用于氧化剂浓度控制的方法和设备

文档序号:1159945 发布日期:2020-09-15 浏览:13次 >En<

阅读说明:本技术 用于氧化剂浓度控制的方法和设备 (Method and apparatus for oxidant concentration control ) 是由 罗德尼·E·赫林顿 于 2018-11-19 设计创作,主要内容包括:披露了用于控制电解池中的电解以便无论所述电解池中电解质浓度或氧化剂生产的速率如何都保持恒定的消毒剂浓度的方法和设备。(Methods and apparatus are disclosed for controlling electrolysis in an electrolytic cell so as to maintain a constant disinfectant concentration regardless of the electrolyte concentration or the rate of oxidant production in the electrolytic cell.)

用于氧化剂浓度控制的方法和设备

技术领域

本发明涉及用于生产氧化剂的电解池中两相流中的氧化剂浓度的控制。

背景技术

以下论述涉及许多出版物和参考文献。给出本文中对此类出版物的论述以促进对与本发明有关的科学原理的背景的理解,并且不应被解释为承认此类出版物是专利性确定目的的现有技术。此类出版物中的每一个都通过引用并入本文。

使用尺寸稳定阳极(DSA)的电解技术已用于生产氯和其他混合氧化剂溶液多年。尺寸稳定阳极在授予Beer的标题为“Electrode and Method of Making Same[电极及其制造方法]”的美国专利号3,234,110中进行了描述,其中在钛基底上施加了贵金属涂层。

授予deNora等人的标题为“Electrode Cell with Membrane and Method forMaking Same[具有膜的电极电池及其制造方法]”的美国专利RE 32,077中描述了具有膜的电解池的实例,其中使用了圆形尺寸稳定阳极(其中膜包绕所述阳极)和同心地位于所述阳极/膜组件周围的阴极。

授予Gram等人的标题为“Electrolytic Method and Cell for SterilizingWater[用于对水进行杀菌的电解方法和电解池]”的美国专利号4,761,208中描述了具有尺寸稳定阳极而没有膜的电解池。

常规用于氧化剂生产的商业电解池使用流通式配置,所述流通式配置任选地处于足够的压力下以产生通过电解装置的流。在授予Prasnikar等人的标题为“Electrode andElectrolytic Cell Containing Same[电极和包含其的电解池]”的美国专利号6,309,523和授予Baker等人的标题为“Electrolytic Cell for Generating SterilizationSolutions Having Increased Ozone Content[用于生成具有增加的臭氧含量的杀菌溶液的电解池]”的美国专利号5,385,711中描述了此种配置的电池的实例。

典型地,在使用连续流通式系统的商业原位氯生成系统中使用两种控制方案之一。使用这些方案以便在保持固定的氧化剂生产速率的同时在运行成本方面优化运行性能。

加利福尼亚州坎贝尔(Campbell,CA)的过程解决方案有限公司(ProcessSolutions Inc.,PSI)使用恒定的进料盐水和流体流使得进入电池的电解质浓度恒定,不过控制电压以保持氧化剂浓度。随着电极被污染,主要通过在阴极电极上形成碳酸钙垢,增加电压以克服系统中电阻的增加。以这种方式,以增加的电力消耗为代价保持电解质转化效率。

授予Sanchez等人的标题为“Low Maintenance On-Site Generator[低维护原位生成器]”的US 7,922,890中描述了MIOX公司电解原位生成器中使用的典型控制方案。此控制方案使用保持进入电解池的精确且稳定的水流速的方法。固定系统上的电压。来自变速盐水泵的完全饱和盐水进入水流体流,因此进入电解质(进入电池)。电池中固定的安培数以固定浓度生成氧化剂。如果电池上的安培数低,则控制系统命令盐水泵加速,这增加进入电池的电解质的盐水浓度并且因此增加电解质的电导率以及从电源得到的到电池的安培数。在此方案中,电解质浓度可以变化以便保持电池中正确的安培数。如果用流量和施加的电压保持安培数恒定,则氧化剂浓度可以保持恒定。在保持电力转化效率的同时,电解质转化效率可以变化。类似的产品是所谓的盐水泵系统或BPS。BPS装在硬塑料壳中,并包括盐水泵、电源和电解池。然而,此系统使用了恒速电解质泵。此系统要求操作员正确地混合盐和水以便制造电解质,从而使得正确达到氧化剂浓度。没有保持恒定的氧化剂浓度的控制方案。

发明内容

本发明的实施例可以控制在用于生产消毒剂的电解系统中产生的消毒剂的浓度。与其他控制方案相比,氧化剂生产速率和运行效率不是关键参数。本发明的实施例控制电池中产生的氧化剂的浓度。通过控制正确的氧化剂浓度,用户的定量给料是一致的。在低输入环境中,混合以制造电解质的盐和水可以手动混合,并且因此可能不精确地混合。当通过将盐和水混合在一起制造电解质溶液时,本发明的实施例可以补偿人为错误。在本发明的一些实施例中,电解质转化效率和电力转化效率都不是关键参数。在低电解质盐水浓度的情况下,氧化剂生产速率低。这是因为溶液的电导率低,并且因此将从电源获得较低的安培数。本发明的实施例通过增加电解质在电池中的停留时间来降低电解质流速以保持氧化剂浓度,从而将更多的盐水转化成氧化剂并增加氧化剂的浓度。相反,如果电解质浓度高,则氧化剂生产速率高,并且控制方案增加了电解质流速以保持正确的氧化剂浓度(标称5,000mg/l浓度)。

本发明的优点包括改进的消毒剂浓度稳定性(不管电解质进料浓度、施加的电压或通过电解池的流量如何),从而使得系统在以下项中操作起来更简单:操作员训练不充分和用于低教育环境中的系统中可能补偿不精确性(通过军方)的环境、赈灾环境以及操作简单性和容错性是重要的其他应用。在此种配置中,运行效率与容错性相平衡。在这些应用中,一致的氧化剂浓度对于确保未经训练的操作员一致的氧化剂定量给料是重要的。根据疾病控制和预防中心(Center for Disease Control and Prevention,CDC)和世界卫生组织(World Health Organization,WHO),清洁医疗表面的适当剂量为5,000毫克/升(mg/l)或百万分之一(ppm)。作为实例,这是用于爆发(如在2015年左右的非洲发生的那些)时对医疗区和表面、人体残骸以及活跃暴露于埃博拉病毒的其他表面进行消毒的推荐的剂量。本文所述的控制方案产生具有此标称浓度的消毒剂。可以将控制方案配置成制造任何实际浓度(典型地小于10,000毫克/升)的一致的氧化剂。

当威胁像活跃的埃博拉病毒存在于环境中时,对于在家庭环境中的人清洁其手和用于正常消毒的其他应用典型地推荐500ppm的浓度。在500ppm下,很容易指导用户向纯消毒剂(在5,000ppm下)中添加10份水以获得约500ppm浓度的消毒剂。对于旨在用于人消耗的处理水(即,饮用水),很容易指导用户通过测量装置(如茶匙或其他测量容器)添加一份消毒剂以将一份纯消毒剂(在5,000mg/l下)添加至1000份水中。在此种情况下,一毫升(ml)消毒剂添加到每升待处理的水中。结果是向水中添加了5mg/l剂量的消毒剂。这是美国军方用于野外处理水的典型剂量。在有待处理成饮用水的正常地表水或地下水中,5mg/l剂量将使得大多数水饮用安全。美国环境保护局(US Environmental Protection Agency,USEPA)在市政处理水中的最大推荐残留值为4.0mg/l。在赈灾情况或低输入环境(其中水的安全是至关重要的)中,由于原水中需要氧化剂的物质,5mg/l的剂量将典型地导致小于4.0mg/l的氯残留值。在5.0mg/l剂量下,大多数水将具有帮助确保水饮用安全的正氯残留值。

本发明的其他优点和新颖特征以及另外的适用范围将在下面的详细说明中结合附图来部分地阐述并且部分将对于本领域技术人员而言变得显而易见(在检查以下后),或者可以通过本发明的实践来学习。本发明的优点可以通过特别是在所附权利要求书中指出的手段和组合而被认识到并获得。

附图说明

并入并形成本说明书一部分的附图说明了本发明的若干实施例并且与本说明书一起用于解释本发明的原理。附图仅用于说明本发明的优选实施例的目的,并且不应被解释为限制本发明。在附图中:

图1是系统的流程图的视图。

图2是图表视图,其示出了在12、15和18克/升盐水浓度下随时间推移的浓度。

具体实施方式

和工业实用性

图1是根据本发明的系统的示例性实施例。系统10包括电解池12、电解质泵16、电源14、控制电路24、电解质罐18和氧化剂罐26。电解质20包含水和溶解在水中的卤素盐(通常是氯化钠)。在示例性实施例中,电解质浓度为约15克/升(g/l)氯化钠,并且典型地通过测量在已知量的水中的正确量的盐(氯化钠)来手动制造。然而,取决于操作员将盐混合到水中的精确度,电解质的浓度可以从小于10g/l到大于22g/l广泛地变化。电源20可从常规线路电源(如110/220VAC单相电源)或从其他电源(如电池、发电机和太阳能电池)获得其电力。作为实例,输出电力可以是标称12伏直流电(VDC),并供应给控制面板24。控制面板24还可包括直流电力端子30。可以将直流电源如汽车电池、太阳能板或其他直流电源连接到这些电力端子30。可以在控制面板24内提供到电解质泵16的控制电路34和电力。控制面板24还可以结合主电源开关32。

在激活主电源开关32时,电解质泵16可以通过控制电路34激活。电解质泵16是例如正排量泵,如具有变速马达的蠕动泵,所述变速马达可以是DC马达或步进马达或其他类型的变速马达。随着电解质泵16开始运行,电解质20被抽吸通过任选的过滤器22,这帮助去除污染物或未溶解的盐并且可以帮助延长电解质泵16的寿命。电解质20然后行进通过电解质泵16并进入电解池12。来自控制面板24内的控制电路34的电力被施加到电解池12。电解池12内的电解质被转化成氧化剂28,所述氧化剂被输送到氧化剂罐26。电解质20到氧化剂28的转化是众所周知的化学反应,其产生强的消毒溶液。氧化剂28可用于对污染的淡水源进行消毒以使其可用于人消耗饮用,可用于医疗环境或需要强消毒剂溶液的其他应用中对表面进行消毒。然而,经常重要的是消毒剂的浓度是一致且稳定的,以便将适当剂量的消毒剂施加到所讨论的应用中。

在本发明的示例性实施例中,控制面板24包括控制电路34,所述控制电路测量施加到电解池12的电流。电流和电解质溶液20的流速决定从电解池12流出的消毒剂溶液28的浓度。在正排量电解质泵16的情况下,流速由电解质泵16的速度精确地控制。在示例性实施例中,当盐和水由操作员混合时,操作员已经决定了电解质溶液20的盐度或盐水浓度。通过施加到电解池12的安培数和电解质泵16的速度,可以确定消毒溶液28的浓度。此数据的实例在图2中呈现。图2示出了针对三种不同盐水浓度的氧化剂28的浓度,其中电解质泵16的速度已经通过控制器34控制。如数据所示,无论电解质的盐溶液浓度如何,氧化剂的浓度都保持在5,000至6,000mg/l的范围内。随着如通过引入电解池12的安培数测量的电解质电导率升高,电解质泵16的速度增加以增加电解池中氧化剂的流速。随着安培数降低,通过电解质泵16降低了流速,使得最终浓度保持固定在大约5,000mg/l。所得等式为:

浓度,mg/l=(生产速率,mg/min)/(流速,l/min)

通过检查以上等式,为了保持相同的氧化剂浓度,电解质的流速必须随着氧化剂生产速率的增加而增加,反之亦然。对控制板34中的软件逻辑进行编程以监测电解池12中的安培数,并通过控制电解质泵16的速度相应地增加或降低电解质流速。

尽管已经特别参考这些优选实施例详细描述了本发明,但是其他实施例可以实现相同的结果。本发明的变化和修改对本领域技术人员将是明显的,并且旨在覆盖所有这样的修改和等效物。以上引用的所有专利和出版物的全部披露内容特此通过引用并入。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:曝气过滤装置及其污废水处理系统

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!