2 having the sequence shown in FIG. 1.

By "IL-2 variant" or "variant IL-2" herein is meant a protein that includes amino acid modifications in the mature human IL-2 sequence shown in FIG. 1. As noted above, the IL-2 variants of the invention are defined in terms of the amino acid modifications that make up them using numbering of the mature human form.

By "Fc fusion protein" or "immunoadhesin" herein is meant a protein comprising an Fc region, which is typically linked (optionally via a linker moiety which may be the hinge region of an IgG (such as IgG1) as described herein) to a different protein, such as IL-2. Thus, an IL-2 Fc fusion protein is a protein comprising IL-2 (in this case, a variant IL-2) and an Fc domain as outlined herein (again, typically an Fc variant). These proteins generally have the structure IL-2-hinge-CH 2-CH 3. As will be understood in the art, the two Fc domains will self-assemble to provide the dimeric Fc fusion proteins outlined herein.

As used herein, "position" means a position in the sequence of a protein. Positions may be numbered sequentially or according to an established format, such as the EU index of antibody numbering.

As used herein, "non-naturally occurring modification" means an amino acid modification that is not an isoform. For example, substitution 434S of IgG1, IgG2, IgG3, or IgG4 (or hybrids thereof) is considered a non-naturally occurring modification because none of the iggs includes a serine at position 434.

As used herein, "amino acid" and "amino acid identity" mean one of the 20 naturally occurring amino acids encoded by DNA and RNA.

As used herein, "effector function" means a biochemical event that causes the interaction of an antibody Fc region with an Fc receptor or ligand. Effector functions include, but are not limited to, ADCC, ADCP and CDC.

As used herein, "Fc γ receptor" or "Fc γ R (fcgamma ar)", means any member of the family of proteins that bind to the Fc region of IgG antibodies and are encoded by the Fc γ R gene. In humans, this family includes, but is not limited to: fc γ RI (CD64) comprising the isoforms Fc γ RIa, Fc γ RIb and Fc γ RIc; fc γ RII (CD32) comprising the isoforms Fc γ RIIa (comprising allotypes H131 and R131), Fc γ RIIb (comprising Fc γ RIIb-1 and Fc γ RIIb-2), and Fc γ RIIc; and Fc γ RIII (CD16) comprising isoforms Fc γ RIIIa (comprising allotypes V158 and F158) and Fc γ RIIIb (comprising allotype Fc γ RIIb-NA1 and Fc γ RIIb-NA2) (Jefferis et al, 2002, handbook of immunology Lett 82: 57-65, which is incorporated by reference in its entirety); and any undiscovered human Fc γ Rs or Fc γ R isoforms or allotypes. The Fc γ R may be from any organism, including but not limited to human, mouse, rat, rabbit, and monkey. Mouse Fc γ rs include, but are not limited to, Fc γ RI (CD64), Fc γ RII (CD32), Fc γ RIII (CD16), and Fc γ RIII-2(CD16-2), as well as any mouse Fc γ R or Fc γ R isotype or allotype not found.

As used herein, "FcRn" or "neonatal Fc receptor" means a protein that binds the Fc region of an IgG antibody and is encoded at least in part by the FcRn gene.

As used herein, "parent polypeptide" means a starting polypeptide that is subsequently modified to produce a variant. The parent polypeptide may be a naturally occurring polypeptide or a variant or engineered version of a naturally occurring polypeptide. A parent polypeptide may refer to the polypeptide itself, a composition comprising the parent polypeptide, or an amino acid sequence encoding the parent polypeptide. Thus, as used herein, "parent IL-2" means an unmodified human IL-2 protein that is modified to produce a variant, and "parent Fc" or "parent Fc domain" as used herein means an unmodified human IgG Fc domain that is modified to produce a variant Fc domain.

Herein, "strandedness" in the context of the monomers of the heterodimeric Fc fusions of the present invention means the ability to incorporate heterodimerization variants into each monomer to remain "matched" to form heterodimers, similar to the "matched" two strands of DNA. For example, if some pI variants are engineered as monomer a (e.g., making pI higher), then spatial variants that are "charge pairs" that can also be utilized do not interfere with pI variants, e.g., making the higher pI charge variants placed on the same "strand" or "monomer" to maintain both functions. Similarly, for "skewed" variants that occur in pairs as outlined more fully below, the skilled person will consider the pI decision to be into the strands or monomers of one of the groups incorporated into the pair, such that pI separation is also maximized using the pI of the skewed variants.

Herein, "wild-type or WT" means an amino acid sequence or a nucleotide sequence found in nature, including allelic variations. The WT protein has an amino acid sequence or a nucleotide sequence that has not been intentionally modified.

The proteins of the invention are typically isolated or recombinant. When used to describe the various polypeptides disclosed herein, "isolated" means a polypeptide that has been identified and separated from and/or recovered from a cell or cell culture in which it is expressed. Generally, an isolated polypeptide will be prepared by at least one purification step. By "recombinant" is meant the production of antibodies in an exogenous host cell using recombinant nucleic acid techniques.

"percent (%) amino acid sequence identity" with respect to a protein sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical to the amino acid residues in a particular (parent) sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and without considering any conservative substitutions as part of the sequence identity. Alignment for the purpose of determining percent amino acid sequence identity can be accomplished in a variety of ways within the skill in the art, for example, using commercially available computer software such as BLAST, BLAST-2, ALIGN, or megalign (dnastar) software. One skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms required to achieve maximum alignment over the full length of the sequences being compared. One particular procedure is the ALIGN-2 procedure outlined in paragraphs [0279] to [0280] of U.S. publication No. 20160244525, which is incorporated herein by reference.

The degree of identity between an amino acid sequence of the invention (an "invention sequence") and a parent amino acid sequence is calculated as the number of exact matches in an alignment of the two sequences divided by the length of the "invention sequence" or the length of the parent sequence, whichever is shortest. Results are expressed as percent identity.

In some embodiments, two or more amino acid sequences are at least 50%, 60%, 70%, 80%, or 90% identical. In some embodiments, two or more amino acid sequences are at least 95%, 97%, 98%, 99%, or even 100% identical.

By "linker" herein is meant a protein linker for linking two other protein domains (e.g., a variant IL-2 domain and a variant Fc domain). In some cases, the linker is a "domain linker" for linking any two domains together as outlined herein. Although any suitable linker may be used, many embodiments utilize glycine-serine polymers comprising, for example, (GS) n, (GSGGS) n, (GGGGS) n, and (GGGS) n, where n is an integer of at least one (and typically 3 to 4 to 5), and any peptide sequence that allows for recombinant connection of the two domains in a length and flexibility sufficient to allow each domain to retain its biological function. In some cases and when "chained" is noted, charged domain linkers can be used, as outlined below. In addition, the hinge domain of the human IgG1 protein may also be a domain linker.

By "regulatory T cell" or "Treg" herein is meant a T cell that is CD3+/CD4+/CD8-/CD25+/FOXP3 +.

VII. IL-2 Fc fusion proteins of the invention

The present invention provides (IL-2) - (Fc domain) fusion proteins as shown herein and generally in figure 19. As will be appreciated by those skilled in the art, the fusion proteins of the present invention are actually two different polypeptides that self-assemble into either homodimeric protein (fig. 19B) or heterodimeric protein (fig. 19A) due to the presence of an Fc domain. Proteins of the invention typically have three distinct domains: an Fc domain, one or more domain linkers, and an IL-2 domain.

A. IL-2 Domains of the invention

The IL-2 Fc fusion proteins of the invention comprise an IL-2 domain as a variant human IL-2 domain. As discussed herein, these domains are engineered to comprise specific variants that increase the activation of T cells (e.g., tregs) that are CD25+ as compared to the CD 25-T cell population; and optionally further comprising amino acid substitutions designed to increase binding of IL-2 to IL-2 ra at pH 6 such that the IL-2 variant Fc fusion protein is recycled through the endocytic pathway rather than degraded.

1. Expression variants

First, the IL-2 variants of the invention also comprise a C125S variant that has previously been shown to increase expression of human IL-2. Thus, unless otherwise specified, all variants described herein include the C125S variant; in some cases, the C125A variant may also be used.

In addition, in some cases, the IL-2 variants of the invention comprise T3A variants with the O-glycosylation site removed to reduce complexity.

In addition, the IL-2 variants of the invention contain additional mutations.

2. Specific variants

Accordingly, the present invention provides IL-2 variant proteins with increased specificity for CD25+ T cells (comprising tregs). This is typically done by increasing binding to IL-2R α, or decreasing binding to IL-2R β and IL-2R γ, or interfacial binding to IL-2R β γ, or both.

In one embodiment, the variant IL-2 comprises a D20N amino acid substitution in addition to the C125S expression variant, and thus has the amino acid set D20N/C125S. It should be noted that the D20N variant has been previously reported to result in loss of binding of both the high affinity receptor (IL-2R α β) and the intermediate affinity receptor (IL-2R β); see Collins et al, journal of the american academy of sciences 85: 7709-7713(1988), which shows that "differential binding or activation between IL-2R β γ or IL-2R α β γ cannot be achieved by substitution of Asp at position 20", see the description of the related art in U.S. Pat. No. 6,955,807.

In one embodiment, the variant IL-2 comprises a T3A amino acid variant, in addition to the D20N amino acid substitution and the C125S expression variant, and thus has the amino acid group T3A/D20N/C125S.

In one embodiment, the variant IL-2 comprises a T37R amino acid variant and thus has the amino acid group T3A/D20N/T37R/C125S in addition to the T3A amino acid variant, the D20N amino acid substitution and the C125S expression variant.

In one embodiment, the variant IL-2 comprises an N71K amino acid variant and thus has the amino acid group T3A/D20N/N71K/C125S in addition to the T3A amino acid variant, the D20N amino acid substitution, and the C125S expression variant.

In one embodiment, the variant IL-2 comprises, in addition to the C125S expression variant, the amino acid variant N29S/Y31H/K35R/T37A/K48E/N71R/N88D/I89V and thus has the amino acid group N29S/Y31H/K35R/T37A/K48E/N71R/N88D/I89V/C125S.

a. Determination of Treg specificity

As known in the art, activation of STAT5 proteins (STAT5a and STAT5b) by phosphorylation is one of the early signaling events mediated by IL-2. Thus, specificity can be assessed by observing STAT5 phosphorylation on different T cell populations using the constructs of the invention.

Typically, assays for phosphorylation of STAT5 are performed as described in the examples using methods as outlined in the examples. As described in the examples, 5 different cell types were typically tested, including CD4+/CD45RA +, CD4+/CD45RA-, CD8+ CD45RA +, CD8+ CD45RA-, and tregs (CD3+/CD4+/CD8-/CD25+/FOXP3+) to provide sampling of other T cell types (e.g., CD45RA is expressed on memory T cells rather than naive T cells).

Typically, the increase in activity is compared to human wild-type IL-2.

pH variants

In addition, the present invention provides IL-2 variant proteins with increased pH specificity, wherein binding is increased at pH 6 (pH of endosomes).

In this embodiment, the IL-2 variant may have one or more amino acid substitutions selected from the group consisting of: r38, T41, F42, and F42. In addition, these mutations may be combined with C125S.

In this embodiment, the IL-2 variant may have one or more amino acid substitutions selected from the group consisting of: R38Q/T41K, R38Q/41Q, R38E/T41K, R38Q/T41R, R38N/T41Q, R38Q/T41V, R38N/T41V, R38Q/T41Q, T41Q/F42, T41/F72/F42Q, T41/F72, T41/Q/F42/F72, T41/F72, T Q/F72, T Q/F42/F72/F42/Q, T Q/F72, T Q/F42/Q, T Q/F42/Q, T Q/F42/Q, T Q/F41/F42/F72, T Q/Q, T Q/F41/F72, T Q/F42/F72, T Q/F72/F42/F72/F/Q, T Q/F72/Q, T Q/F72/, R38Q/T41Q/F42K, R38Q/T41V/F42K and R38Q/T41R/F42K. In addition, these mutations may be combined with C125S.

4. Useful IL-2 variants

The present invention provides a plurality of particularly useful IL-2 variants having the desired activity both alone and fused to an Fc domain, including both wild-type Fc domains as well as variant Fc domains as outlined herein. In addition, these IL-2 variants can be used in a monovalent construct (e.g., fig. 19A) or a bivalent construct (e.g., fig. 19B).

In one embodiment, the variant IL-2 domain has the amino acid substitutions R38I/C125S and is used in a bivalent construct. For example, in this example, the variant IL-2 domain may be fused from IgG2 or IgG4 to a wild-type Fc domain. Alternatively, a variant IL-2 domain may be fused to a variant Fc domain, e.g., a variant Fc structure containing an ablative variant and an FcRn variant.

In one embodiment, the variant IL-2 domain has the amino acid substitutions R38I/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions R38L/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions R38L/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitution D20N/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitution D20N/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions T3A/D20N/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has amino acid substitutions T3A/D20N/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions N29S/Y31H/K35R/T37A/K48E/N71R/N88D/I89V/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions N29S/Y31H/K35R/T37A/K48E/N71R/N88D/I89V/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions T3A/D20N/T37R/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has amino acid substitutions T3A/D20N/T37R/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions T3A/D20N/N71K/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has amino acid substitutions T3A/D20N/N71K/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions T3A/D20N/T37R/R38I/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions T3A/D20N/T37R/R38I/C125S and is used in a monovalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions T3A/D20N/R38I/N71K/C125S and is used in a bivalent construct.

In one embodiment, the variant IL-2 domain has the amino acid substitutions T3A/D20N/R38I/N71K/C125S and is used in a monovalent construct.

Particularly preferred proteins include XENP14142, XENP14144, XENP23833, XENP25720, XENP26086, XENP26105, XENP26987, XENP27003, XENP26109, XENP26994, XENP26841, XENP27004, XENP26839, XENP26996, XENP26990, XENP27006, XENP26840, XENP27001, XENP26991, XENP27007, XENP27563, XENP26105, XENP27564 and XENP 26109.

B. Fc domains of the invention

As discussed herein, the present invention provides Fc fusion proteins comprising two Fc domains, wherein at least one of the Fc domains comprises a fused 11-2 variant, optionally comprising a domain linker. As shown in fig. 19, the dimeric proteins of the invention may be configured to have one IL-2 variant, sometimes referred to herein as "monovalent IL-2", as shown in fig. 19A, wherein one of the Fc domains is covalently linked to the IL-2 variant protein and the other is "empty" or "Fc only". As discussed below, this embodiment relies on a heterodimeric Fc domain. Alternatively, a "bivalent" IL-2 construct as shown in figure 19B is used, wherein each Fc domain is fused to an IL-2 variant; these examples utilize homodimeric Fc domains, as discussed above.

In both embodiments, the Fc domain, whether using a homodimeric Fc fusion construct or a heterodimeric Fc fusion construct, typically comprises some specific amino acid variants for several functions.

1. Additional functional Fc variants

In addition to pI amino acid variants, there are many useful Fc amino acid modifications that can be made for various reasons, including but not limited to altered binding to one or more FcTR receptors, altered binding to FcRn receptors, and the like.

Thus, the proteins of the invention may comprise amino acid modifications, including heterodimerization variants as outlined herein, comprising pI variants and spatial variants. Each set of variants may be independent and optionally included or not included in any particular heterodimeric protein.

(i) Fc gamma R variants

Thus, there are a number of useful Fc substitutions that can be made to alter binding to one or more of the Fc γ R receptors. Substitutions that result in increased binding as well as decreased binding may be useful. For example, increased binding to Fc γ RIIIa is known to result in increased ADCC (antibody-dependent cell-mediated cytotoxicity; a cell-mediated reaction in which Fc γ R-expressing non-specific toxic cells recognize bound antibody on target cells and subsequently cause lysis of the target cells). Similarly, reduced binding to Fc γ RIIb (inhibitory receptor) may also be beneficial in some circumstances. Amino acid substitutions useful in the present invention include those listed in USSN 11/124,620 (especially figure 41), 11/174,287, 11/396,495, 11/538,406, all of which are expressly incorporated herein by reference in their entirety and specifically for the variants disclosed herein. Specific variants used include, but are not limited to: 236A, 239D, 239E, 332D, 239D/332E, 267D, 267E, 328F, 267E/328F, 236A/332E, 239D/332E/330Y, 239D, 332E/330L, 243A, 243L, 264A, 264V and 299T.

In addition, as specifically disclosed by USSN 12/341,769, which is incorporated herein by reference in its entirety, there are additional Fc substitutions for increased binding to FcRn and increased serum half-life, including but not limited to: 434S, 434A, 428L, 308F, 259I, 428L/434S, 428L/434A, 259I/308F, 436I/428L, 436I or V/434S, 436V/428L and 259I/308F/428L.

(ii) Ablation variants

Similarly, another class of functional variants is "Fc γ R ablative variants" or "Fc knockout (FcKO or KO) variants". In these embodiments, for some therapeutic applications, it is desirable to reduce or remove normal binding of the Fc domain to one or more or all of the Fc γ receptors (e.g., Fc γ R1, Fc γ RIIa, Fc γ RIIb, Fc γ RIIIa, etc.) to avoid additional mechanisms of action. That is, for example, it is desirable to ablate Fc γ RIIIa binding to eliminate or significantly reduce ADCC activity such that one of the Fc domains comprises one or more Fc γ receptor ablative variants. These ablation variants are depicted in fig. 4, and each may be independent and optionally included or excluded, with preferred aspects utilizing ablation variants selected from the group consisting of: G236R/L328R, E233P/L234V/L235A/G236del/S239K, E233P/L234V/L235A/G236del/S267K, E233P/L234V/L235A/G236del/S239K/A327G, E233P/L234V/L235A/G236del/S267K/A327G and E233P/L234V/L235A/G236 del. It should be noted that the ablative variants referenced herein ablate Fc γ R binding but typically do not ablate FcRn binding.

2. Homodimeric Fc domains

In some embodiments, the invention provides a bivalent homodimeric protein comprising a homodimeric Fc domain as generally depicted in figure 19B. In this example, each monomer is the same and typically includes a variant-IL-2-linker-Fc domain, where the linker is typically a hinge from IgG 1.

In this embodiment, the Fc domain may have an ablative variant as generally shown in fig. 4. Suitable ablative variants that generally ablate binding to Fc γ RI, Fc γ RIIb, and Fc γ RIIIa are shown in figure 4. Particularly useful in this IgG1 embodiment is the ablated amino acid set of E233P/L234V/L235A/G236_/S267K ("G236 _" is deleted as described herein).

In addition, as specifically disclosed by USSN 12/341,769, which is incorporated herein by reference in its entirety, there are additional Fc substitutions for increased binding to FcRn and increased serum half-life, including but not limited to: 434S, 434A, 428L, 308F, 259I, 428L/434S, 428L/434A, 259I/308F, 436I/428L, 436I or V/434S, 436V/428L and 259I/308F/428L.

3. Heterodimeric Fc domains

In addition to homodimeric, bivalent IL-2 fusion proteins, an alternative embodiment utilizes a monovalent IL-2 fusion protein in which one of the Fc domains is "empty," and the present invention relies on a heterodimerization variant to bind the two Fc domains together, as shown in fig. 19B. These embodiments rely on the use of two different variant Fc sequences that will self-assemble to form a heterodimeric Fc domain and a heterodimeric Fc fusion protein.

Heterodimeric protein constructs are based on the self-assembly properties of two Fc domains of the heavy chain of an antibody (e.g., two "monomers" that assemble into a "dimer"). Heterodimeric proteins are prepared by altering the amino acid sequence of each monomer as discussed more fully below. Thus, the present invention relates generally to the production of heterodimeric Fc fusion proteins that rely on amino acid variants in the constant region that differ on each chain to promote heterodimer formation and/or allow heterodimers to be more easily purified than homodimers.

There are a variety of mechanisms that can be used to produce the heterodimers of the present invention. In addition, as will be appreciated by those skilled in the art, these mechanisms may be combined to ensure hyper-heterodimerization. Thus, amino acid variants that result in the production of heterodimers are referred to as "heterodimerization variants". As discussed below, the heterodimerization variants can comprise a spatial variant (e.g., a "bulge-and-well" variant or a "skew" variant, described below, and a "charge pair" variant, described below) and a "pI variant," which allows purification of the homodimer away from the heterodimer. As generally described in WO2014/145806 hereby incorporated by reference in its entirety, and in particular as described below for the discussion of "heterodimerization variants", useful mechanisms of heterodimerization include "bulge and pore" ("KIH"; sometimes referred to herein as "skew" variants (see discussion in WO 2014/145806)), "electrostatic steering" or "charge pairs" as described in WO2014/145806, pI variants as described in WO2014/145806, and further Fc variants in general as outlined in WO2014/145806 and below.

In the present invention, there are several basic mechanisms that can facilitate purification of heterodimeric proteins; one mechanism relies on the use of pI variants such that each monomer has a different pI, allowing isoelectric purification of a-A, A-B and B-B dimeric proteins. In addition, the heterodimeric proteins of the invention also allow size-based separation. As outlined further below, it is also possible to "skew" the formation of heterodimers compared to homodimers. Thus, combinations of spatial heterodimerization variants with pI variants or charge pair variants are particularly useful in the present invention.

In general, embodiments particularly useful for the invention rely on a set of variants comprising skewed variants that bind to pI variants that increase the difference in pI between two monomers compared to homodimerization to form a pI variant that encourages heterodimerization.

In addition, as outlined more fully herein, pI variants can be contained within the constant domain and/or Fc domain of the monomer, or charged linkers, such as domain linkers, can be used.

In the present invention where pI is used as a separation mechanism to allow purification of the heterodimeric protein, amino acid variants may be introduced into one or both of the monomeric polypeptides; that is, the pI of one of the monomers (referred to herein as "monomer a" for simplicity) may be engineered away from monomer B, or both monomer a and monomer B may change as the pI of monomer a increases and the pI of monomer B decreases. As discussed, the pI change for either monomer or both monomers can be made by: removing or adding a charged residue (e.g., replacing a neutral amino acid with a positively or negatively charged amino acid residue, e.g., glycine to glutamic acid), changing a charged residue from positively or negatively charged to an opposite charge (e.g., aspartic acid to lysine), or changing a charged residue to a neutral residue (e.g., charge loss; lysine to serine). A number of these variants are shown in the drawings.

Thus, this embodiment of the invention provides for generating sufficient pI change of at least one of the monomers such that the heterodimer can be separated from the homodimer. As will be appreciated by those skilled in the art and as discussed further below, the separation may be performed by: the "wild-type" heavy chain constant region and the variant region that has been engineered to increase or decrease its pI (wt A- + B or wt A-B) or to increase one region and decrease the other (A + -B-or A-B +).

Thus, in general, a component of some embodiments of the invention is an amino acid variant in the Fc domain that involves altering the isoelectric point (pI) of at least one, if not both, of the monomers of the dimeric protein by incorporating an amino acid substitution ("pI variant" or "pI substitution") into one, or both, of the monomers. As shown herein, separation of a heterodimer from two homodimers can be accomplished when the pI of the two monomers differ by as little as 0.1 pH units, with 0.2, 0.3, 0.4, and 0.5 or more pH units being useful in the present invention.

a. Heterodimeric variants

The present invention provides heterodimeric proteins comprising heterodimeric antibodies in various forms that utilize heterodimeric variants to allow heterodimer formation and/or purification away from the homodimers. Multiple heterodimerization variants are shown in fig. 2.

There are a number of suitable heterodimerization skewed variant pairs. These variants appear as "paired" groups. That is, one of the pairs is incorporated into a first monomer and the other of the pairs is incorporated into a second monomer. It should be noted that these groups do not necessarily represent "bulge-in-hole" variants, where there is a one-to-one correspondence between residues on one monomer and residues on another monomer; that is, these pairs form an interface between the two monomers that encourages heterodimer formation and discourages homodimer formation, allowing the percentage of heterodimers that form spontaneously under biological conditions to exceed 90%, rather than the expected 50% (25% homodimer a/a: 50% heterodimer a/B: 25% homodimer B/B).

b. Space variant

In some embodiments, heterodimer formation can be facilitated by the addition of a steric variant. That is, by altering the amino acids in each heavy chain, it is more likely that different heavy chains associate to form a heterodimeric structure rather than forming homodimers with the same Fc amino acid sequence. Suitable spatial variations are included in the figures.

One mechanism, commonly referred to in the art as "protuberance and well," means that amino acid engineering that exerts a steric influence to favor heterodimer formation and disfavor homodimer formation may also optionally be used; this is sometimes referred to as a "carina and hole," as described below: USSN 61/596,846, Ridgway et al, "protein engineering (protein engineering) in 9 (7): 617 (1996); atwell et al, journal of molecular biology (j.mol.biol.) 1997270: 26; U.S. patent No. 8,216,805, the above is incorporated by reference herein in its entirety. The figures identify multiple "monomer a-monomer B" pairs that rely on "protuberances and pores". In addition, as shown in Merchant et al, "natural biotechnology (nature biotech") 16: 677(1998) these "protuberance and hole" mutations can be combined with disulfide bonds to bias formation towards heterodimerization.

Another mechanism for generating heterodimers is sometimes referred to as "electrostatic steering," as exemplified by Gunasekaran et al, journal of biochemistry (j.biol.chem.), (285 (25), incorporated herein by reference in its entirety: 19637 (2010). This is sometimes referred to herein as a "charge pair". In this example, static electricity was used to bias formation towards heterodimerization. As will be appreciated by those skilled in the art, these charge pairs may also affect pI and hence purification, and thus may also be considered pI variants in some cases. However, these charge pairs are classified as "spatial variants" because they are generated to force heterodimerization and are not used as purification tools. These charge pairs include, but are not limited to, D221E/P228E/L368E paired with D221R/P228R/K409R (e.g., these are "monomer correspondences") and C220E/P228E/368E paired with C220R/E224R/P228R/K409R.

Additional monomer a and monomer B variants can optionally and independently be combined in any number with other variants, such as pI variants as outlined herein or other spatial variants shown in fig. 37 of US 2012/0149876, the figures and legends of which and SEQ ID NO are expressly incorporated herein by reference.

In some embodiments, the steric variants outlined herein may optionally and independently be combined with any pI variant (or other variants, such as Fc variants, FcRn variants, etc.) into one or two monomers, and may be independently and optionally included or excluded in the proteins of the invention.

A list of suitable skew variants is seen in fig. 2, illustrating the specific use of some pairs in many embodiments. Groups including, but not limited to, the following are particularly useful in some embodiments: S364K/E357Q: L368D/K370S; L368D/K370S: S364K; L368E/K370S: S364K; T411T/E360E/Q362E: D401K; L368D/K370S: S364K/E357L, K370S: S364K/E357Q and T366S/L368A/Y407V: T366W (optionally comprising the bridging disulfide T366S/L368A/Y407V/Y349C: T366W/S354C). For nomenclature, "S364K/E357Q: L368D/K370S "means that one of the monomers has the double variant set S364K/E357Q and the other has the double variant set L368D/K370S; as above, these "strand" pairs depend on the starting pI.

c. pI (isoelectric Point) of heterodimers

Generally, as will be appreciated by those skilled in the art, there are two general classes of pI variants: variants that increase the pI of the protein (basic change) and variants that decrease the pI of the protein (acidic change). As described herein, all combinations of these variants can be done: one monomer may belong to the wild type or a variant that does not show a significantly different pI than the wild type, and the other may be more basic or more acidic. Alternatively, the individual monomers are changed, one being more basic and one being more acidic.

Figure 5 shows preferred combinations of pI variants. As outlined herein and shown in the figures, these changes are shown with respect to IgG1, but all isotypes and isotype hybrids can be altered in this way. In the case where the heavy chain constant domain is from IgG2-4, R133E and R133Q may also be used.

In one embodiment, a preferred combination of pI variants has one monomer (negative side) comprising the 295E/384D/418E/421D variant (Q295E/N384D/Q418E/N421D when compared to human IgG1) and comprises a positively charged scFv linker (comprising (GKPGS)4) The second monomer (plus side).

d. Isoform variants

In addition, some embodiments of the invention rely on the "import" of pI amino acids at specific positions from one IgG isotype to another, thereby reducing or eliminating the possibility of introducing unwanted immunogenicity into variants. A number of these are shown in fig. 21 of U.S. publication No. 2014/0370013, which is incorporated herein by reference. That is, IgG1 is a common isotype of therapeutic antibodies, comprising high effector function, for a variety of reasons. However, the heavy constant region of IgG1 has a higher pI than that of IgG2 (8.10 versus 7.31). By introducing IgG2 at specific positions into the IgG1 backbone, the pI of the resulting monomer is reduced (or increased) and additionally exhibits a longer serum half-life. For example, IgG1 has a glycine at position 137 (pI of 5.97) and IgG2 has a glutamic acid (pI of 3.22); the input of glutamate will affect the pI of the resulting protein. As described below, multiple amino acid substitutions are typically required to significantly affect the pI of a variant antibody. It should be noted, however, that even changes in the IgG2 molecule allow for an increase in serum half-life, as discussed below.

In other embodiments, non-isoform amino acid changes are made in order to reduce the overall charge state of the resulting protein (e.g., by changing a higher pI amino acid to a lower pI amino acid) or to allow for structure regulation for stabilization, etc., as described further below.

In addition, by engineering the heavy and light constant domains with pI, significant changes can be seen for each monomer of the heterodimer. As discussed herein, differing the pI of two monomers by at least 0.5 can allow separation by ion exchange chromatography or isoelectric focusing or other methods sensitive to isoelectric point.

e. Calculate pI

As outlined herein, the pI of each monomer may depend on the pI of the variant IL-2 domain and Fc domain. Thus, in some embodiments, using the graph in fig. 19 of U.S. publication No. 2014/0370013, the change in pI is calculated based on the variant heavy chain constant domain. As discussed herein, which monomer to engineer is generally determined by the Fv and the intrinsic pI of the scaffold region. Alternatively, the pI of each monomer can be compared.

f. Combination of heterodimer variants and Fc variants

As will be understood by those skilled in the art, for use in heterodimeric Fc domains, all of the listed heterodimeric variants (including skewed variants and/or pI variants) may be optionally and independently combined in any manner, so long as the heterodimeric variants retain their "chain-type" or "monomer separation". In addition, all of these variants can be combined into any heterodimerization format.

In the case of pI variants, although particularly useful embodiments are shown in the figures, other combinations can be generated following the basic rules of varying the pI difference between the two monomers to facilitate purification.

In addition, any of the heterodimerization variants, skew variants, and pI variants are independent of and optionally combined with the Fc ablation variants, Fc variants, FcRn variants, as generally outlined herein.

In addition to the ablative variants, the Fc domain typically also comprises the C220S variant eliminated as a result of not including a light chain herein and using this cysteine to form a disulfide with the light chain (e.g., as a result of the Fc domain of the present invention comprising a hinge region starting at position 216(EU numbering)).

In addition, the Fc domain of the fusion protein of the invention optionally may include half-life extending amino acid substitutions.

Recently, it has been proposed that antibodies with variable regions having lower isoelectric points may also have longer serum half-lives (Igawa et al, 2010 protein engineering and selection (PEDS) 23 (5): 385-392, which is incorporated by reference in its entirety). However, the mechanism is still poorly understood. Furthermore, the variable regions differ by antibody. Constant region variants with reduced pI and extended half-life would provide a more modular approach to improving the pharmacokinetic properties of antibodies, as described herein.

Useful constructs of the invention

As outlined herein, the present invention provides a plurality of useful monovalent constructs and bivalent constructs.

A. Heterodimeric monovalent constructs

In some embodiments, the Il-2-Fc fusion protein of the invention is a heterodimeric monovalent construct, such as the heterodimeric monovalent constructs depicted in fig. 19A and 19C. In this example, the variant IL-2 domain is typically fused to the variant human IgG 1Fc domain using a hinge as a domain linker (typically comprising the C220S variant) or using an additional linker attached to the hinge, while the other Fc domain (comprising the hinge) remains "empty".

In some embodiments, the variant IL-2 domain is linked to a "+" monomer side (see fig. 5A) comprising: variant human IgG 1Fc domain (comprising a hinge with the C220S variant), S364K/E357Q "skew variant" and ablative variants E233P/L234V/L235A/G236del/S267K, and the "empty Fc side" is the variant human IgG 1Fc domain (comprising a hinge with the C220S variant), L368D/K370S "skew variant" and ablative variants E233P/L234V/L235A/G236 del/S267K. In this embodiment, the preferred construct comprises a variant IL-2 domain having amino acid substitutions selected from the group consisting of: T3A/D20N/T37R, T3A/D20N/T37R/C125S, T3A/D20N/T37R/C125A, T3A/D20N/N71K, T3A/D20N/N71K/C125S and T3A/D20N/N71K/C125A.

In some embodiments, the variant IL-2 domain is linked to a "+" monomer side (see fig. 5A) comprising: the variant human IgG 1Fc domain (comprising a hinge with the C220S variant), S364K/E357Q "skew variant" and the ablative variants E233P/L234V/L235A/G236del/S267K and FcRn variant M428L/N434S, and the "empty Fc side" is the variant human IgG 1Fc domain (comprising a hinge with the C220S variant), L368D/K370S "skew variant" and the ablative variants E233P/L234V/L235A/G236del/S267K and FcRn variant M428L/N434S. In this embodiment, the preferred construct comprises a variant IL-2 domain having amino acid substitutions selected from the group consisting of: T3A/D20N/T37R, T3A/D20N/T37R/C125S, T3A/D20N/T37R/C125A, T3A/D20N/N71K, T3A/D20N/N71K/C125S and T3A/D20N/N71K/C125A.

IN one embodiment, "monomer 1" includes a variant IL-2 domain comprising the amino acid substitutions T3A/D20N/N71K/C125S (SEQ IN NO: 2 compared to wild-type IL-2) and a polypeptide comprising the amino acid sequence of SEQ ID NO: 9. 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, or 33, "monomeric 1Fc backbone". In this embodiment, "monomer 2" includes a sequence selected from SEQ ID NOs: 10. the "empty Fc" of the "monomeric 2 Fc backbone" of 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, and 34.

IN one embodiment, "monomer 1" includes a variant IL-2 domain comprising the amino acid substitutions T3A/D20N/N71K/C125S (SEQ IN NO: 2 compared to wild-type IL-2), and a polypeptide comprising the amino acid sequence of SEQ ID NO: 9. 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 or 33 but with a "monomeric 1Fc backbone" of FcRn variant M428L/N434S. In this embodiment, "monomer 2" includes a sequence selected from SEQ ID NOs: 10. "empty Fc" of 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34 but with the "monomeric 2 Fc backbone" of FcRn variant M428L/N434S.

IN one embodiment, "monomer 1" includes a variant IL-2 domain comprising the amino acid substitutions T3A/D20N/T37R/C125S (SEQ IN NO: 2 compared to wild-type IL-2), and a polypeptide comprising the amino acid sequence of SEQ ID NO: 9. 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, or 33, "monomeric 1Fc backbone". In this embodiment, "monomer 2" includes a sequence selected from seq id NOs: 10. the "empty Fc" of the "monomeric 2 Fc backbone" of 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, and 34.

IN one embodiment, "monomer 1" includes a variant IL-2 domain comprising the amino acid substitutions T3A/D20N/T37R/C125S (SEQ IN NO: 2 compared to wild-type IL-2) and a polypeptide comprising the amino acid sequence of SEQ ID NO: 9. 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 or 33 but with an "Fc backbone" of the FcRn variant M428L/N434S. In this example "monomer 2" includes a sequence selected from SEQ ID NO: 10. "empty Fc" of 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34 but with the "monomeric 2 Fc backbone" of FcRn variant M428L/N434S.

In these embodiments, preferred constructs comprise XENP26105, XENP27563, XENP26109, and XENP 27564.

B. Homodimeric bivalent constructs

In some embodiments, the Il-2-Fc fusion protein of the invention is a homodimeric bivalent construct, such as the homodimeric bivalent construct depicted in fig. 19B and 19D. In this example, the variant IL-2 domain is each fused to a variant human IgG 1Fc domain, typically using a hinge as a domain linker (typically comprising the C220S variant) or using an additional linker attached to the hinge.

In some embodiments, the variant IL-2 domain is linked to a variant human IgG 1Fc domain (comprising a hinge with the C220S variant) and the ablative variant E233P/L234V/L235A/G236 del/S267K. In this embodiment, the preferred construct comprises a variant IL-2 domain having amino acid substitutions selected from the group consisting of: T3A/D20N/T37R, T3A/D20N/T37R/C125S, T3A/D20N/T37R/C125A, T3A/D20N/N71K, T3A/D20N/N71K/C125S and T3A/D20N/N71K/C125A.

In some embodiments, the variant IL-2 domain is linked to a variant human IgG 1Fc domain (comprising a hinge with the C220S variant), the ablative variant E233P/L234V/L235A/G236del/S267K, and the FcRn variant M428L/N434S. In this embodiment, the preferred construct comprises a variant IL-2 domain having amino acid substitutions selected from the group consisting of: T3A/D20N/T37R, T3A/D20N/T37R/C125S, T3A/D20N/T37R/C125A, T3A/D20N/N71K, T3A/D20N/N71K/C125S and T3A/D20N/N71K/C125A.

IX. nucleic acids of the invention

The invention further provides nucleic acid compositions encoding homodimeric bivalent IL-2-Fc fusion proteins and heterodimeric monovalent IL-2 fusion proteins.

As will be appreciated by those skilled in the art, the nucleic acid composition will depend on the format of the heterodimeric protein. Thus, for example, where a format requires two amino acid sequences, e.g., for the heterodimeric monovalent format of fig. 19A, the two nucleic acid sequences can be incorporated into one or more expression vectors for expression.

Alternatively, when the homodimer bivalent format is as shown in fig. 19B, a single nucleic acid construct and a single expression vector are used.

As known in the art, the nucleic acids encoding the components of the invention may be incorporated into expression vectors as known in the art and depending on the host cell used to produce the heterodimeric Fc fusion proteins of the invention. In general, the nucleic acid is operably linked to any number of regulatory elements (promoters, origins of replication, selectable markers, ribosome binding sites, inducers, etc.). The expression vector may be an extrachromosomal vector or an integrating vector.

The nucleic acids and/or expression vectors of the invention are then transformed into any number of different types of host cells, including mammalian cells, bacterial cells, yeast cells, insect cells, and/or fungal cells, as are well known in the art, with mammalian cells (e.g., CHO cells) being used in many embodiments.

In some embodiments, the nucleic acids encoding each monomer are each contained within a single expression vector, typically under different or identical promoter control conditions, if applicable depending on the format. In embodiments particularly useful for the present invention, each of the two or three nucleic acids is contained on a different expression vector.

The heterodimeric Fc fusion proteins of the invention are prepared by culturing a host cell comprising one or more expression vectors as are well known in the art. Once produced, conventional fusion protein or antibody purification steps are performed, including ion exchange chromatography steps. As discussed herein, differing the pI of two monomers by at least 0.5 can allow separation by ion exchange chromatography or isoelectric focusing or other methods sensitive to isoelectric point. That is, pI substitutions that comprise altering the isoelectric point (pI) of each monomer result in each monomer having a different pI and the heterodimer also having a different pI, thereby facilitating isoelectric purification of the heterodimer (e.g., anion exchange column, cation exchange column). These substitutions also help to determine and monitor any contaminating homodimers after purification (e.g., IEF gels, cIEF and analytical IEX columns).

X. preparation

Formulations of the compositions used according to the invention are prepared by mixing the fusion protein of the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers, as generally outlined in Remington's Pharmaceutical Sciences, 16 th edition, Osol, A. editor [1980], for storage as a lyophilized formulation or as an aqueous solution.

XI treatment

The compositions of the IL-2-Fc fusion proteins of the invention are useful, for example, in the treatment of autoimmune diseases by activating CD25+ cells in patients using the dimeric proteins of the invention.

Xii example

A. Example 1: engineering IL-2 to increase half-life

As discussed above, the rate of IL-2 clearance is very fast. This rapid clearance is dependent in part on the IL-2: internalization of the IL-2R complex. Following internalization into endosomes, IL-2R β, and γ c are degraded while IL-2R α is constitutively recycled to the cell surface. IL-2 variant 2D1 having the L18M/L19S mutation has shown a longer half-life than wild-type IL-2. Fallon et al reported that wild-type IL-2 had a lower affinity for IL-2R α at endosomal pH, indicating a pH-dependent binding between IL-2 and IL-2R α. The panel further found that the prolonged half-life of 2D1 was due to recycling to IL-2 ra, due to the higher affinity of 2D1 for IL-2 ra than WT IL-2 at endosomal pH. Notably, residues L18 and L19 on IL-2 have been described as contacting IL-2R β and γ c. In contrast, it is hypothesized that the residue is modified at IL-2: the IL-2 Ra interface will be more suitable for weakening pH dependent binding, increasing IL-2 and IL-2 Ra recirculation, and through the increase of half-life.

1. Engineering IL-2 at the IL-2/IL-2R alpha interface to attenuate pH-dependent binding

By examining the crystal structure of the IL-2 and IL-2R α interface (PDB code 2ERJ), a possible natural "pH switch" consisting of the interaction between Arg38, Thr41 and/or Phe42 of IL-2 and His120 of IL-2R α at the IL-2/IL-2R α interface was identified (see FIG. 8). Assume that in IL-2: following internalization of the IL-2R α β γ complex, His20 will become protonated at low pH in the endosome, allowing IL-2 to be released from IL-2R α, and subsequently leaving the remaining IL-2: lysosomal degradation of the IL-2R β γ complex. IL-2R α is known to recycle to the cell surface, and by substituting one or more of these interacting residues, increasing the binding affinity of IL-2 to IL-2R α at pH 6.0 can improve IL-2 recycling and prolong half-life. Using computational predictions by protein design automation techniques (see, e.g., WO 1998/047089 published on 10/22 of 1998), variants were generated that saturate these three contact residues.

A plasmid encoding IL-2 was constructed by standard gene synthesis and then subcloned into the pTT5 expression vector. IL-2 contains a C-terminal poly-histidine tag (8XHis) for purification and a C125S substitution for improved expression. Substitutions as predicted above were introduced by standard mutagenesis techniques. The protein was produced by transient transfection in HEK293E cells and purified by Ni-NTA chromatography. The sequences of illustrative variants are depicted in fig. 9, in which the poly-histidine tag is removed.

The affinity of IL-2 for IL-2R α at pH 7.4 and pH 6.0 was determined using Biacore based Surface Plasmon Resonance (SPR) techniques the experimental steps of Biacore generally involve immobilization (capture of ligands onto the sensor chip), association (flow of various concentrations of analytes onto the sensor chip), and dissociation (flow buffer on the sensor chip) to determine the affinity of the test itemD) Association rate (k)a) And dissociation rate (k)d). Binding affinity and kinetic rate constants were obtained by analyzing the processed data using a 1: 1 binding model. Figure 12 depicts the fold increase in dissociation rate at pH 6.0, while figure 13 depicts the fold increase in dissociation rate at pH 7.4.

Compared to WT IL-2, a number of variants with various substitutions at R38, T41, and F42 have poorer or similar off-rates at pH 6.0; however, some variants with greatly increased off-rates were identified (that is, IL-2 variants that are more likely to recycle with IL-2R α). Preferred variants include XENP14142(R38I) and XENP14144 (R38L). FIG. 14 depicts Biacore sensorgrams for XENP14135 (wild-type IL-2 with the C125S mutation) and XENP14142 (variant IL-2 with R38I and C125S). Similar dissociation curves for XENP14142 at pH 7.4 and pH 6.0 indicate that pH-dependent binding is successfully reduced.

2. Attenuation of pH-dependent binding in the context of other IL-2 variants

Next, R38L was combined with a prior art IL-2 variant (mutant 2-4 with Q126T as described in WO 2009/061853 published 5/14 in 2009) to investigate whether the off-rate was improved in the context of other IL-2 variants.

Substitutions are introduced by standard mutagenesis techniques, as above. The protein was produced by transient transfection in HEK293E cells and purified by Ni-NTA chromatography. The sequences of the prior art variants described above with and without R38L are depicted in fig. 15, with the poly-histidine tag removed.

As described in example 1A, the affinity of IL-2 for IL-2R α at pH 7.4 and pH 6.0 was determined using Biacore the resulting dissociation constants (K) are depicted in FIG. 16D) Association rate (k)a) And dissociation rate (k)d) And the ratio of affinity at pH 7.4 to affinity at pH 6.0. The data show that the ratio of affinities increases with the inclusion of R38L substitution, indicating a decrease in success of pH-dependent binding.

B. Example 2: engineering IL-2 for Treg selectivity

IL-2R β and γ c mediate the proliferation signaling by IL-2 as part of the IL-2 intermediate affinity receptor complex (IL-2R β γ) or part of the IL-2 high affinity receptor complex (IL-2R α β γ). CD25 confers a high affinity binding of the IL-2R α β γ complex to IL-2, but otherwise its own signaling is insufficient. Due to the high affinity binding to the IL-2R α β γ complex, IL-2 favours tregs that constitutively express IL-2R α. Thus, it is hypothesized that increasing the affinity of IL-2 for IL-2 ra may further skew binding to favor the IL-2 ra β γ complex on tregs. Alternatively, reducing the affinity of IL-2 for IL-2R β, yc or IL-2R β γ can skew binding away from CD 25-negative T cells and NK cells.

By examining the crystal structure of the interface between IL-2 and its receptor, and by modeling using MOE software, residues that might be substituted to increase the affinity of IL-2 for IL-2R α or decrease the affinity of IL-2 for IL-2R β, γ c and/or IL-2R β γ are predicted.

A plasmid encoding IL-2 was constructed by standard gene synthesis and then subcloned into the pTT5 expression vector. IL-2 contains a C-terminal poly-histidine tag (8XHis) for purification and a C125S substitution for improved expression. Substitutions as predicted above were introduced by standard mutagenesis techniques. The protein was produced by transient transfection in HEK293E cells and purified by Ni-NTA chromatography. The sequences of illustrative variants are depicted in fig. 17, in which the poly-histidine tag is removed.

Binding of IL-2 to its receptor component was determined using Octet, a method based on biofilm layer interference technique (BLI). The experimental procedure for Octet generally comprises the following: immobilization (capture of ligand to biosensor); association (dipping the ligand coated biosensor into a well containing an analyte in serial dilution); and dissociation (returning the biosensor to the well containing the buffer) to determine the affinity of the test article. Reference wells containing only buffer are also included in the method for background correction during data processing. Specifically, anti-human Fc (ahc) biosensors were used to capture bivalent CD25(IL-2R α) -Fc fusions, bivalent CD122(IL-2R β) -Fc fusions, or heterodimeric CD 122: CD132 (IL-2R. beta. gamma) -Fc fusion, and immersion into various concentrations of IL-2 variants. The BLI response to XENP14135 (wild-type IL-2 with C125S) was normalized for the resulting IL-2 variant and is depicted in FIG. 18. Notably, IL-2: several substitutions at the IL-2R β interface, such as D20N and N88D, substantially reduce or eliminate IL-2 binding to IL-2R β.

C. Example 3: IL-2-FC fusion proteins

To further address the short half-life of IL-2, IL-2 was generated as an Fc fusion (hereinafter referred to as IL-2-Fc fusion) with the aim of promoting production and advancing FcRn-mediated complex recycling and extending half-life.

Generation of IL-2-Fc fusions

A plasmid encoding IL-2 was constructed by standard gene synthesis and then subcloned into the pTT5 expression vector containing the Fc fusion partner (e.g., constant regions as depicted in fig. 6). IL-2 may contain C125S substitutions for improved expression and T3A substitutions for removal of O-glycosylation sites. A cartoon representation of an illustrative IL-2-Fc fusion format is depicted in FIG. 19. Selected substitutions were introduced by standard mutagenesis techniques.

The monovalent IL-2-Fc or "monovIL-2-Fc" format (FIG. 19A) includes IL-2 fused to the N-terminus of a first heterodimeric Fc region (see, e.g., IL-2-Fc backbone 1-monomer 2 in FIG. 6), while the other side of the molecule is an "Fc-only" or "empty Fc" heterodimeric Fc (see, e.g., IL-2-Fc backbone 1-monomer 1 in FIG. 6). The sequence of an illustrative monovIL-2-Fc fusion is depicted in FIG. 20. The bivalent IL-2-Fc or "bivIL-2-Fc" format (FIG. 19B) includes IL-2 fused to the N-terminus of a homodimeric Fc region (see, e.g., IL-2-Fc backbone 12 in FIG. 6). The sequence of an illustrative bivIL-2-Fc fusion is depicted in FIG. 23. The monovIL-2-Fc fusion and bivIL-2-Fc fusion may have a variable length linker located between the C-terminus of IL-2 and the N-terminus of the Fc region (see FIG. 7 for non-limiting examples of domain linkers that may be used for IL-2-Fc fusions, and 19C-D for format pictures). The sequences of illustrative IL-2-Fc fusions with variable length linkers are depicted in FIG. 25.

Proteins were produced by transient transfection in HEK293E cells and were purified by a two-step purification process including protein a chromatography and anion exchange chromatography.

2. Studies of prior art IL-2 variants engineered as monovIL-2-Fc fusions

To study the robustness and efficacy of the monovIL-2-Fc fusion format, a number of prior art IL-2 variants were generated in this format. These IL-2-Fc fusions comprise: XENP24637 (based on the mutant described in WO 2012/107417 published on day 16,8, 2012), XENP24638 (based on the mutants 2-4 described in WO 2005/007121 published on day 27, 2005), XENP24639 (based on the mutant M1 described in WO 2005/007121 published on day 27, 1, 2005), XENP24640 (based on the mutant 2-4 with Q126T described in WO 2009/061853 published on day 14, 5, 2009), XENP24642 (based on the variant described in WO 1999/060128 published on day 25, 11, 1999), XENP24728 (based on H9-RET described on year 2015, Mitra et al) and XENP24729 (based on H9-RETR described on year 2015, Mitra et al). Further variants such as XENP24641, XENP24730, XENP24731 and XENP24732 are based on single substitutions or combinations of substitutions described in the prior art. Fig. 20 depicts the sequence.

affinity screening of MonovIL-2-Fc fusions

The affinity of the above-described monovIL-2-Fc fusion to various IL-2 receptors was determined using Octet, as generally described in example 2, in particular to determine affinity to IL-2R α, CD25(IL-2R α) -Fc fusion (R)&D systems Co Ltd (R)&D Systems), Minneapolis, Minn.Y.) was loaded onto the AR2G biosensor and immersed into various concentrations of IL-2-Fc fusion to determine affinity for IL-2R β and IL-2R β T, a bivalent CD122(IL-2R β) -Fc-His fusion or heterodimer CD 122: CD132(IL-2R β γ) -Fc-His fusion was loaded onto the HIS1K biosensor and immersed into various concentrations of IL-2-Fc fusion FIG. 21 depicts the resulting dissociation constants (K-S) (K-2R β γ) -D) Association rate (k)a) And dissociation rate (k)d)。

b. Induction of STAT5 phosphorylation by monovIL-2-Fc fusion

Upon binding of cytokines to their receptors, receptor-associated Janus kinases (JAKs) phosphorylate STAT proteins that are then transported into the nucleus to regulate further downstream processes. Thus, phosphorylation of STAT proteins (specifically, STAT5, which comprises STAT5a and STAT5b) is one of the earliest signaling events triggered by IL-2 binding to high-or intermediate-affinity IL-2 receptors (Lin and Leonard (2000); Wuest et al (2008)). Thus, the above-described induction of monovIL-2-Fc fusion as CD8 was investigated+T cells and CD4+STAT5 phosphorylation ability in various cell types, T cells and tregs.

Fresh PBMCs were incubated with the indicated IL-2-Fc test article at the indicated concentrations for 15 minutes. After incubation, pairs with anti-CD 3-BV510(UCHT1), anti-CD 4-BV605(RPA-T4) and anti-CD 8-Alexa700(SK1) at room temperaturePBMC staining, lasting 30-45 minutes. The cells were washed and incubated with 90% methanol pre-cooled (-20 ℃) for 20-60 minutes. After methanol incubation, the cells were washed again and stained with anti-CD 25-BV421(M-A251), anti-CD 45RA-PE (HI100), anti-FOXP 3-Alexa488(259D) and anti-pSTAT 5-Alexa647(pY687) to label various cell populations and STAT5 phosphorylation. FIG. 22 shows a graph depicting induced CD8+T cell (CD 3)+CD8+CD25-)、CD4+T cell (CD 3)+CD4+CD25-) And Treg (CD 3)+CD4+CD25+FOXP3+) Data for phosphorylation of STAT5 on. Notably, the IL-2-Fc fusions XENP24638 and XENP24642 are potent activators of Tregs (as indicated by STAT5 phosphorylation), among which CD8 is targeted+T cells and CD4+Activation of T cells was minimal, consistent with the reported activity of the IL-2 variants that make up the IL-2-Fc fusion.

3. Studies of prior art IL-2 variants engineered as bivIL-2-Fc fusions

To investigate the robustness and efficacy of the bivIL-2-Fc fusion format, a prior art IL-2 variant of this format (described in WO 1999/060128 published 25.11.1999) and a control IL-2 (with C125S and T3A substitutions) were generated, the sequences of which are depicted in FIG. 23.

a. Induction of STAT5 phosphorylation by bivIL-2-Fc fusion

Fresh PBMCs were incubated with the indicated IL-2-Fc test article at the indicated concentrations for 15 minutes. After incubation PBMCs were stained with anti-CD 3-BUV395(UCHT1), anti-CD 4-BV605(RPA-T4) and anti-CD 8-Alexa700(SK1) at room temperature for 30-45 minutes. The cells were washed and incubated with 90% methanol pre-cooled (-20 ℃) for 20-60 minutes. After methanol incubation, the cells were washed again and stained with anti-CD 25-BV510(M-A251), anti-CD 45RA-PE (HI100), anti-FOXP 3-Alexa488(259D) and anti-pSTAT 5-Alexa647(pY694) to label various cell populations and STAT5 phosphorylation. Delineation of induced CD8 is shown in FIG. 24+T cell, CD4+T cells and TrSTAT5 phosphorylation on eg.

4. Studies of prior art IL-2 variants engineered as IL-2-Fc fusions with domain linkers

To investigate the role of including a linker between IL-2 and the Fc region, prior art IL-2 variants (as described in WO 1999/060128 published on 25/11 1999 and WO 2012/107417 published on 16/8/2012) were generated as monovIL-2-Fc fusions or bivIL-2-Fc fusions with Gly-Ser linkers. FIG. 25 depicts the sequences of these IL-2-Fc fusions.

a. Induction of STAT5 phosphorylation by IL-2-Fc fusions with Domain linkers

Fresh PBMCs were incubated with the indicated IL-2-Fc test article at the indicated concentrations for 15 minutes. After incubation PBMCs were stained with anti-CD 3-BUV395(UCHT1), anti-CD 4-BV605(RPA-T4) and anti-CD 8-Alexa700(SK1) at room temperature for 30-45 minutes. The cells were washed and incubated with 90% methanol pre-cooled (-20 ℃) for 20-60 minutes. After methanol incubation, the cells were washed again and stained with anti-CD 25-BV510(M-A251), anti-CD 45RA-PE (HI100), anti-FOXP 3-Alexa488(259D) and anti-pSTAT 5-Alexa647(pY694) to label various cell populations and STAT5 phosphorylation. Delineation of induced CD8 is shown in FIG. 26+T cell, CD4+Data for STAT5 phosphorylation on T cells and tregs.

D. Example 4: variant IL-2-Fc fusions with increased affinity for CD25 and decreased affinity for CD122

As discussed in example 2, increasing the affinity of IL-2 for IL-2 ra can further skew binding, favoring the IL-2R α β T complex on tregs, while decreasing the affinity of IL-2 for IL-2R β, yc, or IL-2R β γ can skew binding away from CD 25-negative T cells and NK cells. Here, in the context of IL-2-Fc fusions, substitutions that increase IL-2 ra binding are combined with substitutions that decrease IL-2R β binding in order to enhance Treg selectivity.

A plasmid encoding IL-2 was constructed by standard gene synthesis and then subcloned into the pTT5 expression vector containing the Fc fusion partner (e.g., constant regions as depicted in fig. 6). IL-2 contains C125S substitutions for improved expression and T3A substitutions for removal of O-glycosylation sites. Selected substitutions as described in example 2 were introduced by standard mutagenesis techniques. Proteins were produced by transient transfection in HEK293E cells and were purified by a two-step purification process including protein a chromatography and anion exchange chromatography. Depicted in FIG. 27 are sequences of illustrative IL-2-Fc fusions engineered to increase CD25 affinity and/or decrease CD122 affinity.

1. Affinity screening of variant IL-2-Fc fusions engineered to increase CD25 affinity and decrease CD122 affinity

The affinity of the variant IL-2-Fc fusions described above for various IL-2 receptors was determined using Octet, as generally described in example 3B (a). particularly for determining affinity for IL-2R α, a CD25(IL-2R α) -Fc fusion (R)&D systems, Minneapolis, Minn.Y.) was loaded onto the AR2G biosensor and immersed into various concentrations of IL-2-Fc fusion to determine affinity for IL-2R β and IL-2R β γ, a bivalent CD122(IL-2R β) -Fc-His fusion or heterodimer CD 122: CD132(IL-2R β γ) -Fc-His fusion was loaded onto the HIS1K biosensor and immersed into various concentrations of IL-2-Fc fusion FIG. 33 depicts the resulting dissociation constants (K.sub.k.sub.3) andD) Association rate (k)a) And dissociation rate (k)d)。

2. STAT5 phosphorylation by variant IL-2-Fc fusions engineered to increase CD25 affinity and decrease CD122 affinity on various cell populations

Fresh PBMCs were incubated with the indicated IL-2-Fc test article at the indicated concentrations for 15 minutes. After incubation, PBMCs were stained with anti-CD 3-BV396(UCHT1), anti-CD 4-BV605(RPA-T4) and anti-CD 8-Alexa700(SK1) at room temperature for 30-45 minutes. The cells were washed and incubated with 90% methanol pre-cooled (-20 ℃) for 20-60 minutes. After methanol incubation, the cells were washed again and stained with anti-CD 25-BV421(M-A251), anti-CD 45RA-PE (HI100), anti-FOXP 3-Alexa488(259D) and anti-pSTAT 5-Alexa647(pY687) to label various cell populations and STAT5 phosphorylation. Data depicting the induction of STAT5 phosphorylation on various cell populations are depicted in fig. 28-29.

The data show that many of the illustrative variants were of tregs on CD 25-negative T cells (CD 8) compared to the control XENP24635 (IL-2-Fc with only C125S) and recombinant human IL-2(rhIL-2)+And CD4+) The most potent activator of STAT5 phosphorylation induction.

E. Example 5: engineering additional variant IL-2-Fc fusions

Additional IL-2-Fc fusions were engineered and produced as described in example 2, incorporating features including valency, domain linker, pH switch, and Treg selectivity as described in the previous examples. An illustrative sequence is depicted in fig. 30. In addition, Fc-IL-2(V91K/C125A) fusions engineered to increase the ratio of Tregs to non-regulatory T cells as described in WO 2014/153111 were generated as a comparator (referred to herein as XENP 27193; the sequence of which is depicted in FIG. 34).

1. Induction of STAT5 phosphorylation by additional monovalent IL-2-Fc fusions

Fresh PBMCs were incubated with the indicated IL-2-Fc test article at the indicated concentrations for 15 minutes at 37 ℃. After incubation, PBMCs were first stained with anti-CD 3-BUV395(UCHT1), anti-CD 4-BV605(RPA-T4), anti-CD 8-AF700(SK1) and anti-CD 56-PE antibodies. After the first staining, the cells were permeabilized using percix EXPOSE (beckmann coulter, indianapolis, indiana). After permeabilization, cells were stained with anti-CD 25-BV421(M-A251), anti-CD 45RA-BV510(HI100), anti-FoxP 3-AF488(259D) and anti-pSTAT 5-AF647(47/Stat5(pY694)) antibodies. After the second staining, cells were analyzed by flow cytometry to study STAT5 phosphorylation on various lymphocyte populations. Data depicting pSTAT5MFI on various lymphocyte populations, indicative of signaling via the IL-2 receptor by IL-2-Fc fusions, are depicted in fig. 35.

The data show that each of the variants induced STAT5 phosphorylation on tregs. Notably, variant IL-2-Fc fusions were compared to CD4, compared to both recombinant IL-2 and WT monovalent IL-2-Fc fusions (XENP24635)+Memory T cell (CD45RA-), CD8+Memory T cells (CD45RA-), NK cells and gamma T cells preferentially induce tregs. In contrast, the Treg selectivity of the prior art variant Fc-IL-2 fusion XENP27193 was relatively low.

2. Bivalent IL-2-Fc fusions are more potent than monovalent counterparts

The induction of STAT5 phosphorylation by various IL-2-Fc test articles was investigated, as described in example 5A. The depiction of Tregs and CD4 is depicted in FIGS. 36-42+Data for pSTAT5MFI on memory T cells (CD45RA-), which indicate signaling via the IL-2 receptor by IL-2-Fc fusion.

The data show that for each IL-2 variant, the bivalent IL-2-Fc version was more effective in inducing STAT5 phosphorylation on tregs than the corresponding monovalent IL-2-Fc version. Notably, engineering the domain linker between the IL-2 component and the Fc component (e.g., in XENP27002, XENP27003, XENP27004, XENP27005, XENP27006, and XENP27007) further improves the efficacy of the bivalent IL-2-Fc fusion. Notably, compared to other lymphocyte populations, such as CD4+CD45RA-T cells, each of the bivalent IL-2-Fc fusion constructs (with and without a linker) retained selectivity for Tregs.

F. Example 6: maximizing exposure of IL-2-Fc fusions

1. Incorporation of Xtend Fc

IL-2-Fc fusions as described above were engineered with Xtend Fc (M428L/N434S) with enhanced binding to FcRn to further advance FcRn-mediated recirculation of the fusion and subsequently extend circulatory half-life. The sequences of illustrative bivalent IL-2-Fc fusions with Xtend Fc are depicted in FIG. 43, and the sequences of illustrative monovalent IL-2-Fc fusions with Xtend Fc are depicted in FIG. 44.

2. Selection of IL-2-Fc fusions with a balance of Treg selectivity and potency

It is also concluded that IL-2-Fc fusions with lower potency will reduce antigen silencing and thus increase circulating half-life. Given that the data in example 5B indicate that bivalent IL-2-Fc fusions and IL-2-Fc fusions with domain linkers have enhanced potency, monovalent IL-2-Fc fusions lacking domain linkers are of particular interest. Thus, to identify IL-2-Fc fusions with the best balance between selectivity and potency, the in vitro potency (as indicated by induction of STAT5 phosphorylation on various lymphocyte populations) of monovalent IL-2 fusions (XENP26105 and XENP26109 including the D20N/T37R variant and the D20N/N71K variant, respectively) with XENP24635 (monovalent IL-2-Fc fusions with the C125S mutation) and XENP25908 with XENP27193 (which is a comparator IL-2-Fc fusion indicated for treatment of autoimmune diseases) was compared in a STAT5 phosphorylation assay, the data of which are depicted in fig. 45.

Notably, both XENP26105 and XENP26109 were less potent than XENP24635 and XENP27193 (EC50 at 1nM and 5nM vs. 0.02nM and 0.01nM, respectively), but were able to achieve similar levels of activity on tregs at higher doses while maintaining selectivity for tregs. Although the potency of XENP26105 was comparable to XENP25908 (1 nM versus 0.7nM for EC50, respectively), the data showed that XENP26105 and XENP26109 were able to achieve much higher levels of activity on tregs than XENP 25908. The observed reduction in potency and selectivity of XENP26105 and XENP26109 indicates that it would be useful for selective and sustained Treg expansion in a clinical setting. Thus, the potential of the Xtend Fc analogs XENP27563 and XENP27564 of XENP26105 and XENP26109 were further investigated.

G. Example 7: in vitro characterization of XENP27563 and XENP27564

1. Treg cultures treated with CD 25-selective IL-2-Fc fusions showed higher CD25 expression

The proliferation of rapamycin-promoted CD4+ CD25+ FOXP3+ Tregs in vitro has been previously reported, and the resulting expanded Treg inhibits CD4+ and CD8+ T cell proliferation (see, e.g., Battaglia et al, (2006), "Rapamycin promotes the expansion of functional CD4+ CD25+ FOXP3+ regulatory T cells in both healthy subjects and type 1diabetic patients (rapamycins expression of functional CD4+ CD25+ FOXP3+ regulatory T cells of boundary fatty Subjects and type 1 regulatory hosts)", "journal of immunology (JImmunol) 177(12) 8338. 6347-.

Using EasySepTMHuman CD4+ T cell enrichment kit (stem cell technologies, wingowski, canada) enriched CD4+ T cells from human PBMCs by negative selection. Using DynabeadsTMHuman Treg bulking agents (Seimer Feishell science, Waltherm, Mass.) expanded Tregs in RPMI1640+ 10% fetal bovine serum + 0.1. mu.g/ml rapamycin +500U/ml IL-2 for 1-4 days. Tregs were transferred to T75 flasks coated with 0.5. mu.g/ml anti-CD 3(OKT3, Biolegend, san Diego, Calif.) and cultured with RPMI1640+ 10% fetal bovine serum + 0.1. mu.g/ml rapamycin +100U/ml IL-2+ 0.5. mu.g/ml anti-CD 28 mAb. Experiments were performed at least 8 days after the initial enrichment of CD4+ T cells from PBMCs. Such enriched and cultured tregs are referred to hereinafter as rapamycin tregs.

Rapamycin tregs were further cultured with 0.5 μ g/ml plate-bound anti-CD 3(OKT3) in RPMI1640 medium containing 10% FBS, 0.5 μ g/ml anti-CD 28mAb, 100ng/ml rapamycin, and either 10ng/ml recombinant IL-2 or 10 μ g/ml XENP27564 (IL-2-Fc fusion with IL-2(D20N/N71K/C125S) variant). 14 days after culture, anti-CD 25-FITC (M-A251), anti-FoxP 3-PE (PCH101), anti-CTLA-4-PE-Dazzle 594(L3D10), anti-PD-1-BB 700(EH12.1), anti-GITR-PE-Cy 7(108-17), anti-Ki 67-Alexa647, anti-ICOS-Alexa 700(C398.4a), anti-TIG-BV 421 (A151G), anti-LAG-3 (11C3C65), anti-CCR 4-BV605(L291H4), anti-CD 8-BV650(SK1), anti-CD 39-BV711 (A8), anti-3-BV 785(F38-2E 35396 (SK 27), anti-CD 29-BUV 37496 (UCHT 84), anti-CD 4642-HI RA (FIT RA) and anti-BIOMM RA (TIM) TIM 100NIR (APC-Cy7) stained tregs and analyzed using flow cytometry, the data of which are depicted in fig. 46-47. The data show that tregs treated with CD25 selective XENP27564 showed higher CD25 expression. Further as depicted in FIG. 48, XENP27564 shows the effector Treg (CD45RA-FoxP 3)mid-high) Greater amplification of the population.

2.7B: treg cultures treated with CD 25-selective IL-2-Fc fusions showed higher suppressive function.

On day 15, rapamycin tregs further cultured with IL-2 or XENP27564 as described in example 7A were further evaluated for their suppressive function. 1 × 105 CFSE-labeled PBMCs were incubated with the indicated number of Tag-it Violet-labeled Tregs for 4 days, and the amplification of CD8+ and CD4+ responders was determined by CFSE dilutions. The lymphocyte population was stained as follows: anti-CD 8-PerCp-By5.5(SKI), anti-CD 3-PE-Cy7(OKT3), anti-CD 127-APC (A019D5), anti-CD 25-APC-Fire750(M-A251), anti-CD 45RO-Alexa700(UCHL1), anti-CD 16-BV605(3G6), anti-CD 56-BV605(HCD56), anti-CD 45RA-BV785(HI100), anti-CD 4-BUV395(SK3), and ZombieAqua (BV 510). Notably, as the data depicted in figure 49 indicate that tregs expanded by Treg-selective IL-2-Fc fusion can have enhanced suppressive function.

In addition, the expression of CD25 and CD127 on tregs in the inhibition assay was studied, the data of which are depicted in fig. 50-51. Consistent with the data above, tregs expanded with XENP27564 showed higher levels of CD25 expression. Notably, tregs expanded by XENP27564 showed lower CD127expression, a marker previously found to be inversely related to the suppressive function of tregs, (Liu et al, (2006), "CD 127expression is inversely related to the suppressive function of FoxP3and human CD4+ Treg cells (CD127expression vectors with FoxP3and suppression function human CD4+ T reg cells)," journal of experimental medicine (J Exp Med.) (203 (7): 1701) 1711). This may explain the enhanced suppressive function observed for tregs expanded by XENP 27564.

3. After activation with anti-CD 3, CD25 selective IL-2-Fc fusions showed Treg selectivity and suppression of other lymphocyte populations.

In the inhibition assay, CFSE labeled PBMCs and Tag-itViolet labeled rapamycin tregs were incubated with indicated test items at the indicated concentrations for 4 days with 100ng/ml plate-bound anti-CD 3(OKT 3). The lymphocyte population was stained as follows: anti-CD 8-PerCp-Cy5.5(SK1), anti-CD 3-PE-Cy7(OKT3), anti-CD 25-APC-Cy7(M-A251), anti-CD 45RO-Alexa700(UCHL1), anti-CD 16-BV605(3G6), anti-CD 56-BV605(HCD56), anti-CD 45RA-BV785(HI100), anti-CD 4-BUV395(SK3), and Zombie Aqua (BV 510). The proliferation of various lymphocyte populations (as determined by CFSE or Tag-it Violet dilution; Zombie dye to exclude dead cells) following treatment with test article is depicted in figure 52. The data show that the CD25 selective IL-2-Fc fusions XENP27563 and XENP27564 selectively amplify Tregs compared to XENP24635 (IL-2-Fc with only C125S), recombinant IL-2, and recombinant IL-15. Indeed, the data depicted in figures 53 and 54 show that the efficacy of a CD 25-selective IL-2-Fc fusion in inducing proliferation of CD8+ T cells and CD4+ T cells is significantly reduced compared to XENP24635, recombinant IL-2, and recombinant IL-15.

In the proliferation assay, PBMCs were incubated with indicated concentrations of the indicated test article with indicated concentrations of plate-bound anti-CD 3mAb (OKT 3). The lymphocyte population was stained as follows: anti-FoxP 3-PE (PCH101), anti-CD 8-PerCP-Cy5.5(SK1), anti-CD 3-PE-Cy7(OKT3), anti-Ki 67-APC, anti-CD 45RO-Alexa700(UCHL1), anti-CD 25-BV421(M-A251), anti-CD 16-BV605(3G6), anti-CD 56-BV605(HCD56), anti-CD 45RA-BV785(H1100), anti-CD 4-BUV396(SK3), and Zombie (APC-Cy 7). Proliferation of various lymphocyte populations was determined based on the percentage of expressed proliferation marker Ki67, the data of which are depicted in fig. 55-65. Consistent with the data depicted above in terms of inhibition assays, data from proliferation assays as depicted in fig. 55-61 shows that XENP27563 and XENP27564 (IL-2-Fc fusions that are selectively engineered for CD25) are functionally impaired in inducing proliferation of CD8+ T cells, CD8+ CD45 RA-T cells, CD8+ CD45RA + T cells, CD4+ T cells, CD4+ CD45 RA-T cells, CD4+ CD45RA + T cells, NK cells; and the data depicted in fig. 63-65 show that XENP27563 and XENP27564 selectively expand tregs compared to other lymphocyte populations.

H. Example 8: the IL-2-Fc fusion promotes selective and sustained Treg expansion in cynomolgus monkeys.

To investigate the clinical potential of XENP27563 and XENP27564, their activity in cynomolgus monkeys was investigated. Prior to administration to animals, the activity of the IL-2-Fc fusions on cynomolgus monkey lymphocytes was confirmed. Two measurements were performed, as described below.

Human PBMCs were stimulated with various concentrations of XENP27563 or XENP27564 at 37 ℃ for 15 minutes at the time of the first assay. PBMCs were then stained with anti-CD 3-BUV395(UCHT1), anti-CD 4-BV605(RPA-T4), anti-CD 8-BV711(RPA-T8), anti-CD 25-BV421(M-A251), anti-CD 45RA-BV510(HI100), and anti-CD 56-PE. Cells were then permeabilized using a percix EXPOSE (beckman coulter, indianapolis, indiana). Following permeabilization, cells were stained with anti-CD 16-AF700(DJ130C), anti-FoxP 3-AF488(259D), and pSTAT5(pY694) and analyzed by flow cytometry for STAT5 phosphorylation on various lymphocyte populations, the data of which are depicted in fig. 78.

At the second assay, cynomolgus PBMCs were stimulated with various concentrations of XENP27563 or XENP27564 for 15 minutes at 37 ℃. PBMCs were then stained with anti-CD 3-BV421(SP34), anti-CD 4-BV785(OKT4), anti-CD 8-BUV395(RPA-T8), anti-CD 25-BV510(M-A251), anti-CD 45RA-APC/H7(HI100), and anti-CD 56-PE. Cells were then permeabilized using percixexpose (beckman coulter, indianapolis, indiana). Following permeabilization, cells were stained with anti-CD 16-AF700(DJ130C), anti-FoxP 3-AF488(259D), and pSTAT5(pY694) and analyzed by flow cytometry for STAT5 phosphorylation on various lymphocyte populations, the data of which are depicted in fig. 79.

The data show that XENP27563 and XENP27564 are also selective and potent for human and cynomolgus monkey tregs.

1.8A: comparison of PD and PK of XENP27563 and XENP27564

In a first study conducted on cynomolgus monkeys, animals (n ═ 2) were dosed intravenously with either 3X doses of XENP27563 or 3X doses of XENP27564 on days 0 and 15. Blood was collected over time to study the expansion of various lymphocyte populations and to study the serum concentration of the test article. Serum albumin concentrations and blood pressure of animals were also measured to study the tolerability of test items.

Fig. 66 depicts the expansion of various lymphocyte populations over time. The data show that both test items were able to expand tregs while maintaining near baseline levels of CD8+ CD45 RA-T cells, CD4+ CD45 RA-T cells, and CD16+ NK cells. In addition, the data show that both test items promoted similar pharmacological effects in monkeys. Fig. 67 depicts serum concentrations of test items. The data show that both test items exhibit similar pharmacokinetic profiles with a half-life of XENP27564 of 1.5 days. Taken together, this demonstrates that IL-2-Fc fusions engineered for CD25 selectivity and reduced potency provide selective and sustained Treg expansion.

Vascular leak syndrome is a hallmark toxic side effect associated with treatment with cytokines (e.g., IL-2). One indication of vascular leakage is hypoalbuminemia, a decrease in serum albumin concentration. Thus, changes in serum albumin concentration in animals were studied, and the data are depicted in fig. 68. Notably, in one animal dosed with XENP27563, a persistent albumin drop was detected after both the first and second dosing. In one animal given XENP27564, a decrease in albumin was detected after the second dose, but the concentration quickly returned to baseline levels. This data indicates that XENP27564 with lower potency than XENP27563 may advance superior tolerability and therapeutic index.

Another indicator of vascular leakage is a sharp drop in blood pressure. Thus, the blood pressure of the animals on day 0, day 1, day 3, day 5, day 9, day 16, day 18, day 20, and day 24 was recorded, and the data is depicted in fig. 69. Notably, the first monkey administered XENP27563 exhibited a drop in blood pressure on day 1 (day 1 after the 1 st dose) and the second monkey administered XENP27563 exhibited a drop in blood pressure on day 16 (day 1 after the 2 nd dose), whereas the blood pressure observed in monkeys administered XENP27564 was stable over all days (telemetry data from monkeys 2 administered XENP27564 was compromised). This further confirms that a less potent IL-2-Fc fusion could advance the view of superior tolerability and therapeutic index.

Finally, eosinophil and basophil counts were also studied as additional indicators of tolerance, the data of which are depicted in fig. 76. In summary, the data show repeated dosing of XENP 27564.

2.8B: XENP27564 dose escalation study

In a first study on cynomolgus monkeys, animals were dosed intravenously (n ═ 3) with 1X, 3X, or 10X doses of XENP 27564. Blood was collected over time to study the expansion of various lymphocyte populations, as well as the concentration of serum albumin and C-reactive protein (CRP).

The expansion of various lymphocyte populations is depicted in FIGS. 70-71. Consistent with data from the first cynomolgus monkey study, XENP27564 provided selective and sustained Treg expansion. In addition, the data show that 1X and 3X doses advanced similar pharmacological effects in monkeys (as indicated by Treg expansion). Notably, higher doses (10X dose) of XENP27564 did not enhance the pharmacokinetic effect. Consistent with the data depicted above, figure 75 shows the pharmacokinetic effects in cynomolgus monkeys for several days at all doses tested for XENP 27564.

As in the first study, albumin decline was studied as an indicator of vascular leakage and tolerance, the data of which are depicted in fig. 72. In addition, serum concentrations of acute phase protein CRP associated with inflammation as another indicator of tolerance were studied, and the data thereof are depicted in fig. 73. Sodium concentration, chloride concentration, eosinophil count and basophil count (data of which are depicted in fig. 74) were also investigated as additional indicators of tolerance. Notably, the data show that higher doses of XENP27564 increased toxicity, as indicated by both a decrease in albumin and an increase in serum CRP concentration (as well as sodium concentration, chloride concentration, eosinophil count, and basophil count), while still making the lower doses of the significant increase in tregs more tolerable.

I. Example 9: IL-2-Fc fusion is also selective for Tregs in mice.

Splenocytes from B6 mice were incubated with IL-2-Fc fusion and recombinant human IL-2 for 15 minutes. After incubation, cells were stained with anti-CD 4-PE (GK1.5), anti-CD 25-BV605(PC61) and anti-CD 44-BV510(IM 7). Cells were then permeabilized using a percix EXPOSE (beckman coulter, indianapolis, indiana). After permeabilization, cells were stained with anti-CD 3-AF700(2C11), anti-CD 8-AF488(53-6.7), anti-FoxP 3-eF450(FJK-16S), and anti-pSTAT 5(pY694) and analyzed by flow cytometry for STAT5 phosphorylation on various lymphocyte populations, the data of which are depicted in FIG. 77. The data indicate that the engineered IL-2-Fc fusion is also selective and potent for tregs in mice, making it suitable for the study of autoimmune diseases using preclinical mouse models.

Sequence listing

<110> Xencor Corp (Xencor, Inc.)

<120> engineered IL-2 Fc fusions

<130>067461-5217-WO

<140> filed with this application

<141>2018-11-27

<150>US 62/607,850

<151>2017-12-19

<150>US 62/675,070

<151>2018-05-22

<160>308

<170> PatentIn version 3.5

<210>1

<211>153

<212>PRT

<213> Artificial sequence

<220>

<223> human IL-2 sequence

<400>1

Met Tyr Arg Met Gln Leu Leu Ser Cys Ile Ala Leu Ser Leu Ala Leu

1 5 10 15

Val Thr Asn Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu

20 25 30

Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile

35 40 45

Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe

50 55 60

Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu

65 70 75 80

Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys

85 90 95

Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile

100 105 110

Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala

115 120 125

Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe

130 135 140

Cys Gln Ser Ile Ile Ser Thr Leu Thr

145 150

<210>2

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223> mature forms of human IL-2

<400>2

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Cys Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>3

<211>272

<212>PRT

<213> Artificial sequence

<220>

<223> human IL-2R (CD 25) sequence

<400>3

Met Asp Ser Tyr Leu Leu Met Trp Gly Leu Leu Thr Phe Ile Met Val

1 5 10 15

Pro Gly Cys Gln Ala Glu Leu Cys Asp Asp Asp Pro Pro Glu Ile Pro

20 25 30

His Ala Thr Phe Lys Ala Met Ala Tyr Lys Glu Gly Thr Met Leu Asn

35 40 45

Cys Glu Cys Lys Arg Gly Phe Arg Arg IleLys Ser Gly Ser Leu Tyr

50 55 60

Met Leu Cys Thr Gly Asn Ser Ser His Ser Ser Trp Asp Asn Gln Cys

65 70 75 80

Gln Cys Thr Ser Ser Ala Thr Arg Asn Thr Thr Lys Gln Val Thr Pro

85 90 95

Gln Pro Glu Glu Gln Lys Glu Arg Lys Thr Thr Glu Met Gln Ser Pro

100 105 110

Met Gln Pro Val Asp Gln Ala Ser Leu Pro Gly His Cys Arg Glu Pro

115 120 125

Pro Pro Trp Glu Asn Glu Ala Thr Glu Arg Ile Tyr His Phe Val Val

130 135 140

Gly Gln Met Val Tyr Tyr Gln Cys Val Gln Gly Tyr Arg Ala Leu His

145 150 155 160

Arg Gly Pro Ala Glu Ser Val Cys Lys Met Thr His Gly Lys Thr Arg

165 170 175

Trp Thr Gln Pro Gln Leu Ile Cys Thr Gly Glu Met Glu Thr Ser Gln

180 185 190

Phe Pro Gly Glu Glu Lys Pro Gln Ala Ser Pro Glu Gly Arg Pro Glu

195 200 205

Ser Glu Thr Ser Cys Leu Val Thr Thr Thr Asp Phe GlnIle Gln Thr

210 215 220

Glu Met Ala Ala Thr Met Glu Thr Ser Ile Phe Thr Thr Glu Tyr Gln

225 230 235 240

Val Ala Val Ala Gly Cys Val Phe Leu Leu Ile Ser Val Leu Leu Leu

245 250 255

Ser Gly Leu Thr Trp Gln Arg Arg Gln Arg Lys Ser Arg Arg Thr Ile

260 265 270

<210>4

<211>219

<212>PRT

<213> Artificial sequence

<220>

<223> human IL-2R (CD 25), extracellular domain

<400>4

Glu Leu Cys Asp Asp Asp Pro Pro Glu Ile Pro His Ala Thr Phe Lys

1 5 10 15

Ala Met Ala Tyr Lys Glu Gly Thr Met Leu Asn Cys Glu Cys Lys Arg

20 25 30

Gly Phe Arg Arg Ile Lys Ser Gly Ser Leu Tyr Met Leu Cys Thr Gly

35 40 45

Asn Ser Ser His Ser Ser Trp Asp Asn Gln Cys Gln Cys Thr Ser Ser

50 55 60

Ala Thr Arg Asn Thr Thr Lys GlnVal Thr Pro Gln Pro Glu Glu Gln

65 70 75 80

Lys Glu Arg Lys Thr Thr Glu Met Gln Ser Pro Met Gln Pro Val Asp

85 90 95

Gln Ala Ser Leu Pro Gly His Cys Arg Glu Pro Pro Pro Trp Glu Asn

100 105 110

Glu Ala Thr Glu Arg Ile Tyr His Phe Val Val Gly Gln Met Val Tyr

115 120 125

Tyr Gln Cys Val Gln Gly Tyr Arg Ala Leu His Arg Gly Pro Ala Glu

130 135 140

Ser Val Cys Lys Met Thr His Gly Lys Thr Arg Trp Thr Gln Pro Gln

145 150 155 160

Leu Ile Cys Thr Gly Glu Met Glu Thr Ser Gln Phe Pro Gly Glu Glu

165 170 175

Lys Pro Gln Ala Ser Pro Glu Gly Arg Pro Glu Ser Glu Thr Ser Cys

180 185 190

Leu Val Thr Thr Thr Asp Phe Gln Ile Gln Thr Glu Met Ala Ala Thr

195 200 205

Met Glu Thr Ser Ile Phe Thr Thr Glu Tyr Gln

210 215

<210>5

<211>551

<212>PRT

<213> Artificial sequence

<220>

<223> human IL-2R (CD 122) sequence

<400>5

Met Ala Ala Pro Ala Leu Ser Trp Arg Leu Pro Leu Leu Ile Leu Leu

1 5 10 15

Leu Pro Leu Ala Thr Ser Trp Ala Ser Ala Ala Val Asn Gly Thr Ser

20 25 30

Gln Phe Thr Cys Phe Tyr Asn Ser Arg Ala Asn Ile Ser Cys Val Trp

35 40 45

Ser Gln Asp Gly Ala Leu Gln Asp Thr Ser Cys Gln Val His Ala Trp

50 55 60

Pro Asp Arg Arg Arg Trp Asn Gln Thr Cys Glu Leu Leu Pro Val Ser

65 70 75 80

Gln Ala Ser Trp Ala Cys Asn Leu Ile Leu Gly Ala Pro Asp Ser Gln

85 90 95

Lys Leu Thr Thr Val Asp Ile Val Thr Leu Arg Val Leu Cys Arg Glu

100 105 110

Gly Val Arg Trp Arg Val Met Ala Ile Gln Asp Phe Lys Pro Phe Glu

115 120 125

Asn Leu Arg Leu Met Ala Pro Ile Ser Leu Gln Val Val His Val Glu

130 135 140

Thr His Arg Cys Asn Ile Ser Trp Glu Ile Ser Gln Ala Ser His Tyr

145 150 155 160

Phe Glu Arg His Leu Glu Phe Glu Ala Arg Thr Leu Ser Pro Gly His

165 170 175

Thr Trp Glu Glu Ala Pro Leu Leu Thr Leu Lys Gln Lys Gln Glu Trp

180 185 190

Ile Cys Leu Glu Thr Leu Thr Pro Asp Thr Gln Tyr Glu Phe Gln Val

195 200 205

Arg Val Lys Pro Leu Gln Gly Glu Phe Thr Thr Trp Ser Pro Trp Ser

210 215 220

Gln Pro Leu Ala Phe Arg Thr Lys Pro Ala Ala Leu Gly Lys Asp Thr

225 230 235 240

Ile Pro Trp Leu Gly His Leu Leu Val Gly Leu Ser Gly Ala Phe Gly

245 250 255

Phe Ile Ile Leu Val Tyr Leu Leu Ile Asn Cys Arg Asn Thr Gly Pro

260 265 270

Trp Leu Lys Lys Val Leu Lys Cys Asn Thr Pro Asp Pro Ser Lys Phe

275 280 285

Phe Ser Gln Leu Ser Ser Glu His Gly Gly Asp Val Gln Lys Trp Leu

290 295 300

Ser Ser Pro Phe Pro Ser Ser Ser Phe Ser Pro Gly Gly Leu Ala Pro

305 310 315 320

Glu Ile Ser Pro Leu Glu Val Leu Glu Arg Asp Lys Val Thr Gln Leu

325 330 335

Leu Leu Gln Gln Asp Lys Val Pro Glu Pro Ala Ser Leu Ser Ser Asn

340 345 350

His Ser Leu Thr Ser Cys Phe Thr Asn Gln Gly Tyr Phe Phe Phe His

355 360 365

Leu Pro Asp Ala Leu Glu Ile Glu Ala Cys Gln Val Tyr Phe Thr Tyr

370 375 380

Asp Pro Tyr Ser Glu Glu Asp Pro Asp Glu Gly Val Ala Gly Ala Pro

385 390 395 400

Thr Gly Ser Ser Pro Gln Pro Leu Gln Pro Leu Ser Gly Glu Asp Asp

405 410 415

Ala Tyr Cys Thr Phe Pro Ser Arg Asp Asp Leu Leu Leu Phe Ser Pro

420 425 430

Ser Leu Leu Gly Gly Pro Ser Pro Pro Ser Thr Ala Pro Gly Gly Ser

435 440 445

Gly Ala Gly Glu Glu Arg Met Pro Pro Ser Leu Gln Glu Arg Val Pro

450 455 460

Arg Asp Trp Asp Pro Gln Pro Leu Gly Pro Pro Thr Pro Gly Val Pro

465 470 475 480

Asp Leu Val Asp Phe Gln Pro Pro Pro Glu Leu Val Leu Arg Glu Ala

485 490 495

Gly Glu Glu Val Pro Asp Ala Gly Pro Arg Glu Gly Val Ser Phe Pro

500 505 510

Trp Ser Arg Pro Pro Gly Gln Gly Glu Phe Arg Ala Leu Asn Ala Arg

515 520 525

Leu Pro Leu Asn Thr Asp Ala Tyr Leu Ser Leu Gln Glu Leu Gln Gly

530 535 540

Gln Asp Pro Thr His Leu Val

545 550

<210>6

<211>214

<212>PRT

<213> Artificial sequence

<220>

<223> human IL-2R (CD 122), extracellular Domain

<400>6

Ala Val Asn Gly Thr Ser Gln Phe Thr Cys Phe Tyr Asn Ser Arg Ala

1 5 10 15

Asn Ile Ser Cys Val Trp Ser Gln Asp Gly Ala Leu Gln Asp Thr Ser

2025 30

Cys Gln Val His Ala Trp Pro Asp Arg Arg Arg Trp Asn Gln Thr Cys

35 40 45

Glu Leu Leu Pro Val Ser Gln Ala Ser Trp Ala Cys Asn Leu Ile Leu

50 55 60

Gly Ala Pro Asp Ser Gln Lys Leu Thr Thr Val Asp Ile Val Thr Leu

65 70 75 80

Arg Val Leu Cys Arg Glu Gly Val Arg Trp Arg Val Met Ala Ile Gln

85 90 95

Asp Phe Lys Pro Phe Glu Asn Leu Arg Leu Met Ala Pro Ile Ser Leu

100 105 110

Gln Val Val His Val Glu Thr His Arg Cys Asn Ile Ser Trp Glu Ile

115 120 125

Ser Gln Ala Ser His Tyr Phe Glu Arg His Leu Glu Phe Glu Ala Arg

130 135 140

Thr Leu Ser Pro Gly His Thr Trp Glu Glu Ala Pro Leu Leu Thr Leu

145 150 155 160

Lys Gln Lys Gln Glu Trp Ile Cys Leu Glu Thr Leu Thr Pro Asp Thr

165 170 175

Gln Tyr Glu Phe Gln Val Arg Val Lys Pro Leu Gln Gly Glu Phe Thr

180 185190

Thr Trp Ser Pro Trp Ser Gln Pro Leu Ala Phe Arg Thr Lys Pro Ala

195 200 205

Ala Leu Gly Lys Asp Thr

210

<210>7

<211>369

<212>PRT

<213> Artificial sequence

<220>

<223> human common gamma chain (CD 132) sequence

<400>7

Met Leu Lys Pro Ser Leu Pro Phe Thr Ser Leu Leu Phe Leu Gln Leu

1 5 10 15

Pro Leu Leu Gly Val Gly Leu Asn Thr Thr Ile Leu Thr Pro Asn Gly

20 25 30

Asn Glu Asp Thr Thr Ala Asp Phe Phe Leu Thr Thr Met Pro Thr Asp

35 40 45

Ser Leu Ser Val Ser Thr Leu Pro Leu Pro Glu Val Gln Cys Phe Val

50 55 60

Phe Asn Val Glu Tyr Met Asn Cys Thr Trp Asn Ser Ser Ser Glu Pro

65 70 75 80

Gln Pro Thr Asn Leu Thr Leu His Tyr Trp Tyr Lys Asn Ser Asp Asn

85 90 95

Asp Lys Val Gln Lys Cys Ser His Tyr Leu Phe Ser Glu Glu Ile Thr

100 105 110

Ser Gly Cys Gln Leu Gln Lys Lys Glu Ile His Leu Tyr Gln Thr Phe

115 120 125

Val Val Gln Leu Gln Asp Pro Arg Glu Pro Arg Arg Gln Ala Thr Gln

130 135 140

Met Leu Lys Leu Gln Asn Leu Val Ile Pro Trp Ala Pro Glu Asn Leu

145 150 155 160

Thr Leu His Lys Leu Ser Glu Ser Gln Leu Glu Leu Asn Trp Asn Asn

165 170 175

Arg Phe Leu Asn His Cys Leu Glu His Leu Val Gln Tyr Arg Thr Asp

180 185 190

Trp Asp His Ser Trp Thr Glu Gln Ser Val Asp Tyr Arg His Lys Phe

195 200 205

Ser Leu Pro Ser Val Asp Gly Gln Lys Arg Tyr Thr Phe Arg Val Arg

210 215 220

Ser Arg Phe Asn Pro Leu Cys Gly Ser Ala Gln His Trp Ser Glu Trp

225 230 235 240

Ser His Pro Ile His Trp Gly Ser Asn Thr Ser Lys Glu Asn Pro Phe

245 250 255

Leu Phe Ala Leu Glu Ala Val Val Ile Ser Val Gly Ser Met Gly Leu

260 265 270

Ile Ile Ser Leu Leu Cys Val Tyr Phe Trp Leu Glu Arg Thr Met Pro

275 280 285

Arg Ile Pro Thr Leu Lys Asn Leu Glu Asp Leu Val Thr Glu Tyr His

290 295 300

Gly Asn Phe Ser Ala Trp Ser Gly Val Ser Lys Gly Leu Ala Glu Ser

305 310 315 320

Leu Gln Pro Asp Tyr Ser Glu Arg Leu Cys Leu Val Ser Glu Ile Pro

325 330 335

Pro Lys Gly Gly Ala Leu Gly Glu Gly Pro Gly Ala Ser Pro Cys Asn

340 345 350

Gln His Ser Pro Tyr Trp Ala Pro Pro Cys Tyr Thr Leu Lys Pro Glu

355 360 365

Thr

<210>8

<211>240

<212>PRT

<213> Artificial sequence

<220>

<223> human shared gamma chain (CD 132), extracellular domain

<400>8

Leu Asn Thr Thr Ile Leu Thr Pro Asn Gly Asn Glu Asp Thr Thr Ala

1 5 1015

Asp Phe Phe Leu Thr Thr Met Pro Thr Asp Ser Leu Ser Val Ser Thr

20 25 30

Leu Pro Leu Pro Glu Val Gln Cys Phe Val Phe Asn Val Glu Tyr Met

35 40 45

Asn Cys Thr Trp Asn Ser Ser Ser Glu Pro Gln Pro Thr Asn Leu Thr

50 55 60

Leu His Tyr Trp Tyr Lys Asn Ser Asp Asn Asp Lys Val Gln Lys Cys

65 70 75 80

Ser His Tyr Leu Phe Ser Glu Glu Ile Thr Ser Gly Cys Gln Leu Gln

85 90 95

Lys Lys Glu Ile His Leu Tyr Gln Thr Phe Val Val Gln Leu Gln Asp

100 105 110

Pro Arg Glu Pro Arg Arg Gln Ala Thr Gln Met Leu Lys Leu Gln Asn

115 120 125

Leu Val Ile Pro Trp Ala Pro Glu Asn Leu Thr Leu His Lys Leu Ser

130 135 140

Glu Ser Gln Leu Glu Leu Asn Trp Asn Asn Arg Phe Leu Asn His Cys

145 150 155 160

Leu Glu His Leu Val Gln Tyr Arg Thr Asp Trp Asp His Ser Trp Thr

165 170 175

Glu Gln Ser Val Asp Tyr Arg His Lys Phe Ser Leu Pro Ser Val Asp

180 185 190

Gly Gln Lys Arg Tyr Thr Phe Arg Val Arg Ser Arg Phe Asn Pro Leu

195 200 205

Cys Gly Ser Ala Gln His Trp Ser Glu Trp Ser His Pro Ile His Trp

210 215 220

Gly Ser Asn Thr Ser Lys Glu Asn Pro Phe Leu Phe Ala Leu Glu Ala

225 230 235 240

<210>9

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>9

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>10

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>10

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala LysGly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>11

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>11

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 510 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>12

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>12

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>13

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>13

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>14

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>14

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Glu Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>15

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>15

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Lys Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225230

<210>16

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>16

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Glu

130 135 140

Asn Glu Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Glu Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>17

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>17

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Gln Leu Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>18

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>18

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

6570 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>19

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>19

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Ala Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>20

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>20

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro LysPro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Ala Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>21

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>21

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 7580

Ser Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>22

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer

<400>22

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Ser Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>23

<211>229

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>23

Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe

1 5 10 15

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr

20 25 30

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val

35 40 45

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val

50 55 60

Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser

65 70 75 80

Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu

85 90 95

Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser

100 105 110

Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro

115 120 125

Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Gln Met Thr Lys Asn Gln

130 135 140

Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala

145 150 155 160

Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr

165 170 175

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu

180 185 190

Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser

195 200 205

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser

210 215 220

Leu Ser Leu Gly Lys

225

<210>24

<211>229

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>24

Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe

1 5 10 15

Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr

20 25 30

Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val

35 40 45

Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val

50 55 60

Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Phe Asn Ser

65 70 75 80

Thr Tyr Arg Val ValSer Val Leu Thr Val Leu His Gln Asp Trp Leu

85 90 95

Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser

100 105 110

Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro

115 120 125

Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln

130 135 140

Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp Ile Ala

145 150 155 160

Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr

165 170 175

Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu

180 185 190

Thr Val Asp Lys Ser Arg Trp Glu Glu Gly Asp Val Phe Ser Cys Ser

195 200 205

Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser

210 215 220

Leu Ser Leu Gly Lys

225

<210>25

<211>228

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>25

Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val

1 5 10 15

Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu

20 25 30

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser

35 40 45

His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu

50 55 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr

65 70 75 80

Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn

85 90 95

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro

100 105 110

Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln

115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn Gln Val

130 135140

Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val

145 150 155 160

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro

165 170 175

Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr

180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val

195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu

210 215 220

Ser Pro Gly Lys

225

<210>26

<211>228

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>26

Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val

1 5 10 15

Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu

20 25 30

Met Ile Ser Arg Thr Pro Glu ValThr Cys Val Val Val Asp Val Ser

35 40 45

His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu

50 55 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Phe Asn Ser Thr

65 70 75 80

Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn

85 90 95

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro

100 105 110

Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln

115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val

130 135 140

Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp Ile Ala Val

145 150 155 160

Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro

165 170 175

Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr

180 185 190

Val Asp Lys Ser Arg Trp Glu Gln Gly Asp ValPhe Ser Cys Ser Val

195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu

210 215 220

Ser Pro Gly Lys

225

<210>27

<211>228

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>27

Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val

1 5 10 15

Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu

20 25 30

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Lys

35 40 45

His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu

50 55 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr

65 70 75 80

Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn

85 9095

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro

100 105 110

Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln

115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn Gln Val

130 135 140

Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val

145 150 155 160

Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro

165 170 175

Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr

180 185 190

Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val

195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu

210 215 220

Ser Pro Gly Lys

225

<210>28

<211>228

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>28

Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val

1 5 10 15

Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu

20 25 30

Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Lys

35 40 45

His Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu

50 55 60

Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Phe Asn Ser Thr

65 70 75 80

Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn

85 90 95

Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro

100 105 110

Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln

115 120 125

Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val

130 135 140

Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp Ile Ala Val

145 150 155 160

Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro

165 170 175

Pro Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr

180 185 190

Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser Cys Ser Val

195 200 205

Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu

210 215 220

Ser Pro Gly Lys

225

<210>29

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>29

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>30

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>30

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>31

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>31

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>32

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>32

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His GluAsp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>33

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 1

<400>33

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>34

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> IL-2-Fc monomer 2

<400>34

Glu Arg Lys Ser Ser Asp Lys Thr His Thr Cys Pro Arg Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Lys Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys

130 135 140

Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>35

<211>5

<212>PRT

<213> Artificial sequence

<220>

<223> linker

<400>35

Gly Gly Gly Gly Ser

1 5

<210>36

<211>10

<212>PRT

<213> Artificial sequence

<220>

<223> linker

<400>36

Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser

1 5 10

<210>37

<211>15

<212>PRT

<213> Artificial sequence

<220>

<223> linker

<400>37

Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser

1 5 10 15

<210>38

<211>20

<212>PRT

<213> Artificial sequence

<220>

<223> linker

<400>38

Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly

1 5 10 15

Gly Gly Gly Ser

20

<210>39

<211>5

<212>PRT

<213> Artificial sequence

<220>

<223> linker

<400>39

Gly Gly Gly Glu Ser

1 5

<210>40

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014135 hIL2_0.1

<400>40

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>41

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014136 hIL2_0.9

<400>41

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ala Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>42

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014137 hIL2_0.10

<400>42

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asp Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>43

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014138 hIL2_0.11

<400>43

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Glu Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>44

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014139 hIL2_0.12

<400>44

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Phe Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>45

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014140 hIL2_0.13

<400>45

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gly Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>46

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014141 hIL2_0.14

<400>46

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr His Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>47

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014142 hIL2_0.15

<400>47

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>48

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014143 hIL2_0.16

<400>48

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Lys Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 5560

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>49

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014144 hIL2_0.17

<400>49

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Leu Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys HisLeu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>50

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014145 hIL2_0.18

<400>50

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Met Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>51

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014146 hIL2_0.19

<400>51

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>52

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014147 hIL2_0.20

<400>52

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Pro Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>53

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014148 hIL2_0.21

<400>53

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 1015

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>54

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014149 hIL2_0.22

<400>54

Ala Pro Thr Ser Ser Ser ThrLys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ser Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>55

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014150 hIL2_0.23

<400>55

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Thr Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>56

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014151 hIL2_0.24

<400>56

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Val Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>57

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014152 hIL2_0.25

<400>57

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Trp Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>58

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014153 hIL2_0.26

<400>58

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Tyr Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>59

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014154 hIL2_0.27

<400>59

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Ala Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>60

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014155 hIL2_0.28

<400>60

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Asp Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>61

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014156 hIL2_0.29

<400>61

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Glu Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys GluTyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>62

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014157 hIL2_0.30

<400>62

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Phe Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

8590 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>63

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014158 hIL2_0.31

<400>63

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Gly Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg AspLeu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>64

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014159 hIL2_0.32

<400>64

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu His Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

6570 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>65

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014160 hIL2_0.33

<400>65

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Ile Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>66

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014161 hIL2_0.34

<400>66

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Lys Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>67

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014162 hIL2_0.35

<400>67

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Leu Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>68

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014163 hIL2_0.36

<400>68

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Met PheLys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>69

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014164 hIL2_0.37

<400>69

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

2025 30

Asn Pro Lys Leu Thr Arg Met Leu Asn Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>70

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014165 hIL2_0.38

<400>70

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu LeuAsp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Pro Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>71

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014166 hIL2_0.39

<400>71

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Gln Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>72

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014167 hIL2_0.40

<400>72

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Arg Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>73

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014168 hIL2_0.41

<400>73

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Ser Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>74

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014169 hIL2_0.42

<400>74

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Val Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>75

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014170 hIL2_0.43

<400>75

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Trp Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>76

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014171 hIL2_0.44

<400>76

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Tyr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120125

Ile Ser Thr Leu Thr

130

<210>77

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014172 hIL2_0.45

<400>77

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ala Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu AsnArg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>78

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014173 hIL2_0.46

<400>78

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Asp Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>79

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014174 hIL2_0.47

<400>79

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Glu Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>80

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014175 hIL2_0.48

<400>80

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Gly Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>81

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014176 hIL2_0.49

<400>81

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr His Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>82

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014177 hIL2_0.50

<400>82

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ile Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>83

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014178 hIL2_0.51

<400>83

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 5560

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>84

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014179 hIL2_0.52

<400>84

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Leu Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His LeuGln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>85

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014180 hIL2_0.53

<400>85

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Met Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>86

<211>129

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014181 hIL2_0.54

<400>86

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Asn Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile

<210>87

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014182 hIL2_0.55

<400>87

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 2530

Asn Pro Lys Leu Thr Arg Met Leu Thr Pro Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>88

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014183 hIL2_0.56

<400>88

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile LeuAsn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Gln Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>89

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014184 hIL2_0.57

<400>89

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 510 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Arg Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>90

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014185 hIL2_0.58

<400>90

Ala Pro ThrSer Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ser Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>91

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014186 hIL2_0.59

<400>91

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Thr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>92

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014187 hIL2_0.60

<400>92

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Val Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>93

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014188 hIL2_0.61

<400>93

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Trp Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>94

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014189 hIL2_0.62

<400>94

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>95

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014190 hIL2_0.63

<400>95

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Lys Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>96

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014191 hIL2_0.64

<400>96

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Gln Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>97

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014192 hIL2_0.65

<400>97

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Glu Met Leu Lys Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>98

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014193 hIL2_0.66

<400>98

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Arg Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>99

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014194 hIL2_0.67

<400>99

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Gln Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>100

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014195 hIL2_0.68

<400>100

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Val Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>101

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014196 hIL2_0.69

<400>101

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Val Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>102

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014201 hIL2_0.70

<400>102

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Met Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu GluGlu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>103

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014202 hIL2_0.71

<400>103

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Ser Phe Lys Phe Tyr Met Pro Lys

3540 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>104

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014203 hIL2_0.72

<400>104

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys LeuThr Gln Met Leu Leu Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>105

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014204 hIL2_0.73

<400>105

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Met Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>106

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014205 hIL2_0.74

<400>106

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Ile Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>107

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014206 hIL2_0.75

<400>107

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Glu Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>108

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014207 hIL2_0.76

<400>108

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Asp Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>109

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014208 hIL2_0.77

<400>109

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Met Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>110

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014209 hIL2_0.78

<400>110

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Gln Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>111

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014210 hIL2_0.79

<400>111

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Glu His Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>112

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014211 hIL2_0.80

<400>112

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Glu Leu Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>113

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014212 hIL2_0.81

<400>113

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Glu Pro Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>114

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014213 hIL2_0.82

<400>114

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Thr Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>115

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014214 hIL2_0.83

<400>115

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Arg Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 9095

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>116

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014215 hIL2_0.84

<400>116

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Lys Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile AsnVal Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>117

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014216 hIL2_0.85

<400>117

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Val Met Leu Arg Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 7075 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>118

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014217 hIL2_0.86

<400>118

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Pro Met Leu Arg Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>119

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014218 hIL2_0.87

<400>119

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Glu Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>120

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014219 hIL2_0.88

<400>120

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Asp Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>121

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014220 hIL2_0.89

<400>121

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Met Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>122

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014221 hIL2_0.90

<400>122

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Gln Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>123

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014222 hIL2_0.91

<400>123

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Thr Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>124

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014223 hIL2_0.92

<400>124

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

15 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Ile Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>125

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014224 hIL2_0.93

<400>125

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Thr Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>126

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014225 hIL2_0.94

<400>126

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu His Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>127

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014226 hIL2_0.95

<400>127

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Lys Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>128

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014227 hIL2_0.96

<400>128

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Arg Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>129

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014228 hIL2_0.97

<400>129

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Gln Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120125

Ile Ser Thr Leu Thr

130

<210>130

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014229 hIL2_0.98

<400>130

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Val Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu PheLeu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>131

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014230 hIL2_0.99

<400>131

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Asn Met Leu Lys Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>132

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014231 hIL2_0.100

<400>132

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu His Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>133

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014232 hIL2_0.101

<400>133

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Lys Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>134

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014233 hIL2_0.102

<400>134

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Gln Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>135

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014234 hIL2_0.103

<400>135

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Val Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser LysAsn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>136

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014235 hIL2_0.104

<400>136

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Gln Met Leu Arg Lys Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

5055 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>137

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014277 hIL2_0.6

<400>137

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys AlaThr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Ala Leu Arg Leu Ala Pro Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asp Val Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Thr Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>138

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014381 hIL2_0.202

<400>138

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Leu Met Leu Thr Phe Lys Phe Tyr Met ProGlu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Ala Leu Arg Leu Ala Pro Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asp Val Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Thr Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>139

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014135 hIL2_0.1

<400>139

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>140

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014142 hIL2_0.15

<400>140

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>141

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014143 hIL2_0.16

<400>141

Ala Pro Thr Ser Ser Ser Thr LysLys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Lys Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>142

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014144 hIL2_0.17

<400>142

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Leu Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>143

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014168 hIL2_0.41

<400>143

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Ser Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>144

<211>133

<212>PRT

<213> Artificial sequence

<220>

<223>XENP014189 hIL2_0.62

<400>144

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Tyr Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr

130

<210>145

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023816 hIL2_0.205

<400>145

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Glu Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>146

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023817 hIL2_0.206

<400>146

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Asp Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr IleVal Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>147

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023820 hIL2_0.209

<400>147

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Glu Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>148

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023824 hIL2_0.213

<400>148

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Gln His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

8590 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>149

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023827 hIL2_0.216

<400>149

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu Tyr

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>150

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023830 hIL2_0.219

<400>150

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Asp Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala GlnSer Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>151

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023833 hIL2_0.222

<400>151

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>152

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023834 hIL2_0.223

<400>152

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Glu Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 4045

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>153

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023836 hIL2_0.225

<400>153

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Arg Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>154

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023837 hIL2_0.226

<400>154

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Ser Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>155

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023838 hIL2_0.227

<400>155

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

15 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Arg Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>156

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023839 hIL2_0.228

<400>156

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Tyr Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>157

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023840 hIL2_0.229

<400>157

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Phe Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>158

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023842 hIL2_0.231

<400>158

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Arg

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130135

<210>159

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023843 hIL2_0.232

<400>159

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Glu Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>160

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023846 hIL2_0.235

<400>160

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Gln Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>161

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023848 hIL2_0.237

<400>161

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Gln Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>162

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023849 hIL2_0.238

<400>162

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Arg

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>163

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023851 hIL2_0.240

<400>163

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Gln Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>164

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023852 hIL2_0.241

<400>164

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Leu Leu AsnLeu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>165

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023853 hIL2_0.242

<400>165

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Ile Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>166

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023855 hIL2_0.244

<400>166

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

3540 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Asp Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>167

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023859 hIL2_0.248

<400>167

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asn Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>168

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023861 hIL2_0.250

<400>168

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Thr Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>169

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023862 hIL2_0.251

<400>169

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asp Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>170

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023868 hIL2_0.257

<400>170

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Leu Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>171

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023869 hIL2_0.258

<400>171

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Leu Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>172

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023871 hIL2_0.260

<400>172

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Gln Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>173

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023874 hIL2_0.263

<400>173

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Phe Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>174

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023875 hIL2_0.264

<400>174

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Arg Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>175

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023876 hIL2_0.265

<400>175

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met CysGlu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asp Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>176

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023878 hIL2_0.267

<400>176

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Asp Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>177

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023882 hIL2_0.271

<400>177

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 7580

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Ser Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>178

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023883 hIL2_0.272

<400>178

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu GluGlu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Glu Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>179

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023885 hIL2_0.274

<400>179

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu LeuLys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Thr Ile

115 120 125

Ile Ser Thr Leu Thr Gly Ser

130 135

<210>180

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023886 hIL2_0.275

<400>180

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Leu Ser Thr Leu Thr Gly Ser

130 135

<210>181

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023888 hIL2_0.277

<400>181

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Thr Thr Leu Thr Gly Ser

130 135

<210>182

<211>135

<212>PRT

<213> Artificial sequence

<220>

<223>XENP023889 hIL2_0.278

<400>182

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Ser Gly Ser

130 135

<210>183

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>183

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>184

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>184

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>185

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>185

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>186

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>186

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

3540 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>187

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>187

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>188

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>188

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ala Lys Phe Ala Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Gly Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ala Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>189

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>189

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>190

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>190

Ala ProThr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Ala Leu Arg Leu Ala Pro Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asp Val Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>191

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>191

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>192

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>192

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Ala Leu Asn Leu Ala Pro Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Thr

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>193

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>193

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>194

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>194

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Ala Leu Arg Leu Ala Pro Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asp Val Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Thr Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>195

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>195

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 4045

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>196

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>196

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Thr Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>197

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>197

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>198

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>198

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Arg Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>199

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>199

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu AsnAsn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>200

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>200

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 5560

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>201

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>201

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>202

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>202

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Phe

65 70 75 80

Asp Pro Arg Asp Val Ile Ser Asn Ile Asn Val Phe Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>203

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>203

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>204

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>204

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Arg LeuAsp Leu Glu Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Phe

65 70 75 80

Asp Pro Arg Asp Val Ile Ser Asn Ile Asn Val Phe Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Thr Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val AspVal Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser ValMet His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>205

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>205

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>206

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>206

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Arg Leu Asp Leu Glu Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Phe

65 70 75 80

Asp Pro Arg Asp Val Ile Ser Asn Ile Asn Val Phe Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Thr Ser Ile

115 120 125

Ile Arg Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>207

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>207

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr ArgVal Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>208

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>208

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ala Lys Phe Ala Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Gly Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Arg Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ala Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>209

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>209

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>210

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>210

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ala Lys Phe Ala Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Gly Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe AlaThr Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val LysGly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>211

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>211

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>212

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 20

<400>212

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ala Lys Phe Ala Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Gly Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Arg Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ala Thr Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>213

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 23

<400>213

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu AsnGly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Arg Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>214

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 23

<400>214

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>215

<211>384

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>215

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 2530

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Arg Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly

130 135 140

Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Pro Lys Ser Ser Asp Lys

145 150 155 160

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser

165 170 175

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg

180 185 190

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro

195 200 205

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala

210 215 220

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

225 230 235 240

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr

245 250 255

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr

260 265 270

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu

275 280 285

Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys

290 295 300

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser

305 310 315 320

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp

325 330 335

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser

340 345 350

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala

355 360 365

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

370 375 380

<210>216

<211>384

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>216

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly

130 135 140

Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Pro Lys Ser Ser Asp Lys

145 150 155 160

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser

165 170 175

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg

180 185 190

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro

195 200 205

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala

210 215 220

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

225 230 235 240

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr

245 250 255

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr

260 265 270

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu

275 280 285

Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys

290 295 300

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser

305 310 315 320

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp

325 330 335

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser

340 345 350

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala

355 360 365

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

370 375 380

<210>217

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>217

Glu Pro LysSer Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>218

<211>384

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>218

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Arg Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly

130 135 140

Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Pro Lys Ser Ser Asp Lys

145 150 155 160

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser

165 170 175

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg

180 185 190

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro

195 200 205

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala

210215 220

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

225 230 235 240

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr

245 250 255

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr

260 265 270

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu

275 280 285

Pro Pro Ser Arg Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys

290 295 300

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser

305 310 315 320

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp

325 330 335

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser

340 345 350

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala

355 360 365

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

370375 380

<210>219

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>219

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>220

<211>384

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>220

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly

130 135 140

Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Pro Lys Ser Ser Asp Lys

145 150 155 160

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser

165 170 175

Val Phe Leu Phe Pro Pro LysPro Lys Asp Thr Leu Met Ile Ser Arg

180 185 190

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro

195 200 205

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala

210 215 220

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

225 230 235 240

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr

245 250 255

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr

260 265 270

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu

275 280 285

Pro Pro Ser Arg Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys

290 295 300

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser

305 310 315 320

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp

325 330 335

Ser Asp Gly Ser Phe Phe Leu Tyr SerLys Leu Thr Val Asp Lys Ser

340 345 350

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala

355 360 365

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

370 375 380

<210>221

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>221

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu HisGln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>222

<211>384

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 25

<400>222

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Ala Lys Phe Ala Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Gly Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ala Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly

130 135140

Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Pro Lys Ser Ser Asp Lys

145 150 155 160

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser

165 170 175

Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg

180 185 190

Thr Pro Glu Val Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro

195 200 205

Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala

210 215 220

Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val

225 230 235 240

Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr

245 250 255

Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr

260 265 270

Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu

275 280 285

Pro Pro Ser Arg Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys

290 295 300

Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser

305 310 315 320

Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp

325 330 335

Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser

340 345 350

Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala

355 360 365

Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

370 375 380

<210>223

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>223

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>224

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>224

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Asp Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu ThrAla

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>225

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>225

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>226

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>226

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

ArgPro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn LysAla Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>227

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>227

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro ProCys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>228

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>228

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 5560

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asp Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>229

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>229

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln ValSer Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>230

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>230

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Lys Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355360

<210>231

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>231

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>232

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>232

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Arg Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asp Val Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys HisGlu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His GluAla Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>233

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>233

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>234

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>234

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Asp Asp Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Arg Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>235

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>235

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>236

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>236

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Arg Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>237

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>237

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>238

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>238

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Asp Asp Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>239

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>239

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>240

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>240

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Ser Asn His Lys

20 25 30

Asn Pro Arg Leu Ala Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Glu

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

LysGly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly GlnPro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>241

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>241

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro ProLys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>242

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>242

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Asp Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Arg Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 7580

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>243

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>243

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>244

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>244

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Asp Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>245

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>245

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>246

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>246

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg MetLeu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val HisAsn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>247

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>247

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>248

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>248

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Asp Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>249

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>249

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr LysCys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>250

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 27

<400>250

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>251

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>251

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>252

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>252

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>253

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>253

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

5055 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>254

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>254

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>255

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>255

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>256

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>256

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 9095

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>257

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>257

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>258

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>258

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn

275 280 285

Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>259

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>259

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln ValSer Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>260

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>260

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn

275 280 285

Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>261

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>261

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>262

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>262

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn

275 280 285

Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>263

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>263

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>264

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>264

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn

275 280 285

Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>265

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>265

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>266

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>266

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn

275 280 285

Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>267

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>267

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>268

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>268

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Gln Met Thr Lys Asn

275 280 285

Gln Val Lys Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>269

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>269

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>270

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>270

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn LeuAla Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>271

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>271

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>272

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>272

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 7075 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>273

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>273

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

PhePhe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>274

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>274

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val IleVal Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>275

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>275

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>276

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>276

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>277

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>277

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>278

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>278

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu ThrVal Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>279

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>279

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>280

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 30

<400>280

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>281

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 34

<400>281

Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly

1 5 10 15

Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met

20 25 30

Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His

35 40 45

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val

50 55 60

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Gly Ser Thr Tyr

65 70 75 80

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly

85 90 95

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile

100 105 110

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val

115 120125

Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser

130 135 140

Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu

145 150 155 160

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro

165 170 175

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val

180 185 190

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met

195 200 205

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser

210 215 220

Pro Gly Gly Gly Gly Gly Ser Ala Pro Thr Ser Ser Ser Thr Lys Lys

225 230 235 240

Thr Gln Leu Gln Leu Glu His Leu Leu Leu Asp Leu Gln Met Ile Leu

245 250 255

Asn Gly Ile Asn Asn Tyr Lys Asn Pro Lys Leu Thr Arg Met Leu Thr

260 265 270

Phe Lys Phe Tyr Met Pro Lys Lys Ala Thr Glu Leu Lys His Leu Gln

275 280285

Cys Leu Glu Glu Glu Leu Lys Pro Leu Glu Glu Val Leu Asn Leu Ala

290 295 300

Gln Ser Lys Asn Phe His Leu Arg Pro Arg Asp Leu Ile Ser Asn Ile

305 310 315 320

Asn Lys Ile Val Leu Glu Leu Lys Gly Ser Glu Thr Thr Phe Met Cys

325 330 335

Glu Tyr Ala Asp Glu Thr Ala Thr Ile Val Glu Phe Leu Asn Arg Trp

340 345 350

Ile Thr Phe Ala Gln Ser Ile Ile Ser Thr Leu Thr

355 360

<210>282

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>282

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg GluGlu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>283

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>283

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His ThrCys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>284

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>284

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>285

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>285

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>286

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>286

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 4045

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>287

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>287

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>288

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>288

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>289

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>289

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>290

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>290

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>291

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>291

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 9095

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155 160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305 310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>292

<211>374

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 43

<400>292

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu

130 135 140

Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro

145 150 155160

Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp

165 170 175

Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp

180 185 190

Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly

195 200 205

Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn

210 215 220

Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp

225 230 235 240

Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro

245 250 255

Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu

260 265 270

Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn

275 280 285

Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile

290 295 300

Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr

305310 315 320

Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys

325 330 335

Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys

340 345 350

Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser Leu

355 360 365

Ser Leu Ser Pro Gly Lys

370

<210>293

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>293

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>294

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>294

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>295

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>295

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

2025 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>296

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>296

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 7580

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>297

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>297

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>298

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>298

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>299

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>299

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys GlyGln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>300

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>300

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>301

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>301

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val ValSer Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>302

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>302

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Arg Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys SerSer Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

PheTyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>303

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>303

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>304

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>304

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asn Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Ile Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Lys Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>305

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>305

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130 135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>306

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>306

Ala Pro Thr Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 25 30

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180 185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

<210>307

<211>231

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>307

Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala

1 5 10 15

Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys

20 25 30

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val

35 40 45

Asp Val Lys His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp

50 55 60

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Glu Tyr

65 70 75 80

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp

85 90 95

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu

100 105 110

Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg

115 120 125

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys

130135 140

Asn Gln Val Ser Leu Thr Cys Asp Val Ser Gly Phe Tyr Pro Ser Asp

145 150 155 160

Ile Ala Val Glu Trp Glu Ser Asp Gly Gln Pro Glu Asn Asn Tyr Lys

165 170 175

Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser

180 185 190

Lys Leu Thr Val Asp Lys Ser Arg Trp Glu Gln Gly Asp Val Phe Ser

195 200 205

Cys Ser Val Leu His Glu Ala Leu His Ser His Tyr Thr Gln Lys Ser

210 215 220

Leu Ser Leu Ser Pro Gly Lys

225 230

<210>308

<211>364

<212>PRT

<213> Artificial sequence

<220>

<223> FIG. 44

<400>308

Ala Pro Ala Ser Ser Ser Thr Lys Lys Thr Gln Leu Gln Leu Glu His

1 5 10 15

Leu Leu Leu Asp Leu Gln Met Ile Leu Asn Gly Ile Asn Asn Tyr Lys

20 2530

Asn Pro Lys Leu Thr Arg Met Leu Thr Phe Lys Phe Tyr Met Pro Lys

35 40 45

Lys Ala Thr Glu Leu Lys His Leu Gln Cys Leu Glu Glu Glu Leu Lys

50 55 60

Pro Leu Glu Glu Val Leu Asn Leu Ala Gln Ser Lys Asn Phe His Leu

65 70 75 80

Arg Pro Arg Asp Leu Ile Ser Asn Ile Asn Val Ile Val Leu Glu Leu

85 90 95

Lys Gly Ser Glu Thr Thr Phe Met Cys Glu Tyr Ala Asp Glu Thr Ala

100 105 110

Thr Ile Val Glu Phe Leu Asn Arg Trp Ile Thr Phe Ser Gln Ser Ile

115 120 125

Ile Ser Thr Leu Thr Glu Pro Lys Ser Ser Asp Lys Thr His Thr Cys

130 135 140

Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe

145 150 155 160

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val

165 170 175

Thr Cys Val Val Val Asp Val Lys His Glu Asp Pro Glu Val Lys Phe

180185 190

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro

195 200 205

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr

210 215 220

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val

225 230 235 240

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala

245 250 255

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg

260 265 270

Glu Gln Met Thr Lys Asn Gln Val Lys Leu Thr Cys Leu Val Lys Gly

275 280 285

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

290 295 300

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser

305 310 315 320

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln

325 330 335

Gly Asn Val Phe Ser Cys Ser Val Leu His Glu Ala Leu His Ser His

340 345 350

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys

355 360

440页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:内源性T细胞受体的靶向置换

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!