Printed circuit board and circuit manufacturing method

文档序号:1191236 发布日期:2020-08-28 浏览:6次 中文

阅读说明:本技术 一种印刷电路板及电路的制造方法 (Printed circuit board and circuit manufacturing method ) 是由 刘艳萍 戚立峰 周志明 于 2020-05-07 设计创作,主要内容包括:本发明公开一种印刷电路板及电路的制造方法。印刷电路板包括:芯片封装组件,所述芯片封装组件包括散热焊盘以及分布在散热焊盘外围的外层管脚焊盘,其中,所述散热焊盘被分隔成两个以上呈间隔排列状的子散热焊盘,所述外层管脚焊盘包含信号焊盘;短接焊盘组件,所述短接焊盘组件包括第一焊盘和第二焊盘,所述第一焊盘和第二焊盘之间存在间隙,所述第一焊盘和第二焊盘通过所述间隙短接在一起,所述第一焊盘和所述信号焊盘采用叠焊盘设计叠焊在一起。本发明的优点在于,信号走线不需要额外增加过孔,大大缩短信号走线长度,减少或不产生线桩,从而改善信号的质量。(The invention discloses a printed circuit board and a manufacturing method of a circuit. The printed circuit board includes: the chip packaging assembly comprises a radiating pad and an outer-layer pin pad distributed on the periphery of the radiating pad, wherein the radiating pad is divided into more than two sub radiating pads arranged at intervals, and the outer-layer pin pad comprises a signal pad; the short-circuit bonding pad assembly comprises a first bonding pad and a second bonding pad, a gap exists between the first bonding pad and the second bonding pad, the first bonding pad and the second bonding pad are in short circuit through the gap, and the first bonding pad and the signal bonding pad are overlapped and welded together by adopting an overlapping bonding pad design. The invention has the advantages that no via hole is additionally arranged on the signal wiring, the length of the signal wiring is greatly shortened, and the wire pile is reduced or not generated, thereby improving the quality of the signal.)

1. A printed circuit board, comprising:

the chip packaging assembly comprises a radiating pad and an outer-layer pin pad distributed on the periphery of the radiating pad, wherein the radiating pad is divided into more than two sub radiating pads arranged at intervals, and the outer-layer pin pad comprises a signal pad;

the short-circuit bonding pad assembly comprises a first bonding pad and a second bonding pad, a gap exists between the first bonding pad and the second bonding pad, the first bonding pad and the second bonding pad are in short circuit through the gap, and the first bonding pad and the signal bonding pad are overlapped and welded together by adopting an overlapping bonding pad design.

2. The printed circuit board of claim 1, wherein the size of the first pad does not exceed the size of the signal pad.

3. The printed circuit board of claim 1, wherein the shorting pad assembly is distributed at upper and lower ends of a spaced region between the sub heat dissipation pads such that signals are transmitted in a straight line in the spaced region between the sub heat dissipation pads.

4. The printed circuit board as claimed in claim 1, wherein the heat-dissipating pad is divided into three sub-heat-dissipating pads in a spaced array.

5. The printed circuit board of claim 1, wherein the gap between the first and second pads has a length of 4 mils.

6. The printed circuit board of claim 4, wherein the first pads have a size of 8mil by 24mil and the second pads have a size of 8mil by 12 mil.

7. The printed circuit board of claim 1, wherein the chip package assembly is a re-driver chip package assembly.

8. A method of manufacturing a circuit, the method comprising the steps of:

the method comprises the steps of dividing a heat dissipation welding disc of a chip packaging assembly into more than two sub heat dissipation welding discs which are arranged at intervals, wherein the chip packaging assembly comprises the heat dissipation welding discs and outer layer pin welding discs which are distributed on the periphery of the heat dissipation welding discs, and the outer layer pin welding discs comprise signal welding discs;

and the stitch welding process includes overlapping and welding a first bonding pad in a short bonding pad assembly and the signal bonding pad, wherein the short bonding pad assembly comprises a first bonding pad and a second bonding pad, a gap exists between the first bonding pad and the second bonding pad, and the first bonding pad and the second bonding pad are shorted together through the gap.

9. The manufacturing method according to claim 8, wherein the dividing process includes: the radiating welding disk is divided into more than two sub radiating welding disks which are arranged at intervals, so that the short-circuit welding disk component is distributed at the upper end and the lower end of an interval area between the sub radiating welding disks, and signals can be transmitted in a straight line in the interval area between the sub radiating welding disks.

10. The manufacturing method according to claim 8, wherein the stitch welding process includes: the first bonding pad and the second bonding pad are integrally steel-meshed.

11. The manufacturing method according to claim 8, wherein the stitch welding process includes: the size of the first pad does not exceed the size of the signal pad.

Technical field (H05K)

The invention relates to the technical field of printed circuit board packaging, in particular to a printed circuit board and a manufacturing method of a circuit.

Background

A Printed Circuit Board (PCB) is a provider of electrical connection for electronic components. The surface of the printed circuit board is printed with a packaging diagram of the electronic component to be packaged, and the electronic component to be packaged can be packaged on the printed circuit board according to the packaging diagram. When manufacturing a printed circuit board, it is often necessary to design the wiring of the printed circuit board. In a circuit design (such as SATA, USB3.0, etc.), signals often meet the requirement of exceeding the design specification due to too long PCB routing, and a functional chip (such as a driver chip) is usually required to be reserved to avoid the signal test failing.

Disclosure of Invention

The present invention has been made to solve at least one of the above problems, and provides a printed circuit board and a method of manufacturing a circuit.

According to a first aspect of embodiments of the present invention, there is provided a printed circuit board including: the chip packaging assembly comprises a radiating pad and an outer-layer pin pad distributed on the periphery of the radiating pad, wherein the radiating pad is divided into more than two sub radiating pads arranged at intervals, and the outer-layer pin pad comprises a signal pad; the short-circuit bonding pad assembly comprises a first bonding pad and a second bonding pad, a gap exists between the first bonding pad and the second bonding pad, the first bonding pad and the second bonding pad are in short circuit through the gap, and the first bonding pad and the signal bonding pad are overlapped and welded together by adopting an overlapping bonding pad design.

Optionally, the size of the first pad does not exceed the size of the signal pad.

Optionally, the short-circuit bonding pad assembly is distributed at the upper end and the lower end of the interval area between the sub heat dissipation bonding pads, so that signals are transmitted in a straight line in the interval area between the sub heat dissipation bonding pads.

Optionally, the heat-radiating pad is divided into three sub-heat-radiating pads arranged in a spaced-apart manner.

Optionally, the length of the gap between the first pad and the second pad is 4 mils.

Optionally, the size of the first pad is 8mil × 24mil, and the size of the second pad is 8mil × 12 mil.

Optionally, the chip package assembly is a re-driver chip package assembly.

According to a second aspect of embodiments of the present invention, there is provided a method of manufacturing a circuit, the method comprising the steps of: the method comprises the steps of dividing a heat dissipation welding disc of a chip packaging assembly into more than two sub heat dissipation welding discs which are arranged at intervals, wherein the chip packaging assembly comprises the heat dissipation welding discs and outer layer pin welding discs which are distributed on the periphery of the heat dissipation welding discs, and the outer layer pin welding discs comprise signal welding discs; and the stitch welding process includes overlapping and welding a first bonding pad in a short bonding pad assembly and the signal bonding pad, wherein the short bonding pad assembly comprises a first bonding pad and a second bonding pad, a gap exists between the first bonding pad and the second bonding pad, and the first bonding pad and the second bonding pad are shorted together through the gap.

Optionally, the dividing process includes: the radiating welding disk is divided into more than two sub radiating welding disks which are arranged at intervals, so that the short-circuit welding disk component is distributed at the upper end and the lower end of an interval area between the sub radiating welding disks, and signals can be transmitted in a straight line in the interval area between the sub radiating welding disks.

Optionally, the stitch welding process includes: the first bonding pad and the second bonding pad are integrally steel-meshed.

Optionally, the stitch welding process includes: the size of the first pad does not exceed the size of the signal pad.

Compared with the prior art, the embodiment of the invention has the advantages that the first bonding pad of the short-circuit bonding pad assembly and the signal bonding pad of the chip are stitch-welded together, so that the signal routing does not need to additionally increase a via hole, the length of the signal routing is greatly shortened, and wire piles are reduced or not generated, thereby improving the quality of signals.

Drawings

The above and other objects, features and advantages of exemplary embodiments of the present invention will become readily apparent from the following detailed description read in conjunction with the accompanying drawings. Several embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which:

in the drawings, the same or corresponding reference numerals indicate the same or corresponding parts.

FIG. 1 shows a PCB layout after stitch bonding with a driver chip using a zero ohm resistor;

fig. 2 shows a schematic structural view of a conventional chip package assembly;

FIG. 3 is a schematic diagram illustrating a shorting pad assembly of a printed circuit board according to an embodiment of the present invention;

fig. 4 is a schematic structural diagram illustrating a chip package assembly in a printed circuit board according to an embodiment of the present invention;

fig. 5 is a schematic structural diagram of a printed circuit board according to an embodiment of the present invention;

FIG. 6 shows a PCB layout after the short-circuit bonding pad assembly and the driver chip are stitch-bonded together in the embodiment of the invention;

FIG. 7 shows GEN2 waveform diagram of USB3.2 using the printed circuit board provided by the embodiment of the invention;

FIG. 8 shows GEN2 waveforms with the functional chip removed after USB3.2 uses the PCB provided by the present invention;

FIG. 9 shows a DP waveform diagram of a printed circuit board provided by an embodiment of the invention adopted by USB 3.2;

FIG. 10 shows the DP waveform of USB3.2 with the functional chip removed after using the PCB provided by the present invention;

Detailed Description

In order to make the objects, features and advantages of the present invention more obvious and understandable, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention, and it is apparent that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.

An embodiment of the present invention provides a printed circuit board, as shown in fig. 5, including: the chip packaging assembly comprises a radiating pad and outer-layer pin pads (12, 12 ') distributed on the periphery of the radiating pad, wherein the radiating pad is divided into more than two sub radiating pads 11' arranged at intervals, and the outer-layer pin pads (12, 12 ') comprise signal pads 12'; the short bonding pad assembly comprises a first bonding pad 21 and a second bonding pad 22, a gap exists between the first bonding pad 21 and the second bonding pad 22, the first bonding pad 21 and the second bonding pad 22 are in short circuit through the gap, and the first bonding pad 21 and the signal bonding pad 12' are overlapped and welded together by adopting an overlapping bonding pad design.

A conventional chip package assembly is shown in fig. 2, and includes: the heat dissipation device comprises a heat dissipation pad 11, outer-layer pin pads 12 distributed on the periphery of the heat dissipation pad, and a silk screen frame 13 used for limiting positions. A chip package assembly applied to an embodiment of the present invention is shown in fig. 4, i.e., the conventional heat-dissipating pad 11 of fig. 2 is divided into a plurality (2 or more) of sub-heat-dissipating pads 11'. Meanwhile, the embodiment of the present invention creatively provides a short bonding pad assembly for replacing the conventional zero ohm resistor, wherein the short bonding pad assembly, as shown in fig. 3, includes: the first and second pads 21, 22 and the gap 23 existing between the first and second pads 21, 22, the first and second pads 21, 22 being shorted together by the gap 23. Fig. 6 shows a PCB layout after stitch bonding with a driver chip using the shorting pad assembly, wherein the middle white line segment represents the signal trace. It should be noted that the driver chip herein adopts the structure of the chip package assembly in the embodiment of the present invention (see fig. 4), and the driver chip herein is only exemplary, and other structures such as a control chip, a memory chip, and the like may also be applicable, and the embodiment of the present invention is not limited thereto.

Comparing fig. 6 with fig. 1, it can be seen that, by stitch-bonding the newly designed short-circuit bonding pad assembly and the chip together, the signal routing does not need to additionally increase the via hole, the signal routing length is greatly shortened, and the signal quality is improved. In addition, compared with the prior art, because a large amount of zero ohm resistors are not used any more, the cost is saved, and the area of the PCB is reduced. Meanwhile, the signal quality is greatly improved due to the adoption of the printed circuit board of the embodiment of the invention, so that the actual signal quality of a chip with a saved function can be evaluated.

Referring to fig. 5, the size of the first pad 21 does not exceed the size of the signal pad 12'. Since the signal pad 12' has a larger size than the first pad 21, no offset occurs at the time of stitch bonding, thereby improving the production yield of SMT (surface mount technology).

Further, referring to fig. 5, the shorting pad assembly is distributed at upper and lower ends of the interval region between the sub heat dissipation pads 11 ', so that signals are transmitted linearly in the interval region between the sub heat dissipation pads 11'. Because the signal bonding pads 12 'stitch-welded with the first bonding pad 21 are positioned at the upper end and the lower end of the interval region between the sub heat dissipation bonding pads 11', signals can be transmitted linearly on a PCB layout, thereby further minimizing signal routing and obviously improving signal quality.

Further, referring to fig. 5, the heat-dissipating pad of the package is divided into three sub-heat-dissipating pads 11' arranged in a spaced-apart manner.

Further, referring to fig. 3, the gap 23 between the first pad 21 and the second pad 22 has a length of 4 mils. The minimum size requirement of the PCB manufactured by PCB manufacturers is 4 mils, so that the wire segment can be shortest, and the length of the signal routing is further shortened.

Further, referring to fig. 3, the first pads 21 have a size of 8mil × 24mil, and the second pads 22 have a size of 8mil × 12 mil. The purpose of adopting the size is to keep consistent with the size of the pin bonding pad of the functional chip (particularly the driver chip), so that the windowing sizes of the steel mesh, the solder mask and the pin bonding pad are kept consistent, and the production efficiency is improved.

Further, the chip package is a re-driver chip package, and the driver chip is often used in the high-speed signal field. Fig. 7, 8, 9 and 10 show experimental data results of designing the sizes of the first and second pads 21 and 22 to be 8mil × 24mil and 8mil × 12mil, respectively, and using a driver chip package assembly. Referring to fig. 7 and 8, for USB3.2, the waveforms of GEN2 using the driver chip and the waveforms of GEN2 not using the driver chip are substantially the same for the printed circuit board provided by the embodiment of the present invention, so that the embodiment of the present invention significantly improves the signal quality. In addition, as can be seen from fig. 9 and 10, for USB3.2, with the printed circuit board provided by the embodiment of the present invention, the DP waveforms using the driver chip and the DP waveforms without using the driver chip are also substantially the same, which further proves that the embodiment of the present invention can significantly improve the signal quality. The printed circuit board adopting the embodiment of the invention can evaluate the actual signal quality of the omitted functional chip.

Another embodiment of the present invention provides a method for manufacturing a circuit, including the steps of: the method comprises the steps of dividing a heat dissipation welding disc of a chip packaging assembly into more than two sub heat dissipation welding discs which are arranged at intervals, wherein the chip packaging assembly comprises the heat dissipation welding discs and outer layer pin welding discs which are distributed on the periphery of the heat dissipation welding discs, and the outer layer pin welding discs comprise signal welding discs; and the stitch welding process includes overlapping and welding a first bonding pad in a short bonding pad assembly and the signal bonding pad, wherein the short bonding pad assembly comprises a first bonding pad and a second bonding pad, a gap exists between the first bonding pad and the second bonding pad, and the first bonding pad and the second bonding pad are shorted together through the gap.

Further, the dividing process includes: the radiating welding disk is divided into more than two sub radiating welding disks which are arranged at intervals, so that the short-circuit welding disk component is distributed at the upper end and the lower end of an interval area between the sub radiating welding disks, and signals can be transmitted in a straight line in the interval area between the sub radiating welding disks.

Further, the stitch welding process comprises the following steps: the first bonding pad and the second bonding pad are integrally steel-meshed. The steel mesh is opened as a whole, so that the first bonding pad and the second bonding pad can be better short-circuited by solder paste when the solder paste is melted.

Further, the stitch welding process comprises the following steps: the size of the first pad does not exceed the size of the signal pad.

Here, it should be noted that: the above description of the embodiment of the method for manufacturing a circuit is similar to the description of the embodiment of the printed circuit board shown in fig. 5, and has similar beneficial effects to the embodiment of the printed circuit board shown in fig. 5, and therefore, the description thereof is omitted.

The previous description is intended to enable any person skilled in the art to make and use the disclosure, and is provided in the context of a particular application and its requirements. Furthermore, the foregoing descriptions of embodiments of the present disclosure are presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit the disclosure to the forms disclosed. Thus, many modifications and variations will be apparent to practitioners skilled in the art, and the generic principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Furthermore, the discussion of the preceding embodiments is not intended to limit the present disclosure. Thus, the present disclosure is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.

12页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种电路板及电路板的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!