用于气液传质的反应器

文档序号:1255634 发布日期:2020-08-21 浏览:24次 >En<

阅读说明:本技术 用于气液传质的反应器 (Reactor for gas-liquid mass transfer ) 是由 M·拉特瓦-科科 于 2018-01-17 设计创作,主要内容包括:公开一种用于气体(2)与液体或浆液(3)之间的气液传质的反应器(1),所述反应器包括用于接收所述液体或浆液的罐(4),所述罐具有壁(5);驱动轴(6),所述驱动轴(6)在所述罐中竖直地延伸并且可围绕竖直轴线(7)旋转;向上泵送的叶轮(8),所述向上泵送的叶轮(8)用于产生接收于所述罐中的液体或浆液的大体上向上的流动以及在所述液体或浆液的表面(9)处的流动;以及曝气装置(10),所述曝气装置(10)设置于所述向上泵送的叶轮上方并且在距所述驱动轴第一距离(d&lt;Sub&gt;1&lt;/Sub&gt;)处以及距所述罐的壁第二距离(d&lt;Sub&gt;2&lt;/Sub&gt;)处在所述驱动轴与所述罐的壁之间延伸,所述曝气装置至少部分地环绕所述驱动轴。所述曝气装置具有下边缘(11)和上边缘(12)以及在所述下边缘与所述上边缘之间延伸的向外倾斜或弯曲的内表面(13),所述内表面(13)用于将所述流动的至少一部分从所述竖直轴线向外引导于所述内表面之上以及引导于所述上边缘之上。(A reactor (1) for gas-liquid mass transfer between a gas (2) and a liquid or slurry (3) is disclosed, the reactor comprising a tank (4) for receiving the liquid or slurry, the tank having a wall (5); a drive shaft (6), said drive shaft (6) extending vertically in said tank and being rotatable about a vertical axis (7); an upwardly pumping impeller (8), the upwardly pumping impeller (8) for creating a generally upward flow of the liquid or slurry received in the tank and a flow at the surface (9) of the liquid or slurryMoving; and an aeration device (10), said aeration device (10) being disposed above said pumping-up impeller and at a first distance (d) from said drive shaft 1 ) And a second distance (d) from the wall of the tank 2 ) Extending between the drive shaft and a wall of the tank, the aeration device at least partially surrounding the drive shaft. The aeration device has a lower edge (11) and an upper edge (12) and an outwardly inclined or curved inner surface (13) extending between the lower edge and the upper edge, the inner surface (13) for directing at least a portion of the flow outwardly from the vertical axis over the inner surface and over the upper edge.)

用于气液传质的反应器

技术领域

本公开涉及用于气液传质的反应器、设备以及方法。

背景技术

在比如湿法冶金(例如湿法冶金浸提)或废水处理的应用中,气液传质以及其速率对于应用的操作而言可能是重要的。

发明内容

公开一种用于气体与液体或浆液之间的气液传质的反应器。所述反应器可以包括用于接收所述液体或浆液的罐,所述罐具有壁。所述反应器可以进一步包括驱动轴,所述驱动轴在所述罐中竖直地延伸并且可围绕竖直轴线旋转。所述反应器可以进一步包括向上泵送的叶轮,所述向上泵送的叶轮用于产生接收于所述罐中的液体或浆液的大体上向上的流动以及在所述液体或浆液的表面处的流动,所述向上泵送的叶轮可通过所述驱动轴旋转并且设置于所述罐的上部部分中。

所述反应器可以进一步包括曝气装置,所述曝气装置可以设置于所述向上泵送的叶轮上方。所述曝气装置可以在距所述驱动轴第一距离处以及距所述罐的壁第二距离处在所述驱动轴与所述罐的壁之间延伸,所述曝气装置至少部分地环绕所述驱动轴。所述曝气装置可以具有下边缘和上边缘。所述曝气装置可以进一步具有在所述下边缘与所述上边缘之间延伸的向外倾斜或弯曲的内表面,所述内表面用于将所述流动的至少一部分从所述竖直轴线向外引导于所述内表面之上以及引导于所述上边缘之上。

附图说明

被包含以提供对实施例的进一步的理解并且构成本说明书的一部分的附图示例说明各种实施例。在图中:

图1A和1B示出用于气液传质的反应器和方法的替代的视图和细节;

图2A和2B示出用于气液传质的反应器和方法的替代的视图和细节;

图3A和3B示出用于气液传质的反应器和方法的替代的视图和细节;

图4A和4B示出用于气液传质的反应器和方法的替代的视图和细节;

图5A和5B示出用于气液传质的反应器和方法的替代的视图和细节;

图6A和6B示出用于气液传质的反应器和方法的替代的视图和细节;

图7A和7B示出用于气液传质的反应器和方法的替代的视图和细节;

图8A、8B以及8C示出用于气液传质的反应器和方法的替代的视图和细节;

图9示出湿法冶金设备;以及

图10示出不同的反应器构造的性能的实验性测量。

在图1A至9中,反应器、设备以及方法被示例说明为示意图。图可能没有按比例绘制。

具体实施方式

公开一种用于气体与液体或浆液之间的气液传质的反应器。所述反应器可以包括用于接收液体或浆液的罐,所述罐具有壁。所述反应器可以进一步包括驱动轴,所述驱动轴在所述罐中竖直地延伸并且可围绕竖直轴线旋转。所述反应器可以进一步包括向上泵送的叶轮,所述向上泵送的叶轮用于产生接收于所述罐中的液体或浆液的大体上向上的流动以及在所述液体或浆液的表面处的流动,所述向上泵送的叶轮可通过所述驱动轴旋转并且设置于所述罐的上部部分中。

所述反应器可以进一步包括曝气装置,所述曝气装置可以设置于所述向上泵送的叶轮上方。所述曝气装置可以在距所述驱动轴第一距离处以及距所述罐的壁第二距离处在所述驱动轴与所述罐的壁之间延伸,所述曝气装置至少部分地环绕所述驱动轴。所述曝气装置可以具有下边缘和上边缘。所述曝气装置可以进一步具有在所述下边缘与所述上边缘之间延伸的向外倾斜或弯曲的内表面,所述内表面用于将所述流动的至少一部分从所述竖直轴线向外引导于所述内表面之上以及引导于所述上边缘之上。

所述反应器以及所述曝气装置的存在可以具有显著地改善的气液(亦即气体至液体)传质,因为它可以通过液体或浆液的表面增强传质。所述曝气装置可以将所述流动的至少一部分从所述竖直轴线向外引导于所述内表面之上以及引导于所述上边缘之上,以使得所述流动的至少一部分可以与气体接触地在所述液体或浆液的表面上方行进更长的距离,并且与没有所述曝气装置的反应器相比,气体至液体的传质可以提高。即使在没有例如通过喷雾器进给任何额外的气体的情况下,与其它反应器构造相比,也可以用类似的混合功率获得更高的体积传质系数。

所述浆液可以为液体和可溶颗粒(例如矿石和/或矿物的颗粒)的混合物。此外,所述液体可以被理解为指的是还可以包含混合和/或悬浮于其中的不溶性颗粒或其它固体成分的液体。例如,所述液体可以为或包括废水或其它含水液体。所述气体可以为例如空气和/或氧气,但是可以利用适合于或期望用于气液传质的任何其它气体。

在一个实施例中,所述曝气装置相对于所述罐为不可移动的。

在一个实施例中,所述内表面相对于所述竖直轴线以大约20°至大约80°的角度向外倾斜。

在一个实施例中,所述曝气装置的内表面连续地环绕所述竖直轴线,从而形成闭合的周边。

在一个实施例中,所述下边缘和所述上边缘的沿着所述内表面的距离为所述罐的宽度的大约0.04至0.20倍。

在一个实施例中,所述下边缘和所述上边缘的沿径向方向的距离为所述罐的宽度的大约0.03至0.18倍。

在一个实施例中,所述下边缘和所述上边缘的沿竖直方向的距离为所述罐的宽度的大约0.03至0.18倍。

在一个实施例中,所述曝气装置的上边缘具有凸起、凹陷和/或交替的凸起和凹陷。

在一个实施例中,所述反应器进一步包括布置于所述罐的壁与所述向上泵送的叶轮之间的一个或多个挡板,所述曝气装置附接至所述挡板。

在一个实施例中,所述反应器进一步包括设置于所述向上泵送的叶轮下方的第二叶轮。

在一个实施例中,所述罐的高度与所述罐的宽度的比在1:2至2.5:1,例如0.7:1至2:1的范围内。

在一个实施例中,所述曝气装置设置于所述向上泵送的叶轮上方,以使得在使用时,当所述向上泵送的叶轮被启动以便通过所述驱动轴旋转时,所述曝气装置被浸没于接收于所述罐中的液体或浆液中。

在一个实施例中,所述曝气装置设置于所述向上泵送的叶轮上方,以使得在使用时,当所述向上泵送的叶轮被停用以便不通过所述驱动轴旋转时,所述曝气装置被至少部分地浸没于接收于所述罐中的液体或浆液中。

在一个实施例中,在使用时,当所述向上泵送的叶轮被停用以便不通过所述驱动轴旋转时,所述曝气装置的上边缘沿竖直方向设置于距所述液体或浆液的表面一定距离处,所述距离为所述罐的宽度的大约0.015至0.075倍。

在一个实施例中,所述向上泵送的叶轮与所述曝气装置的下边缘之间的沿竖直方向的距离为所述向上泵送的叶轮的宽度的0.1至0.8倍。

在一个实施例中,在使用时,所述向上泵送的叶轮与所述液体或浆液的表面之间的沿竖直方向的距离为所述向上泵送的叶轮的宽度的0.2至1.5倍。

在一个实施例中,所述向上泵送的叶轮具有设置于所述竖直轴线的距离处的外边缘,并且所述曝气装置的上边缘设置于所述竖直轴线的距离处,所述距离大于所述向上泵送的叶轮的外边缘的所述距离。

在一个实施例中,所述向上泵送的叶轮具有设置于所述竖直轴线的距离处的外边缘,并且所述曝气装置的下边缘设置于所述竖直轴线的距离处,所述距离大于所述向上泵送的叶轮的外边缘的所述距离。

所述反应器可以为搅拌罐式反应器。

在一个实施例中,所述反应器为用于湿法冶金应用(例如湿法冶金浸提应用)中的气体与液体或浆液之间的气液传质的搅拌罐式反应器。

还公开一种设备,所述设备包括根据本说明书中所描述的一个或多个实施例的反应器。

在一个实施例中,所述设备为湿法冶金设备。所述湿法冶金设备可以进一步包括以下至少一个:

用于研磨比如矿石的原材料(19)的压碎和/或研磨单元;

单元,所述单元用于将所述原材料溶解于水溶液中,用以产生待接收于所述罐中的浆液;和/或

液体/固体分离单元,所述液体/固体分离单元用于从接收于所述罐中的浆液分离残余固体。

还公开一种用于气体与液体或浆液之间的气液传质的方法。所述方法可以包括将液体或浆液提供至根据本说明书中所描述的一个或多个实施例的反应器中以及其罐中;

使所述向上泵送的叶轮旋转,从而产生接收于所述罐中的液体或浆液的大体上向上的流动以及在所述液体或浆液的表面处的流动,以使得将所述曝气装置浸没于接收于所述罐中的液体或浆液中;其中设置于所述向上泵送的叶轮上方的曝气装置将所述流动的至少一部分从所述竖直轴线向外引导于所述内表面之上以及引导于所述上边缘之上。

在所述方法的上下文中,所述反应器可以为本说明书中所描述的任何反应器。

在一个实施例中,所述方法为湿法冶金方法,例如湿法冶金浸提方法。所述方法可以进一步包括以下一项或多项:

压碎和/或研磨例如矿石的原材料;

将例如矿石的原材料溶解于水溶液中,用以产生待接收于所述罐中的浆液;和/或

从接收于所述罐中的浆液分离残余固体。

现在将详细参考各种实施例,所述实施例的示例在附图中示出。

以下描述详细地公开一些实施例,以使得本领域技术人员能够利用基于本公开的实施例。未详细地讨论实施例的所有步骤或特征,因为基于本说明书,许多步骤或特征对于本领域技术人员而言将是显而易见的。

为了简单起见,在重复的构件的情况下,在以下示例性实施例中将维持项目编号。

图1A示出用于气体2与液体或浆液3之间的气液传质的反应器1的示例性实施例。反应器1(其为搅拌罐式反应器)被示意性地显示为局部剖视侧视图。反应器包括用于接收液体或浆液3的罐4。罐4具有壁5和底部23。在使用反应器1时,液体或浆液3被接收于罐4中,以使得液体或浆液3的表面9与上方的气体2接触。可以接收液体或浆液3,以使得表面9处于预期的表面高度处。在该示例性实施例中,罐4为圆柱形的,亦即它具有大致圆形横截面或圆形横截面。然而,在其它实施例中,罐4可以具有例如矩形横截面。罐4的精确的量度可以根据例如反应器1的预期用途变化。例如,罐4的宽度w可以为至少1m,或至少1.5m,但是可以考虑具有例如20m或更大的直径的罐。罐4的宽度w可以被理解为指的是罐4的沿水平方向的最大直径。在罐4为圆柱形的实施例中,宽度w为罐的直径。罐4的高度h可以为至少0.7m、或至少1m,但是也可以考虑具有例如25m或更大的高度的罐4。罐的高度h与罐的宽度w的比也可以变化。例如,罐的高度h与罐的宽度w的比可以例如在1:2至2.5:1的范围内。例如,所述比可以在0.7:1至2:1的范围内。也可以考虑其它反应器和罐的几何形状。例如,代替图1A和1B中所示的圆柱形罐4,反应器1可以为高压釜反应器。这样的高压釜反应器可以包括卧式罐。

反应器1进一步包括驱动轴6,所述驱动轴6在罐4中竖直地延伸。驱动轴6可围绕竖直轴线7旋转。反应器可以进一步包括用于使驱动轴6旋转的电动机22。电动机22可以经由例如机械齿轮或传动带(未示出)的合适的传动装置连接至驱动轴6。

反应器1进一步包括向上泵送的叶轮8。向上泵送的叶轮8可通过驱动轴6旋转,并且可以在使用反应器时被启动以便通过驱动轴6旋转,另一方面,被停用以便不通过驱动轴6旋转。换句话说,向上泵送的叶轮8被构造成通过驱动轴6旋转。向上泵送的叶轮8设置于罐4的上部部分中。向上泵送的叶轮8在使用时(被启动并且浸没于液体或浆液3中)可以产生接收于罐中的液体或浆液3的大体上向上的流动以及至液体或浆液3的表面9的流动。在表面9处,向上泵送的叶轮8可以产生径向向外的、亦即从驱动轴6径向向外并且朝向罐4的壁5的流动。在图2A和2B中更详细地描绘流动模式。图1A描绘在使用中的反应器1,以使得液体或浆液3被接收于罐4中但是使得向上泵送的叶轮8被停用并且表面9为平坦的。因此,表面9处于预期的表面高度处。

向上泵送的叶轮8可以为任何叶轮、混合器或搅拌器,只要它大体上向上泵送。向上泵送的叶轮的精确的几何形状不受特别地限制,但是出于示例说明的目的,向上泵送的叶轮8被显示为具有从竖直轴线7向外延伸的四个叶片。然而,技术人员知道可以被用于反应器1中的各种其它叶轮几何形状。

反应器1进一步包括设置于向上泵送的叶轮8上方的曝气装置(aeratingapparatus)10。在使用时,曝气装置10可以浸没于接收于罐4中的液体或浆液3中。曝气装置10在距驱动轴6第一距离d1处以及距罐的壁第二距离d2处在驱动轴与罐的壁之间延伸。因此,在使用时,液体或浆液3的流动在曝气装置10与驱动轴6之间以及另一方面在曝气装置10与罐4的壁5之间延伸。距离d1和/或d2可以分别被认为是曝气装置10与驱动轴6或壁5之间的最短距离。

曝气装置10可以至少部分地环绕竖直轴线7(和驱动轴6)。在该示例性实施例中,曝气装置10连续地环绕竖直轴线7和驱动轴6,但是可以考虑其中曝气装置10仅仅部分地(例如不连续地)环绕竖直轴线7的其它实施例。曝气装置10的下边缘11因此限定孔,向上泵送的叶轮8所产生的流动的至少一部分被引导通过所述孔。

曝气装置10具有下边缘11和上边缘12以及在下边缘11与上边缘12之间延伸的向外倾斜或弯曲的内表面13,所述内表面13用于将所述流动的至少一部分从竖直轴线向外引导于内表面13之上以及引导于上边缘之上。换句话说,内表面13以及由此曝气装置10被构造成将所述流动的至少一部分从竖直轴线向外引导于内表面13之上以及引导于上边缘12之上。在图2A和2B中更详细地描绘流动模式以及曝气装置10对流动模式的作用。内表面13可以为至少部分地倾斜的和/或至少部分地弯曲的。

在该实施例中,内表面13向外倾斜,亦即从竖直轴线7径向向外倾斜。内表面13相对于竖直轴线7的角度α不受特别地限制。例如,内表面13可以相对于竖直轴线7以大约10°至大约85°的、或大约20°至大约80°的角度α向外倾斜。大约35°至大约55°的、或大约40°至大约50°的角度α可能特别好地适合于引导所述流动。内表面13的至少一部分可以例如相对于竖直轴线以大约20°至大约80°的角度向外倾斜。在该实施例中,曝气装置10或至少内表面13具有截头锥的形状。曝气装置10在这里被显示为由相对薄的材料形成,例如由薄金属板形成,但是曝气装置10的其它部分的材料和几何形状不受特别地限制。

如图1A中所示,曝气装置10可以被至少部分地或完全地浸没于液体或浆液3中,或者至少使得上边缘12被浸没于液体或浆液3中。图1A描绘在使用中的反应器1,以使得液体或浆液3被接收于罐4中但是使得向上泵送的叶轮8被停用并且表面9为平坦的。当向上泵送的叶轮8被停用时,曝气装置10可以被浸没于液体或浆液3中,但是如将在图2A和2B的上下文中描述的,当向上泵送的叶轮8被启动时,曝气装置10通常也将因此被大体上浸没于液体或浆液3中。然而,在其它实施例中,曝气装置10在使用时以及在向上泵送的叶轮8被停用时可以被仅仅部分地浸没。

可以根据例如向上泵送的叶轮8的几何形状、大小和其它参数,罐4的几何形状、大小和其它参数,和/或其它因素考虑反应器1和曝气装置10的各种量度和几何形状。技术人员能够选择合适的量度和几何形状,但是在本文中描述可能的量度和几何形状的一些示例。

下边缘11与上边缘12之间的沿着内表面13的距离,亦即d3,可以为罐4的宽度w的大约0.04至0.20倍,例如为罐4的宽度w的0.08倍。下边缘11与上边缘12之间的沿着内表面13的距离,亦即d3,可以被认为是下边缘11与上边缘12之间的沿着内表面13的最短距离,如图1A中所示。尽管最短距离d3在内表面13为倾斜的该实施例中沿着直线,但是在其它实施例中,如果内表面13为弯曲的或弧形的,则最短距离d3可以例如沿着弯曲的或弧形的路径。

下边缘11与上边缘12之间的沿径向方向的距离,亦即d4,可以为例如罐4的宽度w的大约0.03至0.18倍。下边缘11与上边缘12之间的沿径向方向的距离,亦即d4,可以被认为是下边缘11与上边缘12之间的沿径向方向突出的最短距离,如图1A和1B中所示。

下边缘11与上边缘12之间的沿竖直方向的距离,亦即d5,可以例如为罐的宽度w的大约0.03至0.18倍。下边缘11与上边缘12之间的沿竖直方向的距离,亦即d5,可以被认为是下边缘11与上边缘12之间的沿竖直方向突出的最短距离,如图1A中所示。

曝气装置10相对于罐4可以为不可移动的。特别地,它可以为不可围绕竖直轴线7旋转的。换句话说,它可能不可围绕竖直轴线7旋转或另外不可相对于罐4移动。因此,曝气装置10可以被认为是无源的,亦即它不需要用于操作的能量源。然而,在某些实施例中,曝气装置10可以为可围绕竖直轴线7旋转的,但是在使用时,相对高的速度的旋转在某些情况下可能不利地影响液体或浆液的流动。

曝气装置10可以以各种方式附接至反应器1。例如,如在图1A和1B的示例性实施例中所示出的,反应器1可以进一步包括一个或多个挡板14。挡板14可以布置于罐4的壁5与向上泵送的叶轮8之间。曝气装置10可以附接至一个或多个挡板14。在该实施例中,反应器1包括围绕竖直轴线7布置于不同的位置处的多个,例如两个、三个、四个或更多个挡板。挡板14可以附接至罐4,例如至罐4的壁5和/或底部23。曝气装置10在该实施例中设置于挡板14与驱动轴6之间。

反应器1可以进一步包括设置于向上泵送的叶轮下方的第二叶轮15。第二叶轮15可以为辅助叶轮。在其它实施例中,反应器1可以包括一个或多个另外的叶轮,例如设置于向上泵送的叶轮下方的第三叶轮(未示出)。第二叶轮15对于气体2与液体或浆液3之间的有效的气液传质可能不是必需的,尽管它在某些实施例中可以协助气液传质。然而,它可以协助混合液体或浆液3。第二叶轮15的泵送方向不受特别地限制。第二叶轮15可以为向下泵送的叶轮,如图1A中所示。这种构造在混合液体或浆液3方面可能相对有效。可以另外地或替代地考虑其它类型的叶轮。

在使用时,当向上泵送的叶轮被停用以便不通过驱动轴旋转时,曝气装置10的上边缘12在该示例性实施例中可以沿竖直方向在距液体或浆液3的表面9(亦即预期的表面高度)的距离d6处设置于表面9下方,所述距离d6为罐的宽度w的大约0.015至0.075倍。距离d6可以被认为是上边缘12与液体或浆液3的表面9之间的最短距离。向上泵送的叶轮8与曝气装置的下边缘11之间的沿竖直方向的距离d7可以为向上泵送的叶轮的直径di的0.1至0.8倍。距离d7可以被认为是向上泵送的叶轮8与下边缘11之间的沿竖直方向的最短距离。

向上泵送的叶轮8设置于罐4的上部部分中。罐4的上部部分可以被理解为罐4的沿竖直方向的上半部分。

在使用时,向上泵送的叶轮8与液体或浆液的表面9之间的沿竖直方向的距离,亦即d8,可以为向上泵送的叶轮的直径(di)的0.2至1.5倍,例如0.2至0.9倍,或0.4至0.6倍,或0.5倍。当向上泵送的叶轮8被停用时,距离d8可以被认为是向上泵送的叶轮8与表面9之间的最短距离。距离d8可以取决于例如向上泵送的叶轮的类型。

向上泵送的叶轮8具有设置于竖直轴线7的距离d9处的外边缘16。距离d9可以被认为是外边缘16与竖直轴线7之间的最短距离。曝气装置10的上边缘12可以设置于竖直轴线7的距离处,亦即距离d10处,所述距离d10大于向上泵送的叶轮8的外边缘16的所述距离d9。距离d10可以被认为是上边缘12与曝气装置10之间的最短距离。

曝气装置10的下边缘11可以设置于竖直轴线7的距离d11处,所述距离d11大于向上泵送的叶轮8的外边缘16的距离d9。距离d11可以被认为是下边缘11与竖直轴线7之间的最短距离。

反应器1可以为用于湿法冶金应用中的(例如湿法冶金浸提中的)气体与液体或浆液之间的气液传质的搅拌罐式反应器。替代地或另外地,反应器1可以适合于废水处理中的气液传质。还可以考虑反应器的其它可能的应用。

图1B将图1A的反应器1示为俯视图。在该示例性实施例中,曝气装置10的内表面13连续地环绕竖直轴线7(以及驱动轴6),从而形成闭合的圆形周边。

图2A示意性地示出反应器1中的用箭头描绘的流动模式,反应器1不包括曝气装置10但是在其它方面与图1A、1B以及2B中所示的确实包括曝气装置10的反应器1类似。进一步,在图2A和2B中,为了清楚起见,从图省略了挡板,但是当然可以将挡板包含于反应器1中。为了清楚起见,从该图省略了反应器1的某些尺寸。在图2A的没有曝气装置的反应器1中,在使用时,向上泵送的叶轮8可以产生接收于罐4中的液体或浆液3的大体上向上的流动以及在液体或浆液3的表面9处的流动。在液体或浆液3的表面9处,流动可能相对较强,以使得与当向上泵送的叶轮8被停用时的情况相比,表面9更高并且表面9的面积更大(亦即高于预期的表面高度)。因此,表面9处的该流动可以引起或提高气体2与液体或浆液3之间的气液传质。在表面9附近或在表面9处,向上泵送的叶轮8可以使所述流动的至少一部分径向向外转向,亦即从驱动轴6径向向外并且朝向罐4的壁5转向。然后,所述流动可以径向地进一步向外转向,以使得所述流动的至少一部分可以向下转向。因此,向上泵送的叶轮8可以产生这样的流动:该流动使液体或浆液3循环至表面9并且随后从所述表面向下循环。

第二叶轮15不一定直接地产生或者显著地有助于大体上向上的流动以及在表面9处或在表面9附近的流动,但是它可以在向上泵送的叶轮8下方使液体或浆液混合并且循环,如图2A和2B中所示。由此,它可以至少间接地改善气液传质。

图2B示意性地示出确实包括曝气装置10的反应器1中的、用箭头描绘的流动模式。反应器1与图1A和1B中所示的反应器1类似,并且为了清楚起见,已经从该图省略了某些细节和尺寸。在使用时,向上泵送的叶轮8可以产生接收于罐4中的液体或浆液3的大体上向上的流动以及在液体或浆液3的表面9处或在表面9附近的流动。在液体或浆液3的表面9处,流动可能相对较强,以使得与当向上泵送的叶轮8被停用时的情况相比,表面9更高并且表面9的面积更大。因此,表面9处或表面9附近的该流动可以引起或提高气体2与液体或浆液3之间的气液传质。在表面9附近或在表面9处,向上泵送的叶轮8可以使所述流动的至少一部分径向向外转向,亦即从驱动轴6径向向外并且朝向罐4的壁5转向。

因此,向上泵送的叶轮8可以产生使液体或浆液3循环至表面9的流动。然而,与图2A的反应器相比,曝气装置10将所述流动的至少一部分引导于下边缘11之上,从竖直轴线7向外引导于内表面13之上,以及引导于上边缘12之上。然后,所述流动可以径向地进一步向外转向,以使得所述流动的至少一部分可以向下转向,以使得所述流动的至少一部分可以在曝气装置10与罐4的壁5之间被向下引导。曝气装置10因此可以被构造成将所述流动的至少一部分径向地进一步向外引导于表面9处,以使得使所述流动的至少一部分在表面9处沿径向方向流动的距离比在没有曝气装置10的情况下流动的距离更长。这可以增加液体或浆液3在表面处与气体2的接触,亦即接触面积和/或接触的时间,并且因此显著地改善气液传质。

图3A和3B中所示的反应器1的实施例与图1A、1B和2B中所示的实施例的不同之处至少在于,当从上方观察时,曝气装置10不是圆形的而是多边形的,特别地在该实施例中为八角形的。在替代的实施例中,曝气装置10可以为例如三角形、矩形、五角形、六边形、七边形、九边形或十边形。在该示例性实施例中,曝气装置10的内表面13连续地环绕竖直轴线7(以及驱动轴6),从而形成闭合的周边。

图3A和3B中所示的反应器1的实施例与图1A、1B以及2B中所示的实施例的不同之处还在于曝气装置10的上边缘12设置于液体或浆液3的表面9上方。因此,当反应器1被使用但是向上泵送的叶轮8被停用时,曝气装置10被部分地浸没于液体或浆液3中。当向上泵送的叶轮8被启动时,它可以引起液体或浆液3的流动以完全地浸没曝气装置10。

反应器1可以进一步包括气体喷雾装置24。气体喷雾装置24(亦即喷雾器)可以被构造成用于分散从气体入口25进给的气体(用箭头示出)。气体喷雾装置24可以设置于向上泵送的叶轮8下方并且可选地设置于第二叶轮15下方,用以将所进给的气体分散至气泡。气体喷雾装置24可以进一步包含于图1A至8C中所描述的反应器的任何一个实施例中。

图3A和3B中所示的实施例的其它方面与图1A至2B中所示的实施例的那些方面大体上类似。

图4A和4B中所描述的反应器1的实施例与图1A至3B中所描述的那些实施例的不同之处至少在于,它包括进一步远离罐4的壁5设置的较小的曝气装置10。换句话说,曝气装置10设置于距罐的壁第二距离d2处,该实施例中的第二距离d2大于例如图1A和1B中所描述的实施例中的距离。距离d1,d10和d11也小于例如图1A和1B中所描述的实施例中的距离。技术人员可以基于反应器1的大小、构造以及各种其它因素选择反应器1的合适的尺寸。

该实施例与图1A至3B中所描述的那些实施例的不同之处进一步在于,曝气装置10包括两个段25、25'。这些段25、25'布置于罐4的相对侧处。在其它实施例中,曝气装置10可以包括至少一个段25、25',每个段具有下边缘11、11',上边缘12、12',以及内表面13、13'。曝气装置10因此部分地但不完全地环绕竖直轴线7和驱动轴6。例如,曝气装置10可以环绕驱动轴6的周边的至少50%,或至少60%,或至少70%,或至少80%,或至少90%,或至少95%。

该实施例与图1A至3B中所描述的那些实施例的不同之处还在于,曝气装置10附接至罐4的壁5,而不是至挡板14。曝气装置10可以经由合适的附接装置或布置29附接。另外地或替代地,曝气装置10可以附接至一个或多个挡板14,至罐4的底部23,和/或至反应器1的任何其它合适的部分或位置,例如至反应器1的盖或至反应器1上方的其它结构1。

图4A和4B中所示的实施例的其它方面与图1A至3B中所示的实施例的那些方面大体上类似。

图5A和5B描述的实施例与图1A至4B中所描述的那些实施例的不同之处至少在于,曝气装置10的上边缘12具有凸起26和/或凹陷27。在该实施例中,上边缘12具有交替的凸起26和凹陷27。这样的上边缘12可以协助沿径向方向分散所述流动,所述流动被引导于上边缘12之上并且随后被向下引导。在该示例性实施例中,曝气装置10的上边缘12为锯齿状的,亦即锯齿形的。然而,可以另外地或替代地考虑各种其它形状、突起和/或凹陷。例如,上边缘12可以具有矩形、三角形和/或半圆形凸起和/或凹陷,或者它可以为有齿轮的或波浪形的。

同样,在该示例性实施例中,曝气装置10的内表面13连续地环绕竖直轴线7(以及驱动轴6),从而形成闭合的周边。

在该示例性实施例中,曝气装置10距罐4的壁5的第二距离d2可以沿着上边缘12变化。在一个实施例中,第二距离d2可以被理解为指的是曝气装置10与壁5之间的沿径向方向的最短距离。

在该实施例中,内表面13相对于竖直轴线7的角度α大于例如图1A中所描述的实施例中的角度α。

图5A和5B中所示的实施例的其它方面与图1A至4B中所示的实施例的那些方面大体上类似。

图6A和6B描述的反应器1的实施例与图1A至5B中所描述的那些实施例的不同之处至少在于,曝气装置10具有向外弯曲的外边缘28。弯曲的外边缘28可以协助分散所述流动,所述流动被沿径向方向引导于上边缘12之上并且随后被向下引导。

图6A和6B中所示的实施例的其它方面与图1A至5B中所示的实施例的那些方面大体上类似。

图7A和7B描绘反应器1的示例性实施例的局部视图。这些实施例与图1A至6B中所描述的那些实施例的不同之处至少在于,曝气装置10的内表面13为弯曲的。在这些实施例中,可以沿着如图中所示的弯曲的内表面13测量下边缘11和上边缘12的沿着内表面13的距离,亦即d3

图7A和7B中所示的实施例的其它方面与图1A至6B中所示的实施例的那些方面大体上类似。

图8A、8B以及8C描述一个实施例,其中反应器1为高压釜式反应器,并且罐4为卧式罐。图8A示出反应器1的一部分的局部剖视侧视图;图8B从垂直于图8A方向的方向示出第二局部剖视侧视图;以及图8C示出反应器1的一部分的俯视图。第二距离d2可以被认为是曝气装置10与罐4的壁5之间的沿径向方向的最短距离。

在该示例性实施例中,曝气装置10可以例如附接至挡板14以及至罐4的壁5或者至任一个。它可以经由合适的附接装置或布置29附接。

图8A、8B以及8C中所示的实施例的其它方面与图1A至7B中所示的实施例的那些方面大体上类似。

图9示意性地示出包括有根据本说明书中所描述的一个或多个实施例的反应器1的设备17以及用于气液传质的方法。设备17为湿法冶金设备。所述设备可以进一步包括用于研磨例如矿石的原材料19的压碎和/或研磨单元18。设备17可以进一步包括单元20,所述单元20用于将例如矿石的原材料溶解于水溶液中,用以产生要被接收于反应器1的罐4(在该图中未示出)中的浆液3。设备17可以进一步包括用于从接收于罐4中的浆液3分离残余固体30的液体/固体分离单元21。这些单元中的任何一个可以与反应器1处于相同的或不同的单元过程中。

示例1

在具有780mm的宽度的373L反应器中用利用稳态亚硫酸钠氧化法进行的kLa测量以及氧利用率测量对与图1A和1B中所示的曝气装置类似的曝气装置的效果进行测试。将包含曝气装置(SAR)的反应器与双重向下泵送(OKTOP3300+OKTOP3300,两个向下泵送的搅拌器)搅拌器以及与不具有曝气装置的相同的搅拌器构造(OKTOP3300+OKTOP3310,向下泵送的和向上泵送的搅拌器)进行比较。

如图10中所示,在没有任何额外的空气供给的情况下,当在反应器中包含曝气装置(SAR)时,与其它反应器构造相比,用相同的或相似的吸收混合功率(W)获得高得多的体积传质系数(kLa)。

对于本领域技术人员而言显而易见的是,随着技术的进步,可以以各种方式实现基本思想。因此,所述实施例不限于上述示例,相反它们可以在权利要求的范围内变化。

以上所描述的实施例彼此可以以任意组合使用。实施例中的几个可以组合在一起以形成另一个实施例。本文中所公开的产品、系统、方法、或用途可以包括以上所描述的实施例中的至少一个。将理解的是,以上所描述的益处和优点可以涉及一个实施例或可以涉及若干个实施例。实施例不限于解决任何或所有所述问题的那些实施例或具有任何或所有所述益处和优点的那些实施例。将进一步理解的是,对“一个”项目的引用指的是那些项目中的一个或多个。在本说明书中,术语“包括”用来指包含其后所跟随的一个或多个特征或动作,而不排除一个或多个另外的特征或动作的存在。

29页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:利用高转移效率施涂器施加涂料组合物的系统和相应的方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!