用于避免机械应力的滑阀的控制系统

文档序号:1182191 发布日期:2020-09-22 浏览:25次 >En<

阅读说明:本技术 用于避免机械应力的滑阀的控制系统 (Control system for a slide valve for avoiding mechanical stresses ) 是由 D.佩特罗内拉 A.鲍鲁斯 于 2020-03-13 设计创作,主要内容包括:一种流体压力控制的滑阀将由迫使阀芯轴的凸台磨损或粘附到支撑阀芯轴的圆柱形桶的内部面向表面的压力板的倾斜定向引起的磨损或粘附最小化。永磁体安装在压力板上。由铁磁材料构成的圆头形成在阀芯轴的端部上并且配置成被磁性地吸引到永磁体。当压力板和磁体相对于阀芯轴的轴线倾斜时,在阀芯轴的圆头上产生的磁吸引力矢量保持与阀芯轴的轴线同轴。(A fluid pressure controlled spool valve minimizes wear or adhesion caused by the angular orientation of a pressure plate forcing the boss of the spool shaft to wear or adhere to the inner facing surface of the cylindrical barrel supporting the spool shaft. The permanent magnet is mounted on a pressure plate. A rounded head composed of ferromagnetic material is formed on an end of the spool shaft and is configured to be magnetically attracted to the permanent magnet. When the pressure plate and magnet are tilted relative to the axis of the spool shaft, the magnetic attraction force vector generated on the rounded head of the spool shaft remains coaxial with the axis of the spool shaft.)

用于避免机械应力的滑阀的控制系统

技术领域

所公开的本发明涉及滑阀。

背景技术

滑阀在诸如汽车动力转向和喷墨打印之类的各种应用中用于控制流体的流动方向。滑阀包括柱塞状的阀芯轴,其在圆柱形桶内滑动,该桶在桶的侧面开有端口。端口的阻塞由阀芯轴上的凸台(land)或全径部分提供,凸台或全径部分由较窄部分分开,较窄部分提供通过圆柱形桶的端口互连。密封件位于端口之间以及在最外端口以外的圆柱形桶的外端。阀芯轴的滑动动作可以通过机电螺线管或者通过气动或液压来控制。

在气动或液压控制中,控制流体压力信号被引入阀壳体的控制流体室中,该控制流体室通过柔性膜与第二室分开。位于第二室中的压力板与柔性膜邻接,并且机械地连接至阀芯轴的一端。位于第二室中的螺旋弹簧将弹簧力保持在指向柔性膜的压力板上。随着控制流体压力信号在控制流体室中增加,柔性膜膨胀到第二室中,从而压紧压力板并将其移动到第二室中,从而使阀芯轴滑向打开位置。可替代地,随着控制流体压力信号在控制流体室中减小,柔性膜从第二室缩回,拉动压力板,压力板又拉动与阀芯轴的机械连接,从而使阀芯轴滑向关闭位置。

气动或液压控制的滑阀的问题在于,随着柔性膜由于控制流体压力信号的变化而膨胀和缩回,压力板及其与阀芯轴的机械连接可能相对于圆柱形桶的轴线倾斜。压力板的倾斜定向及其机械连接可能导致阀芯轴上的凸台或全径部分磨损或粘附到圆柱形桶的内部面向表面,导致工作流体围绕凸台的最终泄漏,从而限制滑阀的使用寿命。

所需要的是用于气动或液压控制的滑阀的设计,其使由压力板的倾斜定向及其机械连接引起的磨损或粘附最小化。

发明内容

根据本发明的示例性实施例,一种气动或液压控制的滑阀将由压力板的倾斜定向引起的磨损或粘附最小化,压力板的倾斜定向迫使阀芯轴的凸台磨损或粘附到支撑阀芯轴的圆柱形桶的内部面向表面。永磁体安装在内部室中的压力板上。形成在阀芯轴的端部上的圆头由铁磁材料构成并且配置成被磁性地吸引到永磁体。根据本发明,当压力板和磁体相对于阀芯轴的轴线倾斜时,在阀芯轴的圆头上产生的磁吸引力矢量保持与阀芯轴的轴线同轴。当控制流体的压力减小时,在阀芯轴的圆头上产生的吸引力矢量保持与阀芯轴的轴线同轴,以使由压力板的倾斜定向引起的在滑阀的桶中的磨损或粘附最小化。当控制流体的压力在增加,将磁体推向阀芯轴的圆头时,在阀芯轴的圆头上产生的力矢量保持与阀芯轴的轴线同轴。

附图说明

图1是根据本发明实施例的示例系统图,示出了用于滑阀的控制系统,其接收控制流体压力信号来调节滑阀的阀芯轴,以引导来自供应系统的工作流体通过滑阀的输出端口至双作用液压致动器。

图2是用于滑阀的控制系统的侧视剖视图,其中阀芯轴定位成使工作流体从Y2端口流出,其中Y1输出端口处的工作流体为零压力,而Y2输出端口处的工作流体处于供应端口压力。该图示出了安装在内部室中的压力板上的永磁体以及形成在阀芯轴的端部上的圆头,其配置成被磁性地吸引到永磁体。根据本发明,如果压力板相对于阀芯轴的轴线倾斜,则在阀芯轴的圆头上产生的磁吸引力矢量保持与阀芯轴的轴线同轴,以最小化在滑阀的桶中的磨损或粘附。

图3是根据本发明实施例的用于图2的滑阀的控制系统的侧视剖视图,其中控制流体压力信号增大以将滑阀的阀芯轴调整为位于工作流体在Y1端口和Y2端口处具有相等压力的交叉点处。

图4是根据本发明实施例的用于图3的滑阀的控制系统的侧视剖视图,其中控制流体压力信号进一步增大以将滑阀的阀芯轴调整为位于在Y2输出端口处的工作流体为零压力并且在Y1输出端口处的工作流体处于供应端口压力所在的位置。

图5A示出了根据本发明实施例的垂直于轴轴线定向的压力板,并且在阀芯轴的圆头上产生的磁吸引力矢量保持与轴的轴线同轴,以最小化在滑阀的桶中的磨损或粘附。

图5B示出了根据本发明实施例的定向成相对于轴轴线向上倾斜的压力板,并且在阀芯轴的圆头上产生的磁吸引力矢量保持与轴的轴线同轴,以最小化在滑阀的桶中的磨损或粘附。

图5C示出了根据本发明实施例的定向成相对于轴轴线向下倾斜的压力板,并且在阀芯轴的圆头上产生的磁吸引力矢量保持与轴的轴线同轴,以最小化在滑阀的桶中的磨损或粘附。

图6是用于滑阀的控制系统的三维侧视剖视图,示出了用于滑阀的排放端口E1和E2。

图7是滑阀的三维侧视图,示出了控制流体压力信号端口、工作流体输入端口Y1和Y2、工作流体供应端口以及用于滑阀的工作流体排放端口。

具体实施方式

图1是示例系统图,示出了用于滑阀100的控制系统,其接收在控制输入端口120处被引入到阀壳体102的控制流体室122中的控制流体压力信号105,控制流体室122与内部第二室由柔性膜分开。当控制流体105的压力在第一室122中改变时,阀芯轴125在壳体102的圆柱形桶内滑动,从而互连或阻塞端口Y1和Y2、供应端口S以及在圆柱形桶的侧面中打开的排放端口。端口的阻塞由阀芯轴125上的凸台或全径部分提供,凸台或全径部分由较窄部分分开,较窄部分提供通过圆柱形桶的端口互连。密封件位于端口之间以及在最外排放端口以外的圆柱形桶的外端。阀芯轴125的滑动动作由气动或液压控制流体压力信号105控制。

随着控制流体压力信号105在控制流体室122中增加,柔性膜膨胀到第二室中,压紧压力板并将其移动到第二室中,使阀芯轴125滑动以将端口Y2连接到供应端口S并将Y1连接到排放端口。来自供应系统104的工作流体流经互连的供应端口S和端口Y2到达双作用液压致动器106的端口108,从而沿图中所示的向下方向推动活塞112。从双作用液压致动器106的端口110返回的工作流体流经互连的端口Y1和滑阀100的排放端口供应。

图2是用于滑阀100的控制系统的侧视剖视图。阀芯轴125通过控制流体压力信号105定位在控制流体室122中,以将供应端口S连接到Y2端口并且将Y1端口连接到排放端口E1。在Y1输出端口处的工作流体处于零压力,在Y2输出端口处的工作流体处于供应端口S的压力。该图示出了安装在内部第二室124中的压力板128上的永磁体130和形成在阀芯轴125的端部上的圆头132,其配置成被磁性地吸引到永磁体130。根据本发明,如果压力板128相对于阀芯轴125的轴线倾斜,则在阀芯轴125的圆头132上产生的磁吸引力矢量保持与阀芯轴125的轴线同轴,以最小化在滑阀100的圆柱形桶中的磨损或粘附。

形成在阀芯轴125的端部上的圆头132可以由铁磁材料构成,比如铁、钴或镍的合金。永磁体130可以由钕、铁和硼的合金构成。圆头132配置成被磁性地吸引到永磁体130。根据本发明,当压力板128和磁体130相对于阀芯轴125的轴线倾斜时,在阀芯轴125的圆头132上产生的磁吸引力矢量保持与阀芯轴125的轴线同轴。当控制流体105的压力在控制流体室122中减少时,在阀芯轴125的圆头132上产生的吸引力矢量保持与阀芯轴125的轴线同轴,以最小化由压力板128的倾斜定向引起的滑阀100的圆柱形桶中的磨损或粘附。

此外,当控制流体105的压力在控制流体室122中增加,将磁体130的表面推向阀芯轴125的圆头132的表面时,在阀芯轴125的圆头132上产生的力矢量保持与阀芯轴125的轴线同轴,以最小化由压力板128的倾斜定向引起的滑阀100的圆柱形桶中的磨损或粘附。当控制流体105的压力在控制流体室122中增加时,用于磁体130的材料的成分和用于圆头132的材料的成分可以选择成使它们的硬度以及对由于它们的接触表面而导致的磨损或粘附的抵抗最大化。圆头132的轮廓可以具有半球形表面,以在磁体130的表面推向阀芯轴125的圆头132的表面时最小化横向于阀芯轴125的轴线的力的任何分量。

该图示出了位于内部第二室124中的螺旋弹簧140,其保持抵靠着指向柔性膜126的压力板128的弹簧力。该图示出了围绕阀芯轴125定位以支撑壳体102的圆柱形桶中的阀芯轴的衬套142。该图示出了位于衬套142与壳体102的圆柱形桶之间的端口Y1、Y2、S、E1和E2之间的密封件144。

图3是根据本发明实施例的用于图2的滑阀100的控制系统的侧视剖视图,其中控制流体压力信号105增大以将滑阀100的阀芯轴125调整为位于工作流体在Y1端口和Y2端口处具有相等压力的交叉点处。

图4是根据本发明实施例的用于图3的滑阀100的控制系统的侧视剖视图,其中控制流体压力信号105进一步增大以将滑阀100的阀芯轴125调整为位于在Y2输出端口处的工作流体为零压力并且在Y1输出端口处的工作流体处于供应端口S压力所在的位置。

图5A示出了根据本发明实施例的垂直于轴轴线127定向的压力板128,并且在阀芯轴125的圆头132上产生的磁吸引力矢量134保持与轴的轴线127同轴,以最小化在滑阀100的圆柱形桶中的磨损或粘附。

图5B示出了根据本发明实施例的定向成相对于轴轴线127向上倾斜的压力板128,并且在阀芯轴125的圆头132上产生的磁吸引力矢量134保持与轴的轴线127同轴,以最小化在滑阀100的圆柱形桶中的磨损或粘附。

图5C示出了根据本发明实施例的定向成相对于轴轴线127向下倾斜的压力板128,并且在阀芯轴125的圆头132上产生的磁吸引力矢量134保持与轴的轴线127同轴,以最小化在滑阀100的圆柱形桶中的磨损或粘附。

图6是用于滑阀100的控制系统的三维侧视剖视图,示出了用于滑阀100的排放端口E1和E2。该图示出了安装在内部第二室124中的压力板128上的永磁体130和形成在阀芯轴125的端部上的圆头132,其配置成被磁性地吸引到永磁体130。

图7是滑阀的三维侧视图,示出了控制流体压力信号端口120、工作流体端口Y1和Y2、工作流体供应端口S以及用于滑阀100的工作流体排放端口E1和E2。

尽管已经公开了本发明的特定示例实施例,但本领域技术人员将理解,可以对针对特定示例实施例所描述的细节进行改变,而不脱离本发明的精神和范围。

14页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种方便收纳隐藏的饮用水管道阀门

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!

技术分类