用于精确角位移测量的多循环双冗余角位置感测机构及相关联的使用方法

文档序号:1220129 发布日期:2020-09-04 浏览:17次 >En<

阅读说明:本技术 用于精确角位移测量的多循环双冗余角位置感测机构及相关联的使用方法 (Multi-cycle dual redundant angular position sensing mechanism for accurate angular displacement measurement and associated methods of use ) 是由 G·沙加 B·S·纳杜里 于 2018-12-03 设计创作,主要内容包括:本发明公开了一种装置,该装置可以包括第一平面电感式传感器,该第一平面电感式传感器包括两个振荡器线圈和两个感测线圈。该装置还可以包括独立于第一传感器的第二平面电感式传感器,并且该第二平面电感式传感器还包括一对振荡器线圈和感测线圈。该装置还可以包括高频交流载波发生器,该高频交流载波发生器被配置为将高频交流载波信号注入到振荡器线圈中。第一平面电感式传感器的振荡器线圈的载波信号与相同平面电感式传感器的第2振荡器线圈180度异相,并且沿相反的几何方向缠绕,并且另一个电感式传感器的振荡器线圈也可以类似地缠绕。第一平面电感式传感器的两个感测线圈可以彼此90度异相,并且另一个电感式传感器的感测线圈也可以类似地缠绕。(An apparatus may include a first planar inductive sensor including two oscillator coils and two sensing coils. The apparatus may also include a second planar inductive sensor independent of the first sensor, and the second planar inductive sensor further includes a pair of oscillator coils and a sensing coil. The apparatus may further include a high frequency ac carrier generator configured to inject a high frequency ac carrier signal into the oscillator coil. The carrier signal of the oscillator coil of the first planar inductive sensor is 180 degrees out of phase with the 2 nd oscillator coil of the same planar inductive sensor and is wound in the opposite geometric direction, and the oscillator coil of the other inductive sensor may also be similarly wound. The two sensing coils of the first planar inductive sensor may be 90 degrees out of phase with each other, and the sensing coil of the other inductive sensor may also be similarly wound.)

用于精确角位移测量的多循环双冗余角位置感测机构及相关 联的使用方法

背景技术:

技术领域:

各种位置感测应用可以受益于双冗余感测。例如,对于安全关键型应用中的精确角位移测量,多循环双冗余角位置感测机构及相关联的使用方法可以是有用的,其中感测系统的故障将不会导致灾难,因为它由具有相同形状因数并容纳在相同空间中的类似系统支持。

相关技术描述

位置传感器是汽车、工业和航空航天行业中的常见元件。更一般地,每当涉及安全时,高度耐用且可靠的位置传感器是有价值的。可以使用电冗余位置传感器布置来满足大部分的安全要求,这些电冗余位置传感器布置可以通过使用两个独立位置传感器测量相同参数来实现。

电位计用作冗余位置传感器。它们是接触型传感器并且导致磨损和噪音。为了克服这些缺点,使用了非接触型传感器。这些传感器基于电感、电容、光学和霍尔效应原理。光学编码器提供了良好的分辨率,但导致更高的成本以及恶劣/受污染环境中的可靠性相关问题。霍尔传感器对温度和外部磁场敏感。电容传感器对极端环境变化非常敏感。通过霍尔、光学和电容技术来实现冗余设计可能增加部件计数和成本。

另外,常规电感式位置传感器是昂贵的。它们在成本方面和空间方面都是昂贵的:当它们径向地缠绕在芯上时,它们占据了很大的三维空间。

发明内容

根据某些实施方案,装置可以包括第一平面电感式传感器,该第一平面电感式传感器包括相对于彼此180度异相的两个振荡器线圈和两个感测线圈。装置还可以包括独立于第一传感器的第二平面电感式传感器,该第二平面电感式传感器包括相对于彼此180度异相的两个振荡器线圈和两个感测线圈。装置还可以包括高频交流载波发生器,该高频交流载波发生器被配置为将高频交流载波信号注入到振荡器线圈中。针对第一平面电感式传感器的振荡器线圈的载波信号可以与针对第二平面电感式传感器的振荡器线圈的载波信号同相。第一平面电感式传感器的振荡器线圈可以与第二平面电感式传感器的相应振荡器线圈沿相同几何方向缠绕。第一平面电感式传感器的两个感测线圈可以彼此90度异相。第二平面电感式传感器的两个感测线圈可以彼此90度异相。

在某些实施方案中,方法可以包括提供装置,该装置具有第一平面电感式传感器,该第一平面电感式传感器包括两个振荡器线圈和两个感测线圈,并且还具有独立于第一传感器的第二平面电感式传感器,并且该第二平面电感式传感器也包括两个振荡器线圈和两个感测线圈。方法还可以包括提供电磁地链接到感测线圈中的每个感测线圈的目标。方法还可以包括基于在感测线圈中感应的电压来感测目标的角位置。

附图说明:

为了正确理解本发明,应参考附图,其中:

图1示出了根据本发明某些实施方案的独立的两对振荡器线圈。

图2A示出了根据本发明某些实施方案的第一对感测线圈。

图2B示出了根据本发明某些实施方案的第二对感测线圈。

图3示出了根据本发明某些实施方案的目标板。

图4A示出了根据本发明某些实施方案的四层PCB的顶层。

图4B示出了根据本发明某些实施方案的四层PCB的中间层1。

图5提供了根据本发明某些实施方案的四层PCB和目标PCB的透视图。

图6A示出了根据本发明某些实施方案的放置在0度位置处的目标。

图6B示出了根据本发明某些实施方案的放置在90度位置处的目标。

图6C示出了根据本发明某些实施方案的放置在180度位置处的目标。

图6D示出了根据本发明某些实施方案的放置在270度位置处的目标。

图7A示出了根据本发明某些实施方案的第一对感测线圈中的感应电压。

图7B示出了根据本发明某些实施方案的第二对感测线圈中的感应电压。

图8示出了根据本发明某些实施方案的方法。

图9示出了根据本发明某些实施方案的感测线圈的三维视图。

具体实施方式

本发明的某些实施方案解决了使用平面电感感测技术的双冗余位置感测机构。使用该技术,与许多替代设计相比,可能以更高的准确度测量更低的角位移。与单感测方法(非冗余)相比,可以使用各自具有多个循环的两个独立传感器来实现该设计,而不会增加设备的尺寸和PCB层计数。两个独立传感器可以包括两个隔离的电源、振荡器线圈、感测线圈和接地路径。如果这些传感器中的一个传感器发生故障,则另一个传感器仍可以操作并支持应用。这些传感器可以廉价地由固定印刷电路板(PCB)、线圈和金属目标构成。PCB部件和/或引脚电平中的单个故障将不会致使两个传感器都发生故障。因此,这种设计是独特的。此外,与其他电感式技术设计相比,该设计的某些实施方案可以更好地服务于安全关键型汽车应用。此外,某些实施方案还可以与其他当代技术(诸如霍尔效应、电容和光学技术)竞争。

本发明的某些实施方案可以具有各种益处和/或优点。例如,根据某些实施方案的设计可以使用新兴的平面电感感测技术,由于移动电触点的省略、良好的温度性能以及对灰尘的抵抗性,因此该技术可以是耐用的。这些电感感测设备可以用作绝对位置感测设备,这意味着它们可以在通电时确定位置而不用移动目标。

本发明的某些实施方案包括一种传感器设计,与用于冗余的两个独立传统平面电感式传感器相比,该传感器设计合并具有冗余的多循环位置检测,而不会影响成本、面积、PCB层数和准确度。这可能是具有高准确度的对于小型空间和价格敏感型应用的最合适解决方案。

因为某些实施方案合并冗余和多循环配置,所以某些实施方案可以特别适合于需要安全关键型位置传感器的汽车行业。位置感测应用中的一些包括但不限于制动踏板、节气门体、致动器和马达控制。

与现有方法相比,本发明的某些实施方案在经济上可以是有利的。例如,因为线圈被置于PCB上,所以根据某些实施方案的平面电感式位置传感器可以是成本有效的。

此外,某些实施方案可以避免单故障点问题。例如,某些实施方案可以使用两个独立的传感器线圈和集成电路(IC),其中针对单个传感器采用相同面积。如果一个传感器发生故障,则另一个传感器可以给出反馈信息并达到目的。

此外,某些实施方案可能以更高的准确度用于低角测量。这可以通过多循环测量来实现。而且,这些多个循环还可以消除对精确机械组装要求的需求。

电感式传感器可以用于将线性位移或角运动转换为成比例的电信号。电感式传感器可以包括维持振荡的两个主线圈以及在目标的存在下接收位置信息的两个次级线圈。

可以将高频交流(AC)载波信号注入振荡器线圈中。各自具有串联电容器的振荡器线圈形成储能电路。这些电路的相应信号(OSC1和OSC2信号)可以彼此180°异相。针对OSC1和OSC2的线圈可以沿几何上相反的方向缠绕,因此两个线圈中的电流可以沿相同方向流动,从而确保磁场的添加。该生成的磁场可以耦合在传感器线圈上。每个次级线圈可以具有其中电流沿相反方向流动的两个匹配区段。两个区段可以具有相同的几何形状。可能以一定方式将两个区段铺设在PCB上,使得一个区段中的电流的流动沿着与另一区段相反的方向。当没有目标时,次级线圈中的感应电压可以为零。当以特定气隙将金属目标引入系统时,目标中的涡流可以引起感测线圈电压的差异。

本发明的某些实施方案提供了以四层PCB实现的60机械度设计。该设计可以包括两对振荡器线圈和感测线圈。

图1示出了根据本发明某些实施方案的独立的两对振荡器线圈。具体地,示出了独立的两对振荡器线圈O11、O12和O21、O22。可以基于交错拓扑将这些振荡器置于四层PCB的中间层2和底层。一对振荡器线圈可以源自两个独立电源(标记为Vin1和Vin2)。O11和O12的信号可以相对于彼此180°异相。O21和O22可以类似地放置,但可以从Vin2激励,如图1所示。

除了图1所示的独立的两对振荡器线圈之外,系统还可以包括两对独立感测线圈C11、C12和C21、C22,如图2A和图2B所示。两对独立感测线圈可以占据图5所示的参考虚线的相应上侧和下侧,而振荡器线圈可以占据对应于上侧和下侧两者的相同区域。感测线圈可以共享四层PCB的顶层和中间层1,分别如图4A和图4B所示。图4A示出了根据本发明某些实施方案的四层PCB的顶层,而图4B示出了根据本发明某些实施方案的四层PCB的中间层1。

图2A示出了根据本发明某些实施方案的第一对感测线圈。如图2A所示,C11和C12感测线圈可以被置于相对于彼此90°相移。这可以通过以15°的预先确定的机械偏移铺设线圈来实现。例如,目标板的360°机械旋转可以产生6个正弦和余弦电循环,这意味对于180°旋转产生三个电循环。单个电循环的跨度可以覆盖60°,即180°/3个电循环=60°针对1个电循环。因此,目标板可以被设计成具有六个叶片以用于目标的完整360°机械旋转,并且因此可以被设计成具有三个叶片以用于目标的180°机械旋转(例如,在其初始位置中,三个叶片可以处于目标的上半部并且三个叶片可以处于目标的下半部)。因此,机械旋转与电旋转的比率是针对每六个电旋转有一个机械旋转,或1:6。为了从机械分离中获得电分离,回想电正弦和余弦彼此90°异相。因为机械旋转和电旋转之间的比率为1:6,所以1度的机械分离相当于6度的电旋转。因此,在该系统中以机械方式,线圈的起始点可能以90°/6=15°的机械分离进行分离,以便实现90°的电分离。在90°的电分离下,如果通过正弦函数驱动一个感测线圈,则将通过余弦函数驱动下一个分离的感测线圈。

C11和C12可以在PCB上完成三个回路以到达C11、C12相移点,并且通过四层PCB的顶层和中间层1以交错拓扑返回起始点。C11和C12可以在C11和C12结束点处终止并且连接到相应接地。相移点可以简单地是相应感测线圈的几何中点。

图9示出了根据本发明某些实施方案的感测线圈的三维视图。如图9所示,线圈可以包括以实线示出并且开始于起始点和终止于180度相移点的起始半部,以及以虚线示出并且开始于180度相移点和结束于结束点的结束半部。起始半部可以包括三个回路910、920和930,而结束半部可以类似地包括三个回路940、950和960。起始半部可以为电流提供正向路径,而结束半部可以为电流提供返回路径,如图9的下部所示。

图2B示出了根据本发明某些实施方案的第二对感测线圈。如图2B所示,C21和C22可以是被置于相对于彼此90°相移的另外两个感测线圈。C21和C22可以完成三个循环以到达C21、C22相移点,并且可以通过4层PCB的顶层和中间层1以交错拓扑返回起始点。C21和C22可以在C21和C22结束点处终止并且连接到相应接地。

可以独立地将高频信号引入O11、O12和O21、O22。当不存在目标时,感测线圈中感应的电压为零。图3示出了根据本发明某些实施方案的目标板。该六叶形状表示一种可能实施方案。在这种情况下,图3是按比例绘制的,但允许偏离该比例。

在以特定气隙将图3所示的目标(例如,目标PCB或目标板)放置在感测线圈的顶部上时,时变磁场可以在图5所示的参考虚线的上部和下部的感测线圈中感应电压。时变磁场可以是振荡器线圈中的振荡电流在目标中生成涡电流的结果。图5提供了根据本发明某些实施方案的四层PCB和目标(该目标可以是板或PCB)的透视图。可以独立地读回在感测线圈C11、C12、C21、C22中感应的电压,并且可以基于独立电压计算位置信息。

图3所示的目标可以辅助和限定振荡器和感测线圈之间的磁耦合。目标形状可能以一定方式进行设计,使得当其轴向旋转时,以正弦函数驱动磁耦合。目标可以是简单的金属片材、PCB上的铜或类似物。当目标旋转时,在感测线圈C11、C12和C21、C22中感应的电压是正弦和余弦的函数,如图7a和图7b所示。

通过将图6A至图6D与图7A和图7B相关联,可以看到目标位置和感应的感测线圈电压之间的关系,如将在下面讨论的。图7A示出了根据本发明某些实施方案的第一对感测线圈中的感应电压,而图7B示出了根据本发明某些实施方案的第二对感测线圈中的感应电压。

图6A示出了根据本发明某些实施方案的放置在0度位置处的目标。0度位置是目标的参考位置,如图6A所示的那样布置。在这种情况下,在图7A中的a1、b1点处分别示出了线圈C11、C21中感应的电压的量。在图7B中的点c1、d1处示出了线圈C12、C22中感应的电压的量。

图6B示出了根据本发明某些实施方案的放置在90度位置处的目标。因此,目标相对于图6A所示的其初始位置旋转90度。在图6B所示的情况下,在图7A中的点a2、b2处示出了线圈C11、C21中感应的电压的量。在图7B中的点c2、d2处示出了线圈C12、C22中感应的电压的量。

图6C示出了根据本发明某些实施方案的放置在180度位置处的目标。在这种情况下,在图7A中的a3、b3点处示出了线圈C11、C21中感应的电压的量。在图7B中的点c3、d3处示出了线圈C12、C22中感应的电压的量。

图6D示出了根据本发明某些实施方案的放置在270度位置处的目标。在这种情况下,在图7A中的a4、b4点处示出了线圈C11、C21中感应的电压的量。在图7B中的点c4、d4处示出了线圈C12、C22中感应的电压的量。

电循环在点a5、b5、c5、d5处结束并且下一个循环继续进行,该循环为360度,其相当于上述0度情况。一旦目标完成总共360°旋转,就可以在输出部处观察到三个电循环,如图7A和图7B所示。

本发明的各种实施方案。例如,装置可以包括第一平面电感式传感器,该第一平面电感式传感器包括两个振荡器线圈和两个感测线圈。装置还可以包括独立于第一传感器的第二平面电感式传感器,并且该第二平面电感式传感器也包括两个振荡器线圈和两个感测线圈。装置还可以包括高频交流载波发生器,该高频交流载波发生器被配置为将高频交流载波信号注入到振荡器线圈中。针对第一平面电感式传感器的振荡器线圈的载波信号可以与针对相同平面电感式传感器的振荡器线圈的载波信号180度异相。此外,第一平面电感式传感器的振荡器线圈可以与相同平面电感式传感器的振荡器线圈沿着相反的几何方向缠绕。第一平面电感式传感器的两个感测线圈可以彼此90度异相。另外,第二平面电感式传感器的两个感测线圈彼此90度异相。

感测线圈中的每个感测线圈可以完成三个循环以到达相移点并返回起始点。两个振荡器线圈可以源自独立电源。导电目标中的涡流可导致感测线圈电压的差异。第一平面电感式传感器可以被配置为第二平面电感式传感器的冗余。第一平面电感式传感器和第二平面电感式传感器可以被配置为使得禁用传感器中的一个传感器的单个传感器故障将不会影响另一个传感器。

目标可以被设置为轴向面对包括振荡线圈和感测线圈的印刷电路板。感测线圈可以被配置为检测目标的角位置。目标可以设置在印刷电路板上。感测线圈可以被配置为检测目标的绝对角位置。

图8示出了根据本发明某些实施方案的方法。方法可以包括在810处,提供诸如以上所述的装置,该装置具有第一平面电感式传感器,该第一平面电感式传感器包括两个振荡器线圈和两个感测线圈,并且还具有独立于第一传感器的第二平面电感式传感器,并且该第二平面电感式传感器也包括两个振荡器线圈和两个感测线圈。装置还可以具有上述其他特征中的任一个特征,诸如构造在单个四层PCB上。方法还可以包括在820处,提供电磁地链接到感测线圈中的每个感测线圈的目标。方法还可以包括在830处,基于在感测线圈中感应的电压来感测目标的角位置。所感测的位置可以是绝对位置。方法还可以包括在825处,将交流电作为输入提供给振荡器线圈。

本领域普通技术人员将容易理解,如上所讨论的本发明可以以不同顺序的步骤和/或使用与所公开的配置不同的配置中的硬件元件来实践。因此,尽管已经基于这些优选的实施方案描述了本发明,但是对于本领域技术人员显而易见的是,某些修改、变型和另选构造将是显而易见的,同时保持在本发明的实质和范围内。

23页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:旋转角度检测装置

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!