对缓慢且持续性心脏节律的检测

文档序号:1255414 发布日期:2020-08-21 浏览:11次 >En<

阅读说明:本技术 对缓慢且持续性心脏节律的检测 (Detection of slow and sustained cardiac rhythms ) 是由 大卫·L·佩什巴赫 苏尼帕·萨哈 迪帕·马哈詹 于 2018-11-05 设计创作,主要内容包括:本文描述了用于检测缓慢且持续性节律诸如指示出对心房快速性心律失常(AT)的心室反应的系统和方法。心律失常检测系统监测患者的心室心率,并在检测时段期间识别出其对应的心率降至心率阈值以下的缓慢心脏搏动。系统识别一个或多个持续缓慢搏动(SSB)序列,每个序列包括两个或更多个缓慢心脏搏动。系统确定了在检测时段期间的识别出的缓慢心脏搏动的第一普遍率指示附以及识别出的SSB序列的第二普遍率指示符。心律失常检测器电路使用第一和第二普遍率指示符检测缓慢且持续性节律。(Systems and methods for detecting slow and sustained rhythms, such as ventricular responses indicative of Atrial Tachyarrhythmias (ATs), are described herein. The arrhythmia detection system monitors the patient&#39;s ventricular heart rate and identifies slow heart beats during the detection period whose corresponding heart rate falls below a heart rate threshold. The system identifies one or more Sustained Slow Beat (SSB) sequences, each sequence including two or more slow heart beats. The system determines a first prevalence indicator for the identified slow heart beats and a second prevalence indicator for the identified SSB sequence during the detection period. The arrhythmia detector circuit detects a slow and sustained rhythm using the first and second prevalence indicators.)

对缓慢且持续性心脏节律的检测

相关申请

本申请要求于2017年12月6日提交的美国临时专利申请序列号62/595,518的35U.S.C§119(e)下的优先权的权益,其通过引用以其整体并入本文。

技术领域

本文档大致上涉及医疗装置,并且更特别地,涉及用于检测和管理心律失常的系统、装置和方法。

背景技术

可植入医疗装置(IMD)已用于监测患者健康状况或疾病状态并递送治疗。例如,可植入复律器-除颤器(ICD)可以用于监测某些异常心律并向心脏递送电能以校正异常的节律。一些IMD可以用于监测诸如由于充血性心力衰竭(CHF)而导致的心脏血液动力学性能的缓慢恶化,并且提供心脏刺激治疗,包括心脏再同步治疗(CRT)以校正心室内或心室之间的心脏不同步。

一些IMD能够检测心律失常,诸如房性快速性心律失常(AT)。一种类型的AT是心房颤动(AF),其被认为是影响数百万人的最常见的临床心律失常。在AF期间,起源于心房内或心房附近的区域的紊乱电脉冲可能导致到心室的不规则传导,从而导致不适当地快速和不规则的心率。AF可能是阵发性的,其在自行停止之前可能持续数分钟至数天。持续性AF可能持续超过一周并典型地需要药物治疗或其它治疗来恢复正常的窦性节律。如果利用治疗不能恢复正常心律,则AF是永久性的。

另一种类型的AT是心房扑动(AFL)。AFL通常伴有一定程度的房室(AV)结传导阻滞,并且可以与快速且通常规则的心率相关联。典型的或I型AFL可能涉及在三尖瓣环周围的右心房中的单个折返环路(reentrant circuit),并且心房率为每分钟240至340次搏动(bpm)。折返环路通常以逆时针方向行进。非典型的或II型AFL遵循不同的环路,其可能涉及右心房或左心房,并且通常具有约340-440bpm的更快的心房率。AFL可能与多种心脏疾病相关联,诸如冠状动脉疾病(CAD)或高血压性心脏病。AFL可能经常退化为AF。长时间快速AFL可能导致失代偿,失去正常的心脏功能。这可能表现为努力不耐受、夜间呼吸困难或腿部或腹部肿胀。

AT诸如AF或AFL的及时检测,对于评估心脏功能可能是临床上重要的。某些房性快速性心律失常可以被表征为缓慢且稳定的心室率。这种心律失常发作可能被IMD误认为是窦性心律,并在某些患者中未被检测出或不足以被检测出。这可能会对患者的预后产生不利影响。

发明内容

房性快速性心律失常诸如AF或AFL被表征为快速心房率。在一些患者中,利用定位于心房中的电极直接感测心房激活率是不可用的或不可行的,诸如未被指示用于心房引线植入的患者。医疗装置、诸如没有专用心房感测/起搏引线的单室IMD,可以基于心室心率来检测AT,而没有直接感测心房活动。然而,诸如除AT之外的噪声、运动伪影或心脏节律的混杂因素可能被错误地检测为AT事件。例如,在AFL期间,来自心房的冲动通过房室结(AV结)传导到心室。主要由于其较长的不应期,AV结可通过阻断超过每分钟约180次搏动(bpm)的心房冲动对心室处的心率发挥保护作用。如果AFL率为300bpm,则可能产生二对一(2:1)心脏传导阻滞,使得仅一半的心房冲动可以被传导至心室,导致了心室率为150bpm。由于心率是心室而不是心房活动的度量,因此基于心室心率而不是心房活动检测AT的医疗装置可能会被在升高的速率下的生理窦性节律(诸如在可耐受的体力活动期间(例如,窦性心动过速))混淆。

在一些患者中,伴有缓慢心室率的房性快速性心律失常可以持续较长时间(例如,超过10小时或24小时)。例如,来自AFL的传导式心房激活可能导致缓慢且稳定的心室节律。由于交界性心律诸如在完整AV阻滞期间的逸搏心律或加速的交界性起搏点,AF在AV阻滞的存在下可导致缓慢且稳定的心室率。IMD或外部计算机化的心律失常检测系统可能将具有缓慢且持续的心室率的AF或AFL发作错误地检测为窦性节律或其它非快速性心律失常事件。当这种心律失常事件未被检测出或不足以被检测出时,可能会导致不利的患者预后。

对AT发作的不适当检测可能降低检测特异性,并导致治疗或终极治疗的缺乏,或不必要或不适当的医疗或装置治疗。向临床医生发出不适当检测到的心律失常的错误警示,或向临床医生呈现大量不适当检测到的心律失常事件以用于审查或判决,可能不利地影响装置功效并且无根据地增加与患者管理相关联的医疗保健成本。因此,这可能降低基于心率的AT检测的临床效用。至少出于这些原因,本发明人已经尤其认识到了实质上的挑战以及对检测AT的更高效的系统和方法的需求。

本文档尤其讨论了用于检测缓慢且持续性节律的系统、装置和方法,其可以指示出正在进行的心房快速性心律失常。心律失常检测系统包括心率分析器电路,其用于监测对应于多个心脏搏动(heart beat)的患者心率。心率分析器电路可以在检测时段期间识别其对应心率下降到低于心率阈值的缓慢心脏搏动。心率分析器电路另外地可以识别一个或多个持续缓慢搏动(sustained slow beat,SSB)序列,每个序列包括两个或多个缓慢心脏搏动。心率分析器可确定识别出的缓慢心脏搏动的第一普遍率指示符(prevalenceindicator),以及识别出的SSB序列的第二普遍率指示符。心律失常检测器电路可基于至少所述第一普遍率指示符和第二普遍率指示符符来检测缓慢且持续性节律。

示例1是用于检测心律失常的系统。该系统包括心率分析器电路和心律失常检测器电路。心率分析器电路可以被配置为:监测与多个心脏搏动相对应的心室心率,在检测时段期间从多个心脏搏动中识别出其对应心率降至心率阈值以下的缓慢心脏搏动,在检测时段期间识别一个或多个持续缓慢跳动(SSB)序列,每个序列包括两个或多个缓慢心脏搏动。心律失常检测器电路可以被配置为基于识别出的缓慢心脏搏动和识别出的一个或多个SSB序列来检测缓慢且持续性节律。

在示例2中,示例1的主题可选地包括心率分析器电路,该心率分析器电路可以被配置为确定识别出的缓慢心脏搏动的第一普遍率指示符以及一个或多个SSB序列的第二普遍率指示符。所述心律失常检测器电路可以被配置为,当(1)确定出的第一普遍率指示符超过第一普遍率阈值、以及(2)确定出的第二普遍率指示符超过第二普遍率阈值时,检测出缓慢且持续性节律。在一个示例中,第二普遍率阈值不同于第一普遍率阈值。

在示例3中,示例2的主题可选地包括心率分析器电路,该心率分析器电路可以被配置为,基于识别出的缓慢心脏搏动的累积持续时间来确定第一普遍率指示符,并基于识别出的一个或多个SSB序列当中的最长SSB序列的持续时间来确定所述第二普遍率指示符。

在示例4中,示例2-3中的任何一个或多个的主题可选地包括心脏率分析器电路,其可以被配置为,基于识别出的一个或多个SSB序列中的、每个均超过了SSB持续时间阈值的子集的累积持续时间来确定第二普遍率指示符。

在示例5中,示例1-4中的任何一个或多个的主题可选地包括SSB序列,每个SSB序列可以由两个或更多个识别出的缓慢心脏搏动的连续序列表示。

在示例6中,示例1-4中的任何一个或多个的主题可选地包括SSB序列,每个SSB序列可以由以下搏动序列表示,所述搏动序列对于所述搏动序列内的任何十个连续心脏搏动包括至少六个缓慢心脏搏动。

在示例7中,示例1-6中的任何一个或多个的主题可选地包括心律失常检测器电路,该电路可以被配置为,检测包括具有缓慢且持续的心室反应的房性心律失常的缓慢且持续性节律。

在示例8中,示例2-7中的任何一个或多个的主题可选地包括心脏率分析器电路,其可以被配置为:确定针对多个心率分析窗口中的每个的代表性心室心率,所述多个心率分析窗口的每个包括所述多个心脏搏动中的两个或更多个心脏搏动;在检测时段期间从多个心率分析窗口中识别其对应代表性心室心率降到心率阈值以下的缓慢心率窗口;在检测时段期间识别一个或多个持续缓慢窗口(SSW)序列,每个序列包括识别出的缓慢心率窗口中的两个或多个;确定指示出识别出的缓慢心率窗口的数量的第一普遍率指示符,以及识别出的一个或多个SSW序列的第二普遍率指示符。

在示例9中,示例8的主题可选地包括代表性心室心率,其可以包括心率分析窗口中的心率的集中趋势。

在示例10中,示例8-9中的任何一个或多个的主题可选地包括一个或多个SSW序列,每个序列可以由缓慢心率窗口的连续序列表示。心率分析器电路可以被配置为,在识别出的SSW序列中识别出最长SSW序列,并且确定指示出在识别出的最长SSW序列中的缓慢心率窗口的数量的第二普遍率指示符。

在示例11中,示例10的主题可选地包括心律失常检测器电路,该电路可被配置为在24小时的检测时段期间,在当(1)识别出的缓慢心率窗口的数量超过第一阈值400;以及(2)识别出的最长连续序列中的缓慢心率窗口的数量超过第二阈值100时,检测出具有缓慢且持续的心室反应的房性心律失常。

在示例12中,示例8-9中的任何一个或多个的主题可选地包括一个或多个SSW序列,每个序列可以由缓慢心率窗口的连续序列表示。心率分析器电路可以被配置为,识别SSW序列中的、每个超过了SSW持续时间阈值的子集,并且基于识别出的SSW序列的子集中的缓慢心率窗口的累积数量来确定第二普遍率指示符。

在示例13中,示例8-9中的任何一个或多个的主题可选地包括一个或多个SSW序列,每个序列可由心率分析窗口的序列表示,所述心率分析窗口的序列对于所述序列内的任何十个连续心率分析窗口包括至少六个缓慢心率窗口。心率分析器电路可以被配置为,在识别出的SSW序列中识别最长SSW序列,并确定指示出在识别出的最长SSW序列中包括的心率分析窗口的数量的第二普遍率指示符。

在示例14中,示例2-13中的任何一个的主题或可选地包括:活动检测电路,其可以被配置为检测患者的身体活动;以及感测电路,其可以被配置成在不同强度水平的身体活动期间感测心脏搏动。心率分析器电路可以被配置为,使用在不同强度水平的身体活动期间感测到的心室心率来确定第一和第二普遍率指示符。

在示例15中,示例1-14中的一个或多个的主题可选地包括治疗电路,该治疗电路可以配置为响应于检测到缓慢且持续性节律而生成用于递送至目标组织的治疗。

示例16是一种使用医疗系统检测心律失常的方法。该方法包括以下步骤:使用心率分析器电路监测与多个心脏搏动相对应的心室心率;使用心率分析器电路在检测时段期间从多个心脏搏动中识别其对应心率降至心率阈值以下的缓慢心脏搏动;使用心率分析器电路在检测时段期间识别一个或多个持续缓慢搏动(SSB)序列,每个序列包括两个或多个缓慢心脏搏动;以及基于识别出的缓慢的心脏搏动和识别出的一个或多个SSB序列来检测缓慢且持续性节律。

在示例17中,示例16的主题可选地包括:使用心率分析器电路确定识别出的缓慢心脏搏动的第一普遍率指示符和一个或多个SSB序列的第二普遍率指示符,并检测缓慢且持续性节律,其包括确定确定出的第一普遍率指示符超过第一普遍率阈值和确定出的第二普遍率指示符超过第二普遍率阈值。

在示例18中,示例17的主题可选地包括第一普遍率指示符,该第一普遍率指示符包括识别出的缓慢心脏搏动的累积持续时间。第二普遍率指示符可包括识别出的一个或多个SSB序列中的最长SSB序列的持续时间。

在示例19中,示例17的主题可选地包括第二普遍率指示符,该第二普遍率指示符包括识别出的一个或多个SSB序列中的、每个都超过了SSB持续时间阈值的子集的累积持续时间。

在示例20中,示例16的主题可选地包括SSB序列,每个SSB序列可以由两个或更多个识别出的缓慢心脏搏动的连续序列表示。

在示例21中,示例16的主题可选地包括SSB序列,每个SSB序列可以由以下搏动序列表示,对于搏动序列中的任何十个连续心脏搏动,该搏动序列包括至少六个缓慢心脏搏动。

在示例22中,示例16的主题可选地包括以下步骤:确定针对多个心率分析窗口中的每个心率分析窗口的代表性心室心率,多个心率分析窗口每个都包括多个心脏搏动中的两个或更多个;在检测时段期间,从多个心率分析窗口中识别出其对应的代表性心室心率降到心率阈值以下的缓慢心率窗口;在检测时段期间,识别一个或多个持续缓慢窗口(SSW)序列,每个序列包括两个或多个识别出的缓慢心率窗口;确定指示出识别出的缓慢心率窗口的数量的第一普遍率指示符,以及识别出的一个或多个SSW序列的第二普遍率指示符。

在示例23中,示例16的主题可选地包括响应于检测到缓慢且持续性节律将治疗递送至目标组织。

本文档中讨论的系统、装置和方法可以改进自动心脏节律管理(CRM)的医疗技术并防止心脏功能恶化。对诸如指示出正在进行的AT发作的缓慢且持续性节律的自动检测,可以增强可植入医疗装置的性能和功能。在某些示例中,缓慢且持续性节律的检测可以提高现有AF或AFL检测的灵敏度和特异性,而几乎没有附加成本,同时降低了与错误AT检测相关联的成本,或由这样的错误确定所需的人工检查。在其它示例中,现有系统的性能可以通过使用较低成本或不太突出的系统、设备和方法而被保持(例如,高心律失常检测灵敏度和特异性,等等)。例如,由于系统或装置不需要直接感测心房活动,所以可以降低系统复杂性和实施成本。对于未被指示用于进行心房活动感测或心房起搏的心房引线植入的患者而言,这可以特别有益。本文档中讨论的心律失常检测还可以允许更高效地使用装置存储器,例如通过存储(与AT检测在临床上相关的)缓慢心脏搏动的普遍率的指示符和持续缓慢搏动序列的普遍率的指示符以及其他心脏搏动统计量。相比于现有医疗装置和系统,在改进的AT检测下,提供了更少的警报,可延长电池寿命,可以安排、规定或提供更少的不必要的药物和程序,并且可以实现整体系统成本和能量的节省。

本概述是本申请的一些教导的概述并且不旨在是对本主题的排他性或穷举性治疗。关于本主题的进一步细节在详细描述和所附权利要求中找到。在阅读并理解以下详细描述并查看形成其一部分的附图(其每个都不会被视为限制性意义)时,本公开的其它方面对于本领域技术人员将是显而易见的。本公开的范围由所附权利要求及其合法等同物来限定。

附图说明

在附图的图中借由示例示出了各种实施例。这种实施例是说明性的并且不旨在是本主题的穷举性或排他性实施例。

图1示出了心脏节律管理(CRM)系统的示例以及CRM系统可以在其中操作的环境的部分。

图2大致上示出了可以被配置为检测来自患者的缓慢且持续性节律的心律失常检测系统的示例。

图3大致上示出了用于检测指示出正在进行的房性快速性心律失常的缓慢且持续性节律的心律失常检测器电路的示例。

图4是示出了在各个心率分析窗口内确定代表性心率的示例的图。

图5是示出了识别持续缓慢搏动序列或持续缓慢窗口序列的示例的图。

图6大致上示出了用于检测来自患者的缓慢且持续性节律的方法的示例。

图7大致上示出了在其上可以执行本文所讨论的任何一种或多种技术(例如,方法)的示例机器的框图。

具体实施方式

本文公开了用于检测缓慢且持续性节律的系统、装置和方法。在实施例中,心律失常检测系统监测患者的心室心率,并且在检测时段期间识别其对应心率降至心率阈值以下的缓慢心脏搏动。该系统识别一个或多个持续缓慢搏动序列,每个序列包括两个或多个缓慢心脏搏动。心律失常检测器电路可以基于识别出的缓慢心脏搏动的第一普遍率指示符和识别出的SSB序列的第二普遍率指示符来检测缓慢且持续性节律诸如AT发作。

图1大致上示出了心脏节律管理(CRM)系统100的示例以及系统100可以在其中操作的环境的部分。CRM系统100可以包括与患者102相关联的流动式系统105、外部系统125、以及提供流动式系统105和外部系统125之间的通信的遥测链路115。

流动式系统105可以包括流动式医疗装置(ambulatory medical device(AMD))110。在示例中,AMD 110可以是皮下植入患者102的胸部、腹部或其它部分中的可植入装置。可植入装置的示例可包括但不限于起搏器、起搏器/除颤器、心脏再同步治疗(CRT)装置、心脏重塑控制治疗(RCT)装置、神经调节器、药物递送装置、生物治疗装置、诸如心脏监测器或循环记录器的诊断装置、或患者监测器等。AMD 110可以可替选地或另外地包括皮下植入式装置、可穿戴装置或其它外部监测或治疗医疗装置或设备。

AMD 110可以耦接到引线系统108。引线系统108可以包括一个或多个经静脉、皮下或非侵入性放置的引线或导管。每个引线或导管可包括一个或多个电极。引线系统108和相关联的电极的布置和使用可以基于患者需要和AMD 110的能力来确定。引线系统108上的相关联的电极可以定位在患者的胸部或腹部处以感测指示心脏活动的生理信号、或对靶组织的诊断或治疗刺激的生理反应。借由示例而非限制,并且如图1中示出的,引线系统108可以被配置为通过外科手术插入或定位在心脏101的表面上。引线系统108上的电极可以定位在心脏101的部分诸如右心房(RA)、右心室(RV)、左心房(LA)或左心室(LV)、或心脏部分之间或附近的任何组织上。在一些示例中,引线系统108和相关联的电极可以可替选地定位在身体的其它部分上以感测包含关于患者心室心率或脉搏率的信息的生理信号。在示例中,流动式系统105可以包括一个或多个无引线传感器,其不经由引线系统108系到AMD 110。无引线流动式传感器可以被配置为感测生理信号并与AMD 110无线通信。

AMD 110可以配置为监测和诊断装置。AMD 110可以包括气密密封的罐,其容纳感测电路、控制电路、通信电路、电池及其他组件中的一个或多个。感测电路可以诸如通过使用生理传感器或与引线系统108相关联的电极来感测生理信号。生理信号的示例可以包括以下中的一个或多个:心电图、心内电描记图、心律失常、心率、心率变异性、胸内阻抗、心内阻抗、动脉压、肺动脉压、左心房压、RV压、LV冠状动脉压、冠状动脉血温、血氧饱和度、一个或多个心音、心内加速度、体力活动或劳力等级、对活动的生理反应、姿势、呼吸速率、潮气量、呼吸音、体重或体温。

在示例中,AMD 110可以包括心律失常检测电路160,其被配置为检测来自患者102的缓慢且持续性心脏节律。缓慢且持续性心脏节律可能由正在进行的房性快速性心律失常(诸如AFL或AF发作)表示。感测到的生理信号包含关于患者心室心率或脉搏率的信息。心律失常检测电路160可以从感测到的生理信号生成心室心率统计量。心室心率统计量可以指示贯穿特定持续时间段的持续过度心率。心律失常检测电路160可以响应于心室心率统计量满足特定条件而检测缓慢且持续性心脏节律。AMD 110可以将检测到的缓慢且持续性节律输出到诸如患者或临床医生的用户,或者输出到包括例如在微处理器中可执行的计算机程序的实例的过程。在示例中,该过程可以包括自动生成用于抗心律失常治疗的建议,或者用于进一步诊断测试或治疗的建议。

AMD 110可以可替选地配置为治疗装置,该治疗装置配置为治疗心律失常或其它心脏病。AMD 110可另外包括可生成和递送一种或多种治疗的治疗单元。可以经由引线系统108和相关联的电极将治疗递送给患者102。治疗可包括电疗、磁疗或其它类型的治疗。该治疗可包括抗心律失常治疗以治疗心律失常或者治疗或控制心律失常引起的一种或多种并发症,诸如晕厥、充血性心力衰竭或中风等。抗心律失常治疗的示例可包括起搏、心脏复律、除颤、神经调节、药物治疗、生物治疗或其它类型的治疗。在示例中,治疗可以包括用于纠正不同步和改善CHF患者的心脏功能的心脏再同步治疗(CRT)。在一些示例中,AMD 110可以包括药物递送系统、诸如药物输注泵,用于向患者递送药物以管理心律失常或心律失常引起的并发症。

尽管本文关于AMD 110的讨论集中在可植入系统上,但这仅仅意味着借由示例而非限制。在发明人的设想并且在本文档的范围内,本文所讨论的系统、装置和方法也可以在皮下医疗装置(诸如皮下监测器或诊断装置)、可穿戴装置(例如,类似手表的装置、基于补丁的装置或其它配件)、或其它流动式医疗装置中实施并由其执行。

外部系统125可以经由通信链路115与AMD 110通信。外部系统125可以包括专用硬件/软件系统,诸如编程器、基于远程服务器的患者管理系统、或者可替选地主要由在标准个人计算机上运行的软件定义的系统。外部系统125可以用于控制AMD 110的操作。外部系统125可以另外经由通信链路115接收由AMD 110获取的信息,诸如一个或多个生理信号。

借由示例而非限制,外部系统125可以包括AMD 110附近的外部装置120、位于相对远离AMD 110的位置的远程装置124、以及链接外部装置120和远程装置124的电信网络122。遥测链路115可以是感应式遥测链路、电容式遥测链路或射频(RF)遥测链路。遥测链路115可以提供从AMD 110到外部系统125的数据传输。这可以包括,例如,发送由AMD 110获取的实时生理数据、提取由AMD 110获取并存储在AMD 110中的生理数据、提取患者历史数据诸如指示AMD 110中记录的心律失常发生、失代偿发生和治疗递送的数据、并提取指示AMD110的操作状态的数据(例如,电池状态和引线阻抗)。遥测链路115还可以提供从外部系统125到AMD 110的数据传输。这可以包括,例如,对AMD 110进行编程以执行以下中的一个或多个:获取生理数据、执行至少一个自我诊断测试(诸如针对装置操作状态)、分析生理数据以检测心律失常、或者可选地向患者102递送或调整治疗。

外部装置120或远程装置124中的一个或多个可以包括显示器,用于显示生理或功能信号、或者用于发出检测到心律失常的信号的警示、警报、紧急呼叫或其它形式的警告。在一些示例中,外部系统125可以包括外部数据处理器,其被配置为分析由AMD 110接收到的生理或功能信号,并确认或拒绝检测到心律失常。计算密集型算法、诸如机器学习算法可以在外部数据处理器中实施,以回顾性地处理数据以检测心律失常。

可以使用硬件、软件、固件或其组合来实施AMD 110或外部系统125的部分。AMD110或外部系统125的部分可以使用可以被构造为或配置为执行一个或多个功能的专用电路来实施,或者可以使用可以被编程为或另外配置为执行一个或多个特定功能的通用电路来实施。这种通用电路可以包括微处理器或其一部分、微控制器或其一部分、或者可编程逻辑电路或其一部分。例如,除了其它之外,“比较器”还可以包括可以被构造为执行两个信号之间的特定比较功能的电子电路比较器,或者该比较器可以被实施为通用电路的一部分,其可以由对通用电路的一部分下指令以执行两个信号之间的比较的代码来驱动。

图2大致上示出了心律失常检测系统200的示例,其被配置为检测来自患者的缓慢且持续性心脏节律。缓慢且持续性节律可以指示出正在进行的房性快速性心律失常,诸如AF或AFL发作。心律失常检测200的部分可以被包括在AMD 110的心律失常检测电路160中。心律失常检测系统200可以包括传感器电路210、心率分析器电路220、心律失常检测器电路230、控制器电路240和用户界面单元250中的一个或多个。心律失常检测系统200可以被配置为用于监测患者健康状态的心脏监测器或诊断装置或者被配置为另外地包括可选的治疗电路260的治疗装置。

传感器电路210可以包括感测放大器(sense amplifier)电路,其用于经由与患者相关联的一个或多个可植入的、可穿戴的或以其它方式的流动式传感器或电极从患者感测生理信号。感测到的生理信号可以包含关于脉动的心脏活动的信息,诸如心率或脉搏率。生理信号的示例可以包括:诸如从身体表面上的电极感测到的表面心电图(ECG)、诸如从放置在皮肤下的电极感测到的皮下ECG、从引线系统108上的一个或多个电极感测到的心内电描记图(EGM)、胸部或心脏阻抗信号、动脉压信号、肺动脉压信号、左心房压信号、RV压信号、LV冠状动脉压信号、冠状动脉血温信号、血氧饱和度信号、诸如由流动式加速度计或声学传感器感测到的心音信号、对活动的生理反应、呼吸暂停低通气指数、一个或多个呼吸信号(诸如呼吸率信号或潮气量信号)、脑利钠肽(BNP)、血液面板、钠和钾水平、葡萄糖水平和其它生物标志物和生化标志物等。传感器电路210可以包括一个或多个其它子电路,以对接收到的生理信号进行数字化、滤波或执行其它信号调节操作。

在一些示例中,生理信号可以存储在诸如电子病历系统的存储装置中。传感器电路210可以响应于命令信号而从存储装置检索生理信号,该命令信号由系统用户提供或者响应于特定事件的发生而自动生成。

心率分析器电路220可以耦接到传感器电路210以监测心室心率,并检测缓慢心脏搏动。心率分析电路220可以包括心率监测器电路222,缓慢心脏搏动检测器224,和持续缓慢搏动(SSB)序列检测器226。心率监测器电路222可以从感测到的生理信号中感测心脏搏动,并检测心率。在示例中,传感器电路210可以感测心电信号,诸如ECG、皮下ECG或心内EGM,并且心率监测器电路222可以从心电信号中检测指示出心脏去极化或复极化的电生理事件。感测到的电生理事件的示例可以包括表面或皮下ECG或心内EGM中的P波、Q波、R波、QRS复波或T波。传感器电路210可以另外地或可替选地包括一个或多个传感器,其被配置为感测指示出心脏收缩的心脏机械活动,并且心率监测器电路222可以从感测到的心脏机械活动中感测指示出在心脏收缩周期期间心房收缩、心室收缩、充盈结束、排空结束或其它指定阶段中的一个或多个的机械生理事件。用于感测心脏机械活动的传感器的示例可以包括:加速度计或麦克风,其被配置为感测来自心脏的心音信号或心内膜加速度信号;阻抗传感器,其被配置为感测由于心脏收缩而引起的心脏阻抗的周期性变化;或者血压传感器或血流传感器,其用于感测由于周期性心脏收缩和心脏瓣膜的打开/关闭而引起的脉动动脉压或流;以及其它传感器。机械生理事件的示例可以包括:来自感测到的心音信号的S1、S2、S3或S4心音、来自心脏阻抗信号的峰阻抗或谷阻抗、或来自血压信号的峰血压或谷血压等。

心率分析器电路220可以使用检测到的电生理事件或机械生理事件来确定心室心率。在示例中,心脏周期(CL)可以被测量为:两个相邻R波(R-R间隔)或P波(P-P间隔)之间的时间间隔(诸如以秒或毫秒为单位)、或来自心脏阻抗信号的相邻阻抗峰值之间或相邻阻抗谷值之间的时间间隔、或来自血压信号的两个相邻血压峰值(即,收缩压)之间或相邻血压谷值(即,舒张压)之间的间隔等。使用公式HR=60秒/CL,CL可以被转换为心率(以每分钟搏动次数或bpm计)。

在各种示例中,心率分析器电路220可以在指定的患者状况下(例如,当患者身体活动时或在一天中的指定时间期间)检测心室心率。系统200可以包括身体活动检测电路,其耦接到活动传感器以检测患者的身体活动。身体活动传感器可以是用于感测对象的身体活动的强度的可植入、可穿戴、可保持或以其他方式可移动的传感器。身体活动传感器可以包括单轴或多轴加速度计,其被配置为感测对象身体的至少一部分的加速度信号。加速度信号的强度可以指示身体活动水平。在另一个示例中,活动传感器可以包括呼吸传感器,其被配置为测量与呼吸交换(即,氧气摄入量和二氧化碳呼出量)相关或指示出呼吸交换的呼吸参数。在另一个示例中,患者的身体活动信息可以从胸部阻抗信息导出。感测电路210可以在不同强度水平的身体活动期间感测心脏搏动。

缓慢心脏搏动检测器224可以在检测时段期间从多个心脏搏动中识别出其对应的心率下降到心率阈值HRTH以下的缓慢心脏搏动,心率阈值HRTH可以是可编程的。在示例中,心率阈值HRTH为每分钟约50-70次搏动(bpm),以用于检测缓慢且持续性节律。检测时段可以由用户来指定,并且被编程到心脏搏动检测器224。在一个示例中,检测时段为约10小时。在另一个示例中,检测时段为约24小时。

缓慢心脏搏动检测器224可以进一步确定识别出的缓慢心脏搏动的第一普遍率指示符。普遍率指示符可由检测时段期间的识别出的缓慢心脏搏动的心动周期的累计时间(TSB,以毫秒或mse计)表示。可替选地,普遍率指示符可以由检测时段期间的识别出的缓慢心脏搏动的计数(NSB)表示。

在一些示例中,心率监测器电路222可以使用在心率分析窗口内的感测到的心脏搏动来确定代表性心室心率(rHR)。心率分析窗口具有特定的长度,由指定数量的心脏搏动或持续时间表示。心率分析窗口的长度可以是可编程的,诸如可由用户经由用户界面单元250调节。在一个示例中,心率分析窗口为约2-5分钟。rHR的示例可包括心率分析窗口内的多个心率测量结果的平均值、中值、众数(mode)、或其它集中趋势。例如,心率测量结果的众数可以指示多个心率测量结果中最频繁出现的心率值。可替选地,rHR可以被计算为心率测量结果的特定百分位数(例如,第X百分位数),心率大于心率测量结果的频率分布上的X%心率测量结果。在一个示例中,心率直方图可以从心率分析窗口内的心率测量结果中生成,并且X%是约25%-75%之间。代表性心率是对房性快速性心律失常期间的心率的更强健的估计。统计测量结果(例如,心率分布的集中趋势或特定百分位数)可以具有对噪声和干扰的提高的免疫力、以及减小的心率过高感测或欠感测的机会。它也可以减少在心率检测时心房脉冲对心室的间歇性传导的影响。

缓慢心脏搏动检测器224可以在检测时段期间从多个心率分析窗口中识别其对应的代表性心率下降到心率阈值HRTH以下的缓慢心率窗口。类似于如上所述的缓慢心率的第一普遍率指示符,缓慢心脏搏动检测器224可替选地基于在检测时段期间的识别出的缓慢心率窗口的累积持续时间(TSW)或识别出的缓慢心率窗口的计数(NSW),来确定识别出的缓慢心率窗口的第一普遍率指示符。下面例如参考图4讨论确定代表性心率的示例。

持续缓慢搏动(SSB)序列检测器电路226可以被配置为在检测时段期间识别一个或多个持续缓慢搏动(SSB)序列。一个或多个SSB序列中的每个可以包括识别出的缓慢心脏搏动中的两个或更多个。在示例中,SSB序列可以由两个或更多个缓慢心脏搏动的连续序列表示。针对SSB序列所需的连续缓慢心脏搏动的最小数目可以是可编程的,并且由用户诸如经由用户界面250调节。在另一个示例中,SSB序列可以由以下搏动序列表示,其包括取自该序列的给定搏动子集中的缓慢搏动的至少一个指定分数(例如,百分位数)。在一个示例中,SSB序列被识别为:在搏动序列内的任意Y个连续心脏搏动内具有至少X个缓慢心脏搏动。用于识别SSB序列的这个准则在下文中被称为“X/Y”准则。X/Y准则中的X和Y的值可以是可编程的并且由用户诸如通过用户界面250调节。通过非限制性示例,X/Y准则可以包括6/10或5/8准则。

SSB序列检测器226可以进一步确定识别出的SSB序列的第二普遍率指示符。在一个示例中,第二普遍率指示符可以基于检测时段期间的识别出的SSB序列当中的最长SSB序列来确定。第二普遍率指示符可以包括最长SSB序列的持续时间(TSSB),或被包含在最长SSB序列中的缓慢搏动的计数(NSSB)。可替选地,第二普遍率指示符可以基于每个超过了SSB持续时间阈值的识别出的SSB序列的子集来确定。SSB持续时间阈值的一个示例为约5小时。SSB持续时间阈值的另一示例是在SSB序列中的约400个缓慢搏动。第二普遍率指示符可以基于SSB序列的子集的累积持续时间(以毫秒计)、或基于被包含在SSB序列的子集中的心脏搏动的累积计数来计算。

如同可以基于代表性心率(rHR)识别缓慢心率窗口的缓慢心脏搏动检测器224,SSB序列检测器226可以可选地在检测时段期间识别一个或多个持续缓慢窗口(SSW)序列,其每个包括:具有降至HRTH以下的相应rHR的识别出的缓慢心率窗口中的两个或更多个缓慢心率窗口。在一个示例中,SSW序列可以由两个或更多个缓慢心率窗口的连续序列表示。针对SSW序列所需的连续缓慢心率窗口的最小数量可以是可编程的并且由用户调节。可替选地,SSW序列可以使用如上所讨论的用于识别SSB序列的“X/Y”准则来识别,使得SSW序列包括任何Y个连续心脏搏动窗口内的至少X个缓慢心率窗口。通过非限制性示例,X/Y准则可以包括6/10或5/8准则。基于缓慢心率窗口的连续序列或基于X/Y准则识别SSW序列的示例诸如参考图5将在下面讨论。

SSB序列检测器226可基于最长SSW序列,诸如持续时间(TSSW)、或在最长SSW序列中包含的心率分析窗口的计数(NSSW),来确定识别出的SSW序列的第二普遍率指示符。可替选地,第二普遍率指示符可以基于每个都超过SSW持续时间阈值的识别出的SSW序列的子集来确定。第二普遍率指示符可以基于SSW序列的子集的累积持续时间(以毫秒计)、或基于SSW序列的子集中的心率分析窗口的累积计数来计算。

在各种示例中,感测电路210可以被配置为在当患者经历具有不同强度水平的身体活动时感测心脏搏动。心率分析器电路220可监测心率、识别缓慢心脏搏动(或缓慢心率窗口)和SSB序列(或SSW序列)、并通过使用与对应的物理活动的强度水平相关联的心率确定第一和第二普遍率指示符。

心律失常检测器电路230可以被配置为至少基于第一和第二普遍率指示符来检测缓慢且持续性节律。缓慢且持续性节律可能指示房性快速性心律失常,诸如心房颤动(AF)、心房扑动(AFL)、房性心动过速、或阵发性室上性心动过速(PSVT)等。下面例如参考图3讨论检测缓慢和持续性节律的示例。

如图2中示出的,心率分析器电路220或心律失常检测器电路230可以分别包括电路组,该电路组包括一个或多个其它电路或子电路。该电路或子电路可以单独或组合地执行本文描述的功能、方法或技术。在示例中,电路组的硬件可以不变地被设计为执行特定操作(例如,硬连线)。在示例中,电路组的硬件可以包括可变连接的物理组件(例如,执行单元、晶体管、简单电路等),其包括物理上被修改(例如,磁性地、电性地、不变聚集粒子的可移动放置等)以编码特定操作的指令的计算机可读介质。在连接物理组件时,硬件构成的底层电气特性例如从绝缘体变为导体,反之亦然。指令使能嵌入式硬件(例如,执行单元或加载机构)经由可变连接在硬件中创建电路组的成员,以在操作时执行特定操作的部分。因此,当装置操作时,计算机可读介质可通信地耦接到电路组成员的其它组件。在示例中,任何物理组件可以用在多于一个电路组的多于一个的成员中。例如,在操作中,执行单元可以在一个时间点处在第一电路组的第一电路中使用并且由第一电路组中的第二电路再用,或者在不同时间处由第二电路组中的第三电路再用。

在各种示例中,心率分析器电路220或心律失常检测器电路230可以被实施为微处理器电路的一部分。微处理器电路可以是专用处理器诸如数字信号处理器、专用集成电路(ASIC)、微处理器或用于处理包括从传感器电路210接收到的生理信号的信息的其它类型的处理器。可替选地,微处理器电路可以是通用处理器,其可以接收并执行指令集,该指令集执行本文描述的功能、方法或技术。

控制器电路240控制传感器电路210、心率分析器电路220、心律失常检测器电路230、用户界面单元250以及这些组件之间的数据和指令流的操作。例如,控制器电路240可以控制缓慢心脏搏动检测和普遍率确定、SSB或SSW序列识别和普遍率确定以及心律失常检测。用户界面单元250可以包括输入装置和输出装置。在示例中,用户界面单元250的至少一部分可以在外部系统130中实施。输入装置可以接收用户的编程输入,诸如用于检测缓慢心脏搏动和SSB或SSW序列的参数。输入装置可以包括键盘、屏幕键盘、鼠标、轨迹球、触摸板、触摸屏或其它指向或导航装置。输入装置可以使能系统用户对用于感测生理信号、检测心律失常和生成警示等的参数进行编程。

输出装置可以生成检测到的缓慢且持续性节律的人类可感知的呈现。输出装置可以包括显示器,用于显示感测到的生理信号、中间测量结果或计算诸如缓慢心脏搏动的计数和SSB序列持续时间,等等。输出单元可以包括用于打印检测信息的硬拷贝的打印机。该信息可以以表格、图表、图或任何其它类型的文本、列表或图形呈现格式呈现。输出信息的呈现可以包括音频或其它媒体格式,以警示系统用户检测到的心律失常事件。在示例中,输出装置可以生成警示、警报、紧急呼叫或其它形式的警告,以向系统用户发出检测到的心律失常事件的信号。

可选的治疗电路260可以被配置为响应于缓慢且持续性节律的检测出而向患者递送治疗。治疗的示例可包括递送至心脏、神经组织、其它靶组织的电刺激治疗、心脏复律治疗、除颤治疗或药物治疗。在一些示例中,治疗电路260可以修改现有治疗,诸如调整刺激参数或药物剂量。

图3大致上示出心律失常检测器电路330的示例,该心律失常检测器电路330用于检测缓慢且持续性节律,诸如指示出正在进行的房性快速性心律失常诸如AFL或AF的缓慢且持续性节律。心律失常检测器电路330是系统200的心律失常检测器230的实施例。如图3所示,心律失常检测器电路330可以包括第一阈值检测器331,其用于检测由缓慢心脏搏动检测器224生成的第一普遍率指示符(例如,TSB或NSB,或TSW或NSW)是否超过第一普遍率阈值。心律失常检测器电路330包括SSB序列选择器电路332,其用于在最长SSB序列和满足持续时间准则的SSB序列的子集之间进行选择,或在最长SSW序列和满足持续时间准则的SSW序列的子集之间进行选择,如由SSB序列检测器226检测到的那样。对于所选择的序列(或序列集合),可以将对应的第二普遍率指示符(例如,TSSB或NSSB,或TSSW或NSSW)与第二普遍率阈值进行比较。第二阈值检测器333可以检测第二普遍率指示符是否超过第二普遍率阈值。融合电路334可以通过组合在第一阈值检测器331和第二阈值检测器333处做出的决定来检测缓慢且持续性节律。在一个示例中,当(1)第一普遍率指示符超过第一普遍率阈值,并且(2)第二普遍率指示符超过第二普遍率阈值时,检测到缓慢且持续性节律。在一个示例中,心律失常检测器电路230可以在24小时的检测时段期间检测具有缓慢且持续的心室反应的房性快速性心律失常。如果(1)NSW大于约400个缓慢心率窗口的第一普遍率阈值,并且(2)识别出的最长连续SSB序列的NSSW大于约100个缓慢心率窗口的第二普遍率阈值,则认为检测到这种房性快速性心律失常。

在一些示例中,对缓慢且持续性节律的检测可以进一步基于表示心室反应的可变性或规律性程度的心室心率稳定性。心率稳定性的示例可以包括差、方差、标准差或表征周期长度或心率的可变性的其他高阶统计量。在示例中,可以使用从心率分析窗口计算出的代表性心率(rHR)或多个心率的直方图来计算心率稳定性。在另一示例中,心率稳定性可以从rHR的洛伦兹图(LP)导出。LP是当前心率或周期长度(CL)作为前一个或多个CL或心率的函数的散点图。基于LP的稳定性可以包括从CL或HR的LP生成的几何指示符,诸如LP形状的最大长度,LP形状的最大宽度,LP散点图的密度或散布测度,等等。

图4示出了确定相应心率分析窗口内的代表性心率的示例的图400。生理信号401可以包含关于脉动心脏电活动或机械活动的信息。可以经由例如心率监测器电路222检测心率。可以将包括多个心率分析窗口410A、410B、...410N的窗口集410应用于生理信号401。可以在每个心率分析窗口内计算代表性心室心率(rHR)。在示出的示例中,窗口集410包括N个连续的、不重叠的心率分析窗口。在其他示例中,至少一些心率分析窗口可以重叠。每个心率分析窗口可以具有特定大小,由特定数量的心脏搏动或特定时段表示。在示例中,心率分析窗口具有大约2-5分钟的大小。可以将rHR中的每个计算为其相应心率分析窗口内的心率测量结果的中心趋势(例如众数),诸如通过使用心脏缓慢心脏搏动检测器224来计算。rHR可以与心率阈值HRTH进行比较。心率分析窗口可被指定为缓慢心率窗口(图4中表示为“S”)如果rHR<HRTH的话;或指定为快速心率(或长CL,图4中表示为“L”)如果rHR≥HRTH的话。例如,窗口410A是缓慢心率窗口,而410C是快速心率窗口。像这样,在窗口集410可以对应于rHR串(train)420。缓慢心脏搏动检测器224可以通过对rHR串420之内的缓慢心率窗口进行计数来生成第一普遍率指示符,诸如NSW。SSB序列检测器226也可以从rHR串420识别一个或多个SSW序列。

图5示出了识别持续缓慢搏动(SSB)序列或持续缓慢窗口(SSW)序列的示例的图500。心率可以从生理信号401诸如使用心率监测器电路222而被检测。在所示出的示例中,SSB或SSW序列的集合诸如通过使用SSB序列检测器226而被识别。如前所述,SSB序列是各个心脏搏动的序列,而SSW序列是心率分析窗口的序列。通过示例而非限制的方式,图5示出了包括SSW(1),SSW(2),…,SSW(K)的SSW序列的集合510。图5示出了SSW序列的两种不同表示。在一个示例中,序列SSW(i)520由连续的缓慢心率窗口(“S”)组成。在另一个示例中,成序列的SSW(j)530由缓慢心率窗口(“S”)和快速心率窗口(“L”)二者组成,其中对于搏动序列内的任何五个连续心率窗口,至少三个是缓慢心率窗口。即,序列SSW(j)满足“X/Y”准则,在该示例中,X/Y为3/5,以识别SSW序列。应当理解,可以使用诸如6/10或5/8之类的其他X/Y准则来识别SSW序列。

在一个示例中,SSB序列检测器226使用连续的缓慢心率窗口的准则来识别所有SSW序列{SSW(1),SSW(2),...,SSW(K)}。在另一个示例中,SSB序列检测器226使用具有统一的X值和统一的Y值的“X/Y”缓慢窗口准则来识别所有SSW序列{SSW(1),SSW(2),…,SSW(K)}。在一些示例中,SSB序列检测器226可以使用连续缓慢心率窗口准则或“X/Y”缓慢窗口准则来识别SSW序列。

识别出的SSW序列每个均具有各自的长度或持续时间,由L(1),L(2),…,L(K)表示。每个L(i)可以由对应的序列SSW(i)中包含的心脏搏动数量表示。在一个示例中,SSB序列检测器226可以将SSW序列的普遍率确定为最长SSW序列的长度,即,对于i=1,2,...,K,NSSW=max(L(i))。在另一个示例中,SSB序列检测器226可以将SSW序列的普遍率确定为SSW序列中的、超过指定序列长度持续时间(LTH)的子集的合计长度。例如,如果SSW序列{SSW(1),SSW(2),…,SSW(K)}中的每个长于LTH,则可以确定SSW序列的普遍率为NSSB=L(1)+L(2)+…+L(K)。诸如通过使用心律失常检测器电路230或330,普遍率NSSB可用于检测缓慢且持续性节律。

图6大致上示出了用于检测来自患者的缓慢且持续性节律的方法600的示例。缓慢且持续性节律可表示正在进行的房性快速性心律失常,诸如心房颤动(AF)、心房扑动(AFL)、房性心动过速、阵发性室上性心动过速(PSVT)或其他房性快速性心律失常。方法600可以在诸如可植入或可穿戴装置的流动式医疗装置中或在远程患者管理系统中实施和执行。在示例中,方法600可以在AMD 110中的心律失常检测电路160、外部系统130或心律失常检测系统200中实施并由其执行。

方法600开始于步骤610,在步骤610,可以监测患者的心室心率。心室心率可以根据从患者感测到的生理信号中检测到的多个心脏搏动来确定。生理信号的示例可以包括心脏电信号或指示心脏机械活动的信号。在一些示例中,可以在指定的患者状况下(例如,当患者进行身体活动时或在一天中的指定时间期间)监测心室心率。感测到的生理信号可以被预处理,包括放大、数字化、滤波或其他信号调节操作。在一些示例中,可以从存储在诸如电子病历系统的存储装置中的生理信号来检测心率。

在620,可以在检测时段期间检测缓慢心脏搏动。缓慢心脏搏动是其对应心率降至心率阈值HRTH以下的心脏搏动。在一个示例中,HRTH为约每分钟50-70次搏动(bpm)。检测时段可以是可编程的,并且可以由用户指定。在一个示例中,检测时段为大约10-24小时。

在各种示例中,心率分析窗口内的代表性心室心率(rHR)可用于识别缓慢心率窗口。该rHR可以被确定为心率分析窗口内的多个心率测量结果的平均数、中位数、众数、或其它集中趋势。在示例中,心率分析窗口的大小为约2-5分钟。可替选地,rHR可以被计算为心率测量结果的特定百分位数。在一个示例中,百分位数在第25个百分位和第75个百分位之间。在620,可以在检测时段期间从多个心率分析窗口中识别出缓慢心率窗口,诸如具有对应的rHR低于心率阈值HRTH的那些缓慢心率窗口。

在630,可以识别一个或多个持续缓慢搏动(SSB)序列。SSB序列可以由两个或更多的缓慢心脏搏动的连续序列表示。SSB序列所需的连续缓慢心脏搏动的最小数量可以是可编程的。可替选地,SSB序列可以由以下搏动序列表示,该搏动序列包括从序列中获取的搏动的给定子集中的至少一个指定分数的缓慢搏动。在一个示例中,SSB序列满足X/Y准则,其中在搏动序列内的任何Y个连续心脏搏动内至少存在X个缓慢心脏搏动。

在一些示例中,在630,可以在检测时段期间识别一个或多个持续缓慢窗口(SSW)序列。每个SSW序列包括其对应的rHR降到HRTH以下的两个或更多个缓慢心率窗口。SSW序列可由两个或更多个缓慢心率窗口的连续序列表示。可替选地,可以使用X/Y准则来识别SSW序列,如图5所示,其中作为示例而非限制,使用3/5准则来识别SSW序列。

在640,确定了在检测时段期间的识别出的缓慢心脏搏动(或识别出的缓慢心率窗口)的第一普遍率指示符。第一普遍率指示符可以由检测时段期间的识别出的缓慢心脏搏动的累积时间(TSB)、或识别出的缓慢心率窗口的累积时间(TSW)来表示。可替选地,第一普遍率指示符可以由检测时段期间的识别出的缓慢心脏搏动的计数(NSB)、或识别出的缓慢心率窗口的计数(NSW)表示。

此外,在640,可以确定检测时段期间的识别出的SSB序列(或识别出的SSW序列)的第二普遍率指示符。在一个示例中,可以在检测时段期间从所有识别出的SSB序列中识别出最长SSB序列。第二普遍率指示符可以由最长SSB序列的持续时间(TSSB)、或在最长SSB序列中包括的缓慢搏动的计数(NSSB)表示。可替选地,第二普遍率指示符可以基于识别出的SSB序列中的、每个都超过了SSB持续时间阈值的子集来确定。在一个示例中,SSB持续时间阈值是大约5小时。在另一示例中,SSB持续时间阈值是SSB序列中的大约400个缓慢心脏搏动。第二普遍率指示符可以由SSB序列的子集的累积持续时间、或在SSB序列的子集中包括的缓慢搏动的累积计数来表示。

在一些示例中,可以使用识别出的SSW序列来确定第二普遍率指示符。在一个示例中,第二普遍率指示符可以由最长SSW序列的持续时间(TSSW)、或被包含在最长SSW序列的心率分析窗口的计数(NSSW)来表示。可替选地,可以基于识别出的SSW序列中的、每个都超过了SSW持续时间阈值的子集来确定第二普遍率指示符。在示例中,第二普遍率指示符可以由SSW序列的子集的累积持续时间、或SSW序列的子集中包括的缓慢搏动的累积计数来表示。

在650,可以至少使用第一和第二普遍率指示符来检测缓慢且持续性节律,诸如通过使用心律失常检测器电路330。在一个示例中,对缓慢且持续性节律的检测包括:将第一普遍率指示符(例如,TSB或NSB,或TSW或NSW)与第一普遍率阈值比较,并且将第二普遍率指示符(例如,TSSB或NSSB,或TSSW或NSSW)与第二普遍率阈值比较。当第一普遍率指示符超过第一普遍率阈值并且第二普遍率指示符超过第二普遍率阈值时,检测到缓慢且持续性节律。在一个示例中,可以在24小时的检测时段期间内执行具有缓慢且持续的心室反应的房性快速性心律失常的检测。作为示例而非限制,缓慢心率窗口被定义为具有代表性心率(rHR)小于70bpm的2分钟心脏搏动窗口。如果NSW大于大约400个缓慢心率窗口的第一普遍率阈值,并且识别出的最长连续SSB序列的NSSW大于大约100个缓慢心率窗口的第二普遍率阈值,则宣布检测到。

检测到的缓慢且持续性节律可以被提供给过程662、664或666中的一个或多个。在662,可以例如经由用户界面250的输出装置将缓慢且持续性节律输出给用户或过程。在一个示例中,检测到的节律可以被显示在显示器上,包括感测到的生理信号、与识别出的缓慢心脏搏动或缓慢心率窗口、SSB序列或SSW序列或它们各自的普遍率指示符相关的信息,等等。附加地或可替代地,可以生成检测信息的硬拷贝。在各种示例中,可以生成警报,警告,紧急呼叫或其他形式的信号警告,以向系统用户警告检测到的节律。

在664处,可以生成建议并将其提供给用户。该建议可以包括一个或多个要进行的进一步诊断测试、用于治疗检测到的心律失常或减轻心律失常并发症的抗心律失常治疗。该建议可以包括调整一个或多个心律失常检测参数,诸如用于检测缓慢心脏搏动的心率阈值HRTH、或用于第一和第二普遍率指示符的阈值。方法600可以包括响应于检测到缓慢且持续性节律而向患者递送治疗的可选步骤666,诸如经由如图2中示出的可选治疗电路260。治疗的示例可以包括递送到心脏、神经组织、其它靶组织的电刺激治疗、心脏复律治疗、除颤治疗或包括将药物递送到组织或器官的药物治疗。在一些示例中,可以修改现有的治疗或治疗计划以治疗检测到的心律失常。

图7大致上示出了在其上可以执行本文所讨论的任何一种或多种技术(例如,方法)的示例机器700的框图。该描述的部分可以应用于LCP装置、IMD或外部编程器的各个部分的计算框架。

在可替选的实施例中,机器700可以作为独立装置进行操作,或者可以连接(例如,联网)到其它机器。在联网部署中,机器700可以在服务器-客户网络环境中以服务器机器、客户机器或两者的能力进行操作。在示例中,机器700可以充当对等(P2P)(或其它分布式)网络环境中的对等机器。机器700可以是个人计算机(PC)、平板电脑PC、机顶盒(STB)、个人数字助理(PDA)、移动电话、网络电器、网络路由器、交换机或网桥、或者能够执行指定该机器要采取的动作的指令(顺序或以其它方式)的任何机器。此外,虽然仅示出了单个机器,但术语“机器”还应被视为包括以下机器的任何收集,其单独或联合执行一个(或多个)指令集以实施本文所讨论的任何一种或多种方法,诸如云计算、软件即服务(SaaS)、其它计算机集群配置。

如本文描述的,示例可以包括逻辑或多个组件或机构,或者可以由其操作。电路组是在包括硬件(例如,简单电路、门、逻辑等)的有形实体中实施的电路的收集。电路组成员可以是随时间推移而灵活的和潜在的硬件可变性。电路组包括可以单独或组合地在操作时执行指定操作的成员。在示例中,电路组的硬件可以不变地被设计为执行特定操作(例如,硬连线)。在示例中,电路组的硬件可以包括可变连接的物理组件(例如,执行单元、晶体管、简单电路等),其包括物理上被修改(例如,不变聚集粒子的磁性地、电地、可移动放置等)以编码特定操作的指令的计算机可读介质。在连接物理组件时,硬件构成的底层电气特性例如从绝缘体变为导体,反之亦然。指令使能嵌入式硬件(例如,执行单元或加载机构)经由可变连接在硬件中创建电路组的成员,以在操作时执行特定操作的部分。因此,当装置操作时,计算机可读介质可通信地耦接到电路组成员的其它组件。在示例中,任何物理组件可以用在多于一个电路组的多于一个的成员中。例如,在操作中,执行单元可以在一个时间点处在第一电路组的第一电路中使用并且由第一电路组中的第二电路再用,或者在不同时间处由第二电路组中的第三电路再用。

机器(例如,计算机系统)700可以包括硬件处理器702(例如,中央处理单元(CPU)、图形处理单元(GPU)、硬件处理器核心或其任何组合)、主存储器704和静态存储器706,其中的一些或全部可以经由互连链路(例如,总线)708彼此通信。机器700还可以包括显示单元710(例如,光栅显示器、矢量显示器、全息显示器等)、字母数字输入装置712(例如,键盘)以及用户界面(UI)导航装置714(例如,鼠标)。在示例中,显示单元710、输入装置712和UI导航装置714可以是触摸屏显示器。机器700可以另外包括存储装置(例如,驱动单元)716;信号生成装置718(例如,扬声器);网络接口装置720;以及一个或多个传感器721,诸如全球定位系统(GPS)传感器、指南针、加速度计或其它传感器。机器700可以包括输出控制器728,诸如串行(例如,通用串行总线(USB))、并行或其它有线或无线(例如,红外(IR)、近场通信(NFC)等)连接,以通信或控制一个或多个外围装置(例如,打印机、读卡器等)。

存储装置716可以包括机器可读介质722,其上存储有一个或多个数据结构集或指令集724(例如,软件),其体现了由本文描述的任何一个或多个技术或功能或由其使用。指令724还可以在机器700对其执行期间完全或至少部分地驻留在主存储器704内、静态存储器706内或硬件处理器702内。在示例中,硬件处理器702、主存储器704、静态存储器706或存储装置716的一个或任何组合可以构成机器可读介质。

虽然机器可读介质722被示为单个介质,但是术语“机器可读介质”可以包括被配置为存储一个或多个指令724的单个介质或多个介质(例如,集中式或分布式数据库,和/或相关联的高速缓存和服务器)。

术语“机器可读介质”可以包括能够存储、编码或携带用于由机器700执行并且使机器700执行本公开的任何一种或多种技术的指令或者能够存储、编码或携带由这种指令使用或与这种指令相关联的数据结构的任何介质。非限制性机器可读介质示例可以包括固态存储器以及光学和磁性介质。在示例中,大容量机器可读介质包括具有多个粒子(其具有不变(例如,静止)质量)的机器可读介质。因此,大容量机器可读介质是非暂时传播信号。大容量机器可读介质的具体示例可以包括:非易失性存储器,诸如半导体存储器装置(例如,电可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM))和闪存装置;磁盘,诸如内部硬盘和可移动磁盘;磁光盘;以及CD-ROM和DVD-ROM磁盘。

还可以经由利用多种传输协议(例如,帧中继、互联网协议(IP)、传输控制协议(TCP)、用户数据报协议(UDP)、超文本传输协议(HTTP)等)中的任何一种的网络接口装置720使用传输介质在通信网络726上发送或接收指令724。示例通信网络可以包括局域网(LAN)、广域网(WAN)、分组数据网络(例如,因特网)、移动电话网络(例如,蜂窝网络)、普通老式电话(POTS)网络、以及无线数据网络(例如,称为的电气和电子工程师协会(IEEE)802.11标准系列、称为的IEEE 802.16标准系列)、IEEE 802.15.4标准系列、对等(P2P)网络等。在示例中,网络接口装置720可以包括一个或多个物理插孔(例如,以太网、同轴或电话插孔)或一个或多个天线以连接到通信网络726。在示例中,网络接口装置720可以包括多个天线以使用单输入多输出(SIMO)、多输入多输出(MIMO)或多输入单输出(MISO)技术中的至少一个来进行无线通信。术语“传输介质”应被视为包括能够存储、编码或携带用于由机器700执行的指令的任何无形介质,并且包括数字或模拟通信信号或其它无形介质以促进这种软件的通信。

在以上附图中示出了各种实施例。可以组合来自这些实施例中的一个或多个的一个或多个特征以形成其它实施例。

本文描述的方法示例可以至少部分地是机器或计算机实施的。一些示例可以包括编码有指令的计算机可读介质或机器可读介质,所述指令可操作以配置电子装置或系统执行如以上示例中描述的方法。这样的方法的实施方式可以包括代码,诸如微代码、汇编语言代码或高级语言代码等。这样的代码可包括用于执行各种方法的计算机可读指令。代码可以形成计算机程序产品的部分。此外,代码可以在执行期间或在其它时间有形地存储在一个或多个易失性或非易失性计算机可读介质上。

以上详细描述旨在是说明性的而非限制性的。因此,本公开的范围应该参考所附权利要求连同这样的权利要求所赋予的等同物的全部范围来确定。

25页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种确定牙齿上阻抗的设备和方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!