多元烷基化亚纳米孔cof材料及其制备方法和用途

文档序号:1196861 发布日期:2020-09-01 浏览:15次 >En<

阅读说明:本技术 多元烷基化亚纳米孔cof材料及其制备方法和用途 (Multi-alkylated sub-nanopore COF material and preparation method and application thereof ) 是由 马利建 贾志敏 李阳 于 2020-06-15 设计创作,主要内容包括:本发明属于放射化学领域,具体涉及多元烷基化亚纳米孔COF材料及其制备方法和用途。本发明提供了一种多元烷基化亚纳米孔COF材料,其结构式如式Ⅰ所示。本发明还提供了的中间体,和上述多元烷基化亚纳米孔COF材料的制备方法。还提供了上述多元烷基化亚纳米孔COF材料在制备吸附和筛分Xe/Kr材料中的应用。本发明提供的多元烷基化亚纳米孔COF材料,采用了多元位点烷基化的策略,更高效、更彻底地引入了功能基团,对Xe具有很高的吸附量,且对Xe/Kr的吸附选择性高达9.7,是一种高效筛分Xe/Kr的材料。同时,本发明提供的多元烷基化亚纳米孔COF材料的制备方法步骤简洁,操作条件便捷,对环境友好。&lt;Image he="881" wi="700" file="DDA0002539633800000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;(The invention belongs to the field of radiochemistry, and particularly relates to a multi-alkylated sub-nanopore COF material, and a preparation method and application thereof. The invention provides a multi-alkylated sub-nanopore COF material, which has a structural formula shown in a formula I. The invention also provides an intermediate and a preparation method of the multi-alkylated sub-nanopore COF material. Also provides application of the multi-alkylated sub-nanopore COF material in preparation of adsorbed and sieved Xe/Kr materials. The multi-alkylation sub-nanopore COF material provided by the invention adopts a multi-site alkylation strategy, introduces functional groups more efficiently and thoroughly, has very high adsorption capacity on Xe, has adsorption selectivity on Xe/Kr as high as 9.7, and is high in adsorption selectivity on Xe/KrThe material of Xe/Kr is screened effectively. Meanwhile, the preparation method of the multi-alkylated sub-nanopore COF material provided by the invention is simple in steps, convenient and fast in operation conditions and environment-friendly.)

多元烷基化亚纳米孔COF材料及其制备方法和用途

技术领域

本发明属于放射化学领域,具体涉及多元烷基化亚纳米孔COF材料及其制备方法和用途。

背景技术

核能是一种通过受控核裂变产生的高能量密度的能源,通常被认为是一种清洁、廉价的化石燃料的替代品,目前被广泛应用1,2。然而,核能潜在安全风险是全世界核能发展的主要障碍之一。与核裂变产生的一些残留在固体或者液体中的放射性核素相比,核裂变产生的挥发性的放射性气体要更难处理3,4。在气态裂变产物中,放射性的氪和氙(主要含放射性核素85Kr和133Xe)所占比例较大,对于这两种气体的处理目前仍面临较大挑战5-7。核燃料废气中具有放射性的Kr(氪)的半衰期长达10.8年,因此,必须在核燃料废气的再处理过程中将其分离除去,以防止其不受控制地释放到大气中污染环境。相比之下,Xe(氙)的半衰期较短(约5.2天),在核燃料废气的再处理过程中已经发生了衰变1-3,5,8,9,另外,纯化后的Xe可以广泛应用于实际工业中,例如,高纯度Xe可应用于商业照明和医学应用,包括神经保护、成像和麻醉2,7,10,11。因此,寻找合适的方法从Xe/Kr混合裂变气体中有效分离纯化Xe,对环境保护和提高经济效益都具有重要意义10,12

目前,对于Xe/Kr的分离主要有两种方法。一种是溶剂溶解选择性吸附法,另一种是多孔材料物理吸附法1,4。溶剂溶解选择性吸附是比较传统的方法,主要是利用低温蒸馏法,根据Xe和Kr的沸点不同来进行分离12,13。但是,这个方法是一个耗能且昂贵的过程,此外,即使在低温蒸馏之后,残余的微量Kr放射性水平仍然过高,无法进一步使用6,14,15

多孔材料因其有合适的孔隙、对Xe/Kr具有较大的吸附容量和一定的选择性,加之它对Xe/Kr的分离过程操作简便,能耗较低。因此,多孔材料物理吸附法相比于低温蒸馏法具有更加突出的优势和应用潜力1,2。然而,利用多孔材料来筛分Xe/Kr的相关研究才刚刚起步,目前仅有的一些报道已经展现了多孔材料对于Xe/Kr分离的优异性能,例如Youn-SangBae等利用动态柱突破实验评估了MOF-505对Xe/Kr的分离性能,在0.5bar和1bar这两种压力下对Xe/Kr的筛分选择性为9-10,该结果与Ryan等人11在298K下模拟计算得到的选择性十分接近。Lim H M课题组研究了沸石NaX和NaA对Xe/Kr的筛分效果,这两种沸石对Xe/Kr的筛分选择性能够达到4-616。但是,由于MOF(金属有机骨架材料)、沸石等多孔材料的稳定性较低,自重大,对Xe/Kr的吸附量受限,就限制了这些材料在实际核燃料后处理方面的应用。另一方面,氪和氙的原子动力学直径分别为0.37nm和0.41nm17,18,通常来说,理想的用于Xe/Kr筛分的材料孔径应与其动力学直径相匹配且略大于动力学直径15,19。然而,具有这样的亚纳米尺寸的孔径且孔径分布均匀的材料并不多见。

COFs(共价有机框架材料)是一类由轻质元素(如H、O、C、N)通过共价键构成的新型多孔结晶材料,因其比表面积大、孔径可调以及种类多样性等优点20,被广泛应用于催化21,22、光电子23、气体筛分24、储能25等领域。作为一种新兴的孔结构灵活可调的晶态多孔材料,共价有机框架材料可通过构筑单元的选择和调控使材料具备规则、均匀的孔结构26-28,不仅如此,通过各种形状功能基团的引入,还可进一步调控孔径使之与目标吸附对象相匹配29,30。目前已有大量研究表明COFs材料对CO2/N2 31,32、CO2/H2 33,34、CO2/CH4 35等混合气体有良好的分离效果,但目前还没有其用于Xe/Kr吸附的报道。

发明内容

本发明提供了一种多元烷基化亚纳米孔COF材料,其结构式如式Ⅰ所示:

Figure BDA0002539633780000021

其中,R为-H或C1~C8烷氧基。

作为本发明优选的技术方案,R为-H或C1~C4烷氧基。

优选的,R同时为-H或同时为C1~C4烷氧基。

最优的,R同时为正丁氧基。

本发明还提供了上述多元烷基化亚纳米孔COF材料的中间体,其结构式如式Ⅱ所示:

Figure BDA0002539633780000031

其中,R1为-H或-OH。

作为本发明优选的技术方案,R1同时为-H或-OH。

本发明还提供了上述多元烷基化亚纳米孔COF材料的制备方法,反应式如下:

上述多元烷基化亚纳米孔COF材料的制备方法,包括以下步骤:

a、将R1取代的苯三甲醛和三(4-氨基苯基)胺均匀分散在邻二氯苯和正丁醇的混合溶剂中,加入醋酸,然后在N2氛围下于110~130℃反应2~4天,得到的固体分别用丙酮、四氢呋喃、N,N-二甲基甲酰胺、甲醇依次洗涤直至滤液澄清,固体干燥后得到多元烷基化亚纳米孔COF材料的中间体;其中,R1为-H或-OH;

b、将上述中间体加入到二氧六环中,同时将碘代正丁烷滴加到溶有中间体的二氧六环中,加热至回流反应18~30h后冷却,抽滤,将得到的固体用丙酮、乙醇、四氢呋喃洗涤至滤液澄清,固体干燥后得到多元烷基化亚纳米孔COF材料。

上述多元烷基化亚纳米孔COF材料的制备方法中,步骤a所述的醋酸的浓度为5~7mol/L。所述邻二氯苯和正丁醇的体积比为1:1。

上述多元烷基化亚纳米孔COF材料的制备方法中,步骤a所述R1取代的苯三甲醛和三(4-氨基苯基)胺的摩尔比为1:1。

上述多元烷基化亚纳米孔COF材料的制备方法中,步骤b所述中间体与碘代正丁烷的摩尔比为1:10

上述多元烷基化亚纳米孔COF材料的制备方法中,步骤a和b所述干燥的条件为50~70℃真空干燥6~10h。

本发明还提供了上述多元烷基化亚纳米孔COF材料及其中间体在制备吸附和筛分Xe/Kr材料中的应用。

本发明提供的多元烷基化亚纳米孔COF材料,通过调节单体的羟基数目实现了调节COFs材料孔径大小的目的,并且还进一步对这两种材料进行烷基化得到亚纳米孔的TFB-TAPA-BuCOF和TFP-TAPA-Bu COF,旨在对Xe/Kr混合气体有较高的筛分能力。同时,本发明提供的多元烷基化亚纳米孔COF材料的制备方法步骤简洁,操作条件便捷,对环境友好。与传统功能化材料不同的是,本发明提供的TFP-TAPA-Bu COF采用了多元位点烷基化的策略,更高效、更彻底地引入了功能基团。通过吸附实验研究了材料对Xe/Kr的吸附和选择性筛分性能,表明经多元烷基化孔道调控的产物TFP-TAPA-Bu COF对Xe具有很高的吸附量,且吸附选择性高达9.7,是一种高效筛分Xe/Kr的材料。

附图说明

图1 TFB-TAPA COF、TFB-TAPA-Bu COF、TFP-TAPA COF和TFP-TAPA-Bu COF的红外谱图、X射线光电子能谱图(XPS)。(A)为TFB、TAPA、TFB-TAPA COF,(B)为TFB-TAPA COF、TFB-TAPA-Bu COF,(C)为TFP、TAPA、TFP-TAPA COF,(D)为TFP-TAPA COF、TFP-TAPA-BuCOF的红外谱图;(E)为TFB-TAPA COF、TFB-TAPA-Bu COF,(F)为TFP-TAPA COF、TFP-TAPA-Bu COF的N1s谱图和(G)为TFP-TAPA COF、TFP-TAPA-Bu COF的O 1s谱图。

图2 TFB-TAPA COF的扫描电子显微镜图。

图3 TFB-TAPA-Bu COF的扫描电子显微镜图。

图4 TFP-TAPA COF的扫描电子显微镜图。

图5 TFP-TAPA-Bu COF的扫描电子显微镜图。

图6 TFB-TAPA COF、TFB-TAPA-Bu COF、TFP-TAPA COF和TFP-TAPA-Bu COF的热重曲线。

图7 TFB-TAPA COF的PXRD实验谱图及AA堆叠模拟谱图。

图8 TFB-TAPA COF的PXRD实验谱图及斜AA堆叠模拟谱图。

图9 TFB-TAPA-Bu COF的PXRD实验谱图及AA堆叠模拟谱图。

图10 TFB-TAPA-Bu COF的PXRD实验谱图及斜AA堆叠模拟谱图。

图11 TFB-TAPA COF和TFB-TAPA-Bu COF的PXRD谱图对比。

图12 TFP-TAPA COF的PXRD实验谱图及AA堆叠模拟谱图。

图13 TFP-TAPA COF的PXRD实验谱图及斜AA堆叠模拟谱图。

图14 TFP-TAPA-Bu COF的PXRD实验谱图及AA堆叠模拟谱图。

图15 TFP-TAPA-Bu COF的PXRD实验谱图及斜AA堆叠模拟谱图。

图16 TFP-TAPA COF和TFP-TAPA-Bu COF的PXRD谱图对比。

图17 TFB-TAPA COF、TFP-TAPA COF、TFB-TAPA-Bu COF和TFP-TAPA-Bu COF的N2吸附脱附曲线及孔径分布图。(A)TFB-TAPA COF和TFB-TAPA-Bu COF的N2吸附脱附曲线;(B)TFB-TAPA COF(上)和TFB-TAPA-Bu COF(下)的孔径分布;(C)TFP-TAPA COF和TFP-TAPA-BuCOF的N2吸附脱附曲线;(D)TFP-TAPA COF(上)和TFP-TAPA-Bu COF(下)的孔径分布。

图18单组分Xe和Kr吸附曲线图及Xe/Kr在MOFs、COFs和多孔有机笼中的分离性能调查。298K,1bar条件下,(A)TFB-TAPA COF和TFB-TAPA-Bu COF以及(B)TFP-TAPA COF和TFP-TAPA-Bu COF的单组分Xe和Kr吸附曲线。

图19 Xe/Kr在MOFs、COFs和多孔有机笼中的分离性能调查。

具体实施方式

多元烷基化亚纳米孔COF材料的制备方法,包括以下步骤:

a、将R1取代的苯三甲醛和三(4-氨基苯基)胺均匀分散在体积比为1:1的邻二氯苯和正丁醇混合溶剂中,加入醋酸,然后在N2氛围下于110~130℃反应2~4天,得到的固体分别用丙酮、四氢呋喃、N,N-二甲基甲酰胺、甲醇依次洗涤直至滤液澄清,固体干燥后得到多元烷基化亚纳米孔COF材料的中间体;其中,R1为-H或-OH;所述的醋酸的浓度为5~7mol/L;所述R1取代的苯三甲醛和三(4-氨基苯基)胺的摩尔比为1:1;

b、将上述中间体加入到二氧六环中,同时将碘代正丁烷滴加到溶有中间体的二氧六环中,加热至回流反应18~30h后冷却,抽滤,将得到的固体用丙酮、乙醇、四氢呋喃洗涤至滤液澄清,固体干燥后得到多元烷基化亚纳米孔COF材料;所述中间体与碘代正丁烷的摩尔比为1:10。

上述多元烷基化亚纳米孔COF材料的制备方法中,步骤a和b所述干燥的条件为50~70℃真空干燥6~10h。

本发明实施例中使用的试剂:均苯三甲醛、2,4,6-三羟基-1,3,5-苯三甲醛和三(4-氨基苯基)胺购买于Aladdin Chemistry Co.Ltd.(China);邻二氯苯,正丁醇购买于Aladdin Chemistry Co.Ltd.(China);丙酮、1,4-二氧六环、四氢呋喃、DMF、氯仿、甲醇等试剂均购买于成都市科龙化工试剂厂;所有的试剂都是AR级,使用中无需进一步纯化。

本发明实施例中使用的仪器:元素分析用CARLO ERBA 1106(意大利)测试C、O、N含量;红外光谱利用Nicolet Nexus 670spectrometer(美国)仪器获得;XPS谱图通过KratosASAM800spectrometer(英国)获得;电镜图利用JSM-7500F Scanning ElectronMicroscope所测;热重曲线利用Shimadzu DTG-60(H)(日本)分析仪获得;XRD图谱在Malvern Panalytical Empyrean diffractometer(Netherlands)using Cu Kαradiation(40kV,40mA)上测试所得;N2吸附脱附曲线利用Micromeritics ASAP 2020(美国)在77K的温度下测得;利用QUADRASORB SI-M analyzer测得Xe/Kr的吸附曲线。

实施例1均苯三甲醛-三(4-氨基苯基)胺共价有机框架材料的中间体1(TFB-TAPACOF)的制备

称取均苯三甲醛(TFB)(16.2mg,0.10mmol)和三(4-氨基苯基)胺(TAPA)(29.0mg,0.10mmol)于15mL耐压管中,加入1mL邻二氯苯和1mL正丁醇和醋酸(6M,0.2mL)后超声2min使其分散均匀,然后在N2氛围下于120℃反应3天,得到的固体粗产物分别用丙酮、THF、DMF、甲醇依次洗涤直至滤液澄清。最后将固体产物置于50℃真空烘箱中干燥过夜,得到的产物即为TFB-TAPA COF。

实施例2 1,3,5-均苯三酚醛-三(4-氨基苯基)胺共价有机框架材料的中间体2(TFP-TAPACOF)的制备

Figure BDA0002539633780000071

称取2,4,6-三羟基-1,3,5-苯三甲醛(TFP)(21.0mg,0.10mmol)和TAPA(29.0mg,0.10mmol)于15mL耐压管中,加入1mL邻二氯苯和1mL正丁醇和醋酸(6M,0.2mL)后超声2min使其分散均匀,然后在N2氛围下于120℃反应3天,得到的固体粗产物分别用丙酮、THF、DMF、甲醇依次洗涤直至滤液澄清。最后将固体产物置于50℃真空烘箱中干燥过夜,得到的产物即为TFP-TAPA COF。

实施例3丁基化均苯三甲醛-三(4-氨基苯基)胺共价有机框架材料(TFB-TAPA-BuCOF)的制备

称取TFB-TAPA COF 60mg于100mL圆底烧瓶中,加入20mL二氧六环,同时将85.1μL碘代正丁烷分散在30mL二氧六环中,将溶于二氧六环的碘代正丁烷滴加到上述圆底烧瓶中,加热至80℃回流搅拌24h后冷却,抽滤,将得到的固体用丙酮、乙醇、THF洗涤至滤液澄清。最后将固体产物置于50℃真空烘箱中干燥过夜,得到的产物即为TFB-TAPA-Bu COF。

实施例4丁基化1,3,5-均苯三酚醛-三(4-氨基苯基)胺共价有机框架材料(TFP-TAPA-BuCOF)的制备

Figure BDA0002539633780000081

称取TFP-TAPA COF 60mg于100mL圆底烧瓶中,加入20mL二氧六环,同时将76μL碘代正丁烷分散在30mL二氧六环中,将溶于二氧六环的碘代正丁烷滴加到上述圆底烧瓶中,加热至80℃回流搅拌24h后冷却,抽滤,将得到的固体用丙酮、乙醇、THF洗涤至滤液澄清。最后将固体产物置于50℃真空烘箱中干燥过夜,得到的产物即TFP-TAPA-Bu COF。

通过元素分析确定了TFB-TAPA COF、TFB-TAPA-Bu COF、TFP-TAPA COF、TFP-TAPA-Bu COF这四种材料中各元素的含量(表1)。

表1元素分析

样品 C/wt% H/wt% N/wt%
实施例1TFB-TAPA COF 81.13 4.40 13.05
实施例2TFP-TAPA COF 72.64 4.06 10.91
实施例3TFB-TAPA-Bu COF 76.57 6.44 12.16
实施例4TFP-TAPA-Bu COF 67.56 5.41 8.35

由于烷基的引入,TFB-TAPA COF烷基化后得到的TFB-TAPA-Bu COF的N含量降低1%左右,同样的,TFP-TAPA COF烷基化后得到的TFP-TAPA-Bu COF的N含量降低约2%。通过图1A的红外光谱可以看出,TFB-TAPA COF在3400cm-1附近有-OH的峰出现,这要归结于TFB-TAPA COF这种材料的吸水作用,1700cm-1处的峰消失表明CHO被消耗,同时,在1323cm-1处C-N、1658cm-1处C=N的生成表明醛胺缩合反应发生。同样的,图1C中,TFP-TAPACOF在1700cm-1处CHO的峰消失,1626cm-1处C=N、1269cm-1处C-N的生成表明TFP-TAPACOF成功合成。图1B中,通过TFB-TAPA COF和TFB-TAPA-Bu COF的对比,我们可以看出TFB-TAPA-Bu COF在2923和2868cm-1处有烷基的峰生成,与其相似,在图1D中,通过TFP-TAPA COF和TFP-TAPA-Bu COF对比可得,2922cm-1和2854cm-1处也有烷基峰生成。在X射线光电子能谱图(XPS)中,TFB-TAPA-Bu COF的N 1s结合能为0.07eV,高于TFB-TAPA COF(图1E),TFP-TAPA-Bu COF的N 1s结合能为0.13eV,也高于TFP-TAPA COF(图1F)。此外,与TFP-TAPA COF相比,TFP-TAPA-BuCOF的O 1s峰向低结合能移动了0.10eV(图1G)。红外谱图、X射线光电子能谱图(XPS)都可以证明TFB-TAPA COF、TFB-TAPA-Bu COF、TFP-TAPA COF和TFP-TAPA-Bu COF可以成功合成。

扫描电子显微镜分析被用于研究COFs的微观形貌,从图2,图3,图4,图5中可以看出TFB-TAPA COF、TFP-TAPA COF、TFB-TAPA-Bu COF和TFP-TAPA COF、TFP-TAPA-Bu COF的形貌都较为均匀。热重分析用来表征材料的热稳定性,从图6中可以看出,这四种材料都经历了三个阶段。第一阶段是100℃之前,TFB-TAPA COF、TFB-TAPA-Bu COF、TFP-TAPA COF、TFP-TAPA-Bu COF分别有2%、4%、3%、6%的损失,这可能是材料中吸收水分或者残留溶剂的损失;第二阶段是100℃到500℃,TFB-TAPA COF、TFB-TAPA-Bu COF、TFP-TAPA COF、TFP-TAPA-Bu COF都有一些轻微的损失,这要归因于材料中残留的小分子的损失;第三阶段在500℃以后,这一阶段4个材料的质量损失的速率增加,是由于这四种COFs材料框架结构的热解导致的;达到600℃时,它们的剩余质量分别为78%、75%、68%、61%,说明这四种材料都具有良好的热稳定性。

实施例5多元烷基化亚纳米孔COF材料的堆叠方式

利用Materials Studio(6.0)软件包对COF进行分子建模。单元结构由TFB或TFP与TAPA键合而成。

从图7可看出,TFB-TAPA COF在6.38°有强衍射峰,并且在11.12°、12.86°等处也有衍射峰,由此可得出,TFB-TAPA COF是一个有较好晶型的共价有机框架材料。与传统的AA堆叠和斜AA堆叠的模拟图谱(图7和图8)相比得出,TFB-TAPA COF的实验图与这两种模拟的图谱都较吻合,因此,还无法确定TFB-TAPA COF的堆叠方式。将TFB-TAPA COF烷基化后得到的TFB-TAPA-Bu COF相对于TFB-TAPA COF而言,除了峰强度有一定的下降之外,没有其他明显的变化(图11)。同样的,TFP-TAPA COF在6.40°和11.5°处有衍射峰(图12和图13),但是没有得到很好的晶型,这是因为我们在单体中引入了羟基。TFP-TAPA COF的实验图谱与模拟的AA堆叠和斜AA堆叠的谱线图均有相似之处,因此仅通过理论模拟还无法判断TFP-TAPA COF的堆叠方式,其堆叠方式可由随后的孔分布实验数据进一步研究和确认。将TFP-TAPA COF后功能化后得到的TFP-TAPA-Bu COF,除了衍射峰的峰强度有一定的降低,没有其他变化(图16)。此外,通过对比TFB-TAPA-Bu COF和TFP-TAPA-Bu COF的实验值和模拟值的PXRD图谱也无法确定它们的堆叠方式(图9,图10,图14,图15)。

利用Micromeritics ASAP 2020(美国)仪器在77K下测得这四种材料的N2吸附脱附等温线,因此得到了TFB-TAPA COF、TFP-TAPA COF、TFB-TAPA-Bu COF以及TFP-TAPA-BuCOF的比表面积和孔体积。图17A和图17C所示,TFB-TAPA COF的比表面积为710.93m2/g,TFP-TAPA COF的表面积为497.01m2/g,它们的孔体积分别为0.43cm3/g和0.44cm3/g,烷基化后的TFB-TAPA-Bu COF和TFP-TAPA-Bu COF的表面积分别为790.74和486.94m2/g,与TFB-TAPA COF和TFP-TAPA COF的结果相差不大,说明本研究中后功能化不会影响比表面积的大小。TFB-TAPA-Bu COF的孔体积与TFB-TAPA COF的相同,都为0.43cm3/g,TFP-TAPA-Bu COF的孔体积增加到了0.51cm3/g。TFB-TAPACOF的孔径集中在8.6、

Figure BDA0002539633780000102

(图17B),说明TFB-TAPACOF存在AA堆叠和斜AA堆叠两种堆叠方式。随着羟基数目的增加,TFP-TAPA COF的孔径有一定程度的减小,同样也存在两种孔径,集中在7.3、(图17D)。结合上述XRD的表征结果,可以得出,TFP-TAPA COF的堆叠方式主要以斜AA堆叠为主,但也存在AA堆叠的方式。最后,通过将TFB-TAPA COF和TFP-TAPA COF进行烷基化,得到了孔径更为均一的TFB-TAPA-BuCOF和TFP-TAPA-Bu COF,它们的孔径分别为

Figure BDA0002539633780000104

(图17B)和(图17D)。

实施例6多元烷基化亚纳米孔COF材料对氪/氙的吸附和分离

为了研究本发明制备的产物在气体吸附分离方面的应用性能,本发明利用实施例1~4制备的TFB-TAPA COF、TFP-TAPA COF、TFB-TAPA-Bu COF以及TFP-TAPA-Bu COF四种材料,在298K不同压力下进行了对Xe/Kr的吸附实验。

将TFB-TAPA COF、TFB-TAPA-Bu COF、TFP-TAPA COF、TFP-TAPA-Bu COF这四种材料在甲醇中浸泡一天进行溶剂交换,重复3次此操作,过滤,晾干,将晾干的四种材料通过纸槽分别加入到吸附测试管中,在室温下活化6h,再于180℃下活化一晚,用于气体吸附测试。每次测试的样品质量约100mg,利用QUADRASORB SI-M比表面积分析仪在室温25℃下进行Xe/Kr吸附曲线的测试。Xe/Kr吸附选择性SXe/Kr=HXe/HKr。HXe,HKr分别为Xe,Kr的亨利常数,通过低压条件下材料对气体吸附等温线的线性拟合曲线的斜率所得。吸附结果如表2所列。

表2四种COFs在298K和1bar条件下的Xe/Kr吸附性能

Figure BDA0002539633780000111

如表2所示,孔径不均一的TFB-TAPA COF和TFP-TAPA COF对Xe/Kr的吸附效果较差,通过烷基化调控得到了孔径更为均一的TFB-TAPA-Bu COF和TFP-TAPA-Bu COF,并且,由于TFP-TAPA-Bu COF的孔体积要更大,因此,其性能更加突出,在298K,1.0bar下对Xe的吸附量高达85.6cm3/g,对Xe/Kr的筛分选择性能够达到9.7(图18A和图18B)。与之前报道过的MOF和多孔有机笼对Xe/Kr的吸附量及选择性相比(图19)9-11,14,36-39,TFP-TAPA-BuCOF的吸附和筛分性能要更好一些,表明了TFP-TAPA-Bu COF是一种很有潜力的Xe/Kr筛分材料。

本发明利用醛胺缩合反应,通过调节-OH的数目成功制备了不同孔径和堆叠方式的共价有机框架材料TFB-TAPA COF和TFP-TAPA COF,再通过多元烷基化调控策略使孔径进一步均一化,更高效、彻底地制备出具有亚纳米孔的COF材料TFB-TAPA-Bu COF和TFP-TAPA-BuCOF。其中,TFP-TAPA-Bu COF因其孔径

Figure BDA0002539633780000112

略大于Xe/Kr的动力学直径,并且有较大的孔体积,首次实现了共价有机框架材料对Xe/Kr的高效吸附和筛分,在一定条件下对Xe的吸附量高达85.6cm3/g,对Xe/Kr的选择性系数能够达到9.7,是一种非常有潜力的气体吸附与筛分材料。本发明采用的多元烷基化策略为多孔材料的孔隙构建与调控,以及亚纳米孔吸附材料的制备提供了有价值的研究方向。

参考文献:

1、Banerjee,D.;Cairns,A.J.;Liu,J.;Motkuri,R.K.;Nune,S.K.;Fernandez,C.A.;Krishna,R.;Strachan,D.M.;Thallapally,P.K.Potential of Metal-organicFrameworks for Separation of Xenon and Krypton.Acc.Chem.Res.2015,48,211-219。

2、Banerjee,D.;Simon,C.M.;Plonka,A.M.;Motkuri,R.K.;Liu,J.;Chen,X.;Smit,B.;Parise,J.B.;Haranczyk,M.;Thallapally,P.K.Metal-organic Framework withOptimally Selective Xenon Adsorption and Separation.Nat.Chem.2016,7,ncomms11831。

3、Chen,X.;Plonka,A.M.;Banerjee,D.;Krishna,R.;Schaef,H.T.;Ghose,S.;Thallapally,P.K.;Parise,J.B.Direct Observation of Xe and Kr Adsorption in aXe-selective Microporous Metal Organic Framework.J.Am.Chem.Soc.2015,137,7007-7010。

4、Soelberg,N.R.;Garn,T.G.;Greenhalgh,M.R.;Law,J.D.;Jubin,R.;Strachan,D.M.;Thallapally,P.K.Radioactive Iodine and Krypton Control for Nuclear FuelReprocessing Facilities.Sci.Technol.Nucl.Install.2013,2013,1-12。

5、Yan,Z.;Gong,Y.;Chen,B.;Wu,X.;liu,Q.;Cui,L.;Xiong,S.;Peng,S.MethylFunctionalized Zr-Fum MOF with Enhanced Xenon Adsorption and Separation.Sep.Purif.Technol.2020,239。

6、Feng,X.;Zong,Z.;Elsaidi,S.K.;Jasinski,J.B.;Krishna,R.;Thallapally,P.K.;Carreon,M.A.Kr/Xe Separation over a Chabazite ZeoliteMembrane.J.Am.Chem.Soc.2016,138,9791-9794。

7、Wu,T.;Lucero,J.;Zong,Z.;Elsaidi,S.K.;Thallapally,P.K.;Carreon,M.A.Microporous Crystalline Membranes for Kr/Xe Separation:Comparison BetweenAlPO-18,SAPO-34,and ZIF-8.ACS Appl.Nano Mater.2017,1,463-470。

8、Vazhappilly,T.;Ghanty,T.K.;Jagatap,B.N.Computational Modeling ofAdsorption of Xe and Kr in M-MOF-74 Metal Organic Frame Works with DifferentMetal Atoms.J.Phys.Chem.C 2016,120,10968-10974。

9、Xiong,S.;Liu,Q.;Wang,Q.;Li,W.;Tang,Y.;Wang,X.;Hu,S.;Chen,B.AFlexible Zinc Tetrazolate Framework Exhibiting Breathing Behaviour on XenonAdsorption and Selective Adsorption of Xenon over Other NobleGases.J.Mater.Chem.A 2015,3,10747-10752。

10、Fernandez,C.A.;Liu,J.;Thallapally,P.K.;Strachan,D.M.Switching Kr/Xe Selectivity with Temperature in a Metal-organicFramework.J.Am.Chem.Soc.2012,134,9046-9049。

11、Bae,Y.-S.;Hauser,B.G.;Colón,Y.J.;Hupp,J.T.;Farha,O.K.;Snurr,R.Q.HighXenon/Krypton Selectivity in a Metal-organic Framework with SmallPores and Strong Adsorption Sites.Micropor.Mesopor.Mater.2013,169,176-179。

12、Lee,S.J.;Yoon,T.U.;Kim,A.R.;Kim,S.Y.;Cho,K.H.;Hwang,Y.K.;Yeon,J.W.;Bae,Y.S.Adsorptive Separation of Xenon/Krypton Mixtures Using aZirconium-based Metal-organic Framework with High Hydrothermal andRadioactive Stabilities.J.Hazard.Mater.2016,320,513-520。

13、Tong,M.;Lan,Y.;Yang,Q.;Zhong,C.Exploring the Structure-propertyRelationships of Covalent Organic Frameworks for Noble GasSeparations.Chem.Eng.Sci.2017,168,456-464。

14、Perry,J.J.;Teich-McGoldrick,S.L.;Meek,S.T.;Greathouse,J.A.;Haranczyk,M.;Allendorf,M.D.Noble Gas Adsorption in Metal–organic FrameworksContaining Open Metal Sites.J.Phys.Chem.C 2014,118,11685-11698。

15、Li,L.;Guo,L.;Zhang,Z.;Yang,Q.;Yang,Y.;Bao,Z.;Ren,Q.;Li,J.A RobustSquarate-based Metal-organic Framework Demonstrates Record-high Affinity andSelectivity for Xenon over Krypton.J.Am.Chem.Soc.2019,141,9358-9364。

16、Jameson,C.J.;Jameson,A.K.;Lim,H.M.Competitive Adsorption of Xenonand Argon in Zeolite NaA.129Xe Nuclear Magnetic Resonance Studies and GrandCanonical Monte Carlo Simulations.J.Chem.Phys.1997,107,4364-4372。

17、Wang,Q.;Ke,T.;Yang,L.;Zhang,Z.;Cui,X.;Bao,Z.;Ren,Q.;Yang,Q.;Xing,H.Separation of Xe from Kr with Record Selectivity and Productivity in Anion-pillared Ultramicroporous Materials by Inverse Size-sieving.Angew.Chem.Int.Ed.Engl.2020,59,3423-3428。

18、Yu,L.;Xiong,S.;Lin,Y.;Li,L.;Peng,J.;Liu,W.;Huang,X.;Wang,H.;Li,J.Tuning the Channel Size and Structure Flexibility of Metal-organicFrameworks for the Selective Adsorption of Noble Gases.Inorg.Chem.2019,58,15025-15028。

19、Anderson,R.;Schweitzer,B.;Wu,T.;Carreon,M.A.;Gomez-Gualdron,D.A.Molecular Simulation Insights on Xe/Kr Separation in a Set of NanoporousCrystalline Membranes.ACS Appl.Mater.Interfaces 2018,10,582-592。

20、Ascherl,L.;Evans,E.W.;Hennemann,M.;Di Nuzzo,D.;Hufnagel,A.G.;Beetz,M.;Friend,R.H.;Clark,T.;Bein,T.;Auras,F.Solvatochromic Covalent OrganicFrameworks.Nat.Commun.2018,9,3802。

21、Ding,S.Y.;Gao,J.;Wang,Q.;Zhang,Y.;Song,W.G.;Su,C.Y.;Wang,W.Construction of Covalent Organic Framework for Catalysis:Pd/COF-LZU1 inSuzuki-Miyaura Coupling Reaction.J.Am.Chem.Soc.2011,133,19816-19822。

22、Xu,H.;Gao,J.;Jiang,D.J.N.C.Stable,Crystalline,Porous,CovalentOrganic Frameworks as a Platform for Chiral Organocatalysts.Nat.Chem.2015,7,905-912。

23、Wan,S.;Guo,J.;Kim,J.;Ihee,H.;Jiang,D.A Belt-Shaped,BlueLuminescent,and Semiconducting Covalent Organic Framework.Angew.Chem.Int.Ed.Engl.2008,47,8826-8830。

24、Zeng,Y.;Zou,R.;Zhao,Y.Covalent Organic Frameworks for CO2Capture.Adv.Mater.2016,28,2855-2873。

25、Wang,S.;Wang,Q.;Shao,P.;Han,Y.;Gao,X.;Ma,L.;Yuan,S.;Ma,X.;Zhou,J.;Feng,X.;Wang,B.Exfoliation of Covalent Organic Frameworks into Few-LayerRedox-active Nanosheets as Cathode Materials for Lithium-IonBatteries.J.Am.Chem.Soc.2017,139,4258-4261。

26、Diercks,C.S.;Yaghi,O.M.The Atom,the Molecule,and the CovalentOrganic Framework.Science 2017,355,923。

27、Ascherl,L.;Sick,T.;Margraf,J.T.;Lapidus,S.H.;Calik,M.;Hettstedt,C.;Karaghiosoff,K.;

Figure BDA0002539633780000141

M.;Clark,T.;Chapman,K.W.;Auras,F.;Bein,T.Molecular Docking Sites Designed for the Generation of Highly CrystallineCovalent Organic Frameworks.Nat.Chem.2016,8,310-316。

28、Li,Y.;Wang,L.;Li,B.;Zhang,M.;Wen,R.;Guo,X.;Li,X.;Zhang,J.;Li,S.;Ma,L.Pore-Free Matrix with Cooperative Chelating of Hyperbranched Ligands forHigh-performance Separation of Uranium.ACS Appl.Mater.Interface 2016,8,28853-28861。

29、Bai,C.;Li,J.;Liu,S.;Yang,X.;Yang,X.;Tian,Y.;Cao,K.;Huang,Y.;Ma,L.;Li,S.In Situ Preparation of Nitrogen-rich and Functional UltramicroporousCarbonaceous COFs by“Segregated”Microwave Irradiation.Micropor.Mesopor.Mater.2014,197,148-155。

30、Bai,C.;Zhang,M.;Li,B.;Zhao,X.;Zhang,S.;Wang,L.;Li,Y.;Zhang,J.;Ma,L.;Li,S.Modifiable Diyne-Based Covalent Organic Framework:a VersatilePlatform for in Situ Multipurpose Functionalization.RSC Adv.2016,6,39150-39158。

31、Das,P.;Mandal,S.K.In-depth Experimental and ComputationalInvestigations for Remarkable Gas/Vapor Sorption,Selectivity,and Affinity bya Porous Nitrogen-rich Covalent Organic Framework.Chem.Mater.2019,31,1584-1596。

32、Pyles,D.A.;Crowe,J.W.;Baldwin,L.A.;McGrier,P.L.Synthesis ofBenzobisoxazole-linked Two-dimensional Covalent Organic Frameworks and TheirCarbon Dioxide Capture Properties.ACS Macro Lett.2016,5,1055-1058。

33、Fan,H.;Mundstock,A.;Feldhoff,A.;Knebel,A.;Gu,J.;Meng,H.;Caro,J.Covalent Organic Framework-Covalent Organic Framework Bilayer Membranes forHighly Selective Gas Separation.J.Am.Chem.Soc.2018,140,10094-10098。

34、Fu,J.;Das,S.;Xing,G.;Ben,T.;Valtchev,V.;Qiu,S.Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2.J.Am.Chem.Soc.2016,138,7673-7680。

35、Fan,H.;Mundstock,A.;Gu,J.;Meng,H.;Caro,J.An Azine-linked CovalentOrganic Framework ACOF-1 Membrane for Highly Selective CO2/CH4Separation.J.Mater.Chem.A 2018,6,16849-16853。

36、Mueller,U.;Schubert,M.;Teich,F.;Puetter,H.;Pastre,J.J.C.Metal-organic Frameworks-Prospective Industrial Application.J.Mater.Chem.A 2006,37,626-636。

37、Thallapally,P.K.;Grate,J.W.;Motkuri,R.K.Facile Xenon Capture andRelease at Room Temperature Using a Metal-organic Framework:a Comparison withActivated Charcoal.Chem.Commun.(Camb)2012,48,347-349。

38、Chen,X.;Plonka,A.M.;Banerjee,D.;Krishna,R.;Schaef,H.T.;Ghose,S.;Thallapally,P.K.;Parise,J.B.Direct Observation of Xe and Kr Adsorption in aXeselective Microporous Metal Organic Framework.J.Am.Chem.Soc.2015,137,7007-7010。

39、Hulvey,Z.;Lawler,K.V.;Qiao,Z.;Zhou,J.;Fairen-Jimenez,D.;Snurr,R.Q.;Ushakov,S.V.;Navrotsky,A.;Brown,C.M.;Forster,P.M.Noble Gas Adsorption inCopper Trimesate,HKUST-1:An Experimental and ComputationalStudy.J.Phys.Chem.C 2013,117,20116-20126。

23页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种低热膨胀系数聚酰亚胺薄膜的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!