一种适用于激光熔覆用的高钨镍基合金粉末

文档序号:1265318 发布日期:2020-08-25 浏览:12次 >En<

阅读说明:本技术 一种适用于激光熔覆用的高钨镍基合金粉末 (High-tungsten-nickel-based alloy powder suitable for laser cladding ) 是由 郭韶山 顾孙望 卢林 吴文恒 刘伟兵 缪旭日 陈洋 张天原 杨华 于 2020-06-29 设计创作,主要内容包括:本发明公开了一种适用于激光熔覆用的高钨镍基合金粉末,包含以下质量百分比的各组分:Ni:余量、B:1.0~1.5%、Si:1.0~2.5%、Cr:12.5~18%、W:14.5~18%、Nb:0.2~1.4%、Fe:0.01~5%、C:0.2~1.0%、其他杂质≤0.5%。本发明的优点可有效提高熔覆效率低等缺陷的问题,降低了生产成本,从而提升熔覆层的耐磨性及使用寿命,取得了明显的经济效益。(The invention discloses high-tungsten nickel-based alloy powder suitable for laser cladding, which comprises the following components in percentage by mass: ni: the balance, B: 1.0-1.5%, Si: 1.0-2.5%, Cr 12.5-18%, W: 14.5-18%, Nb: 0.2 to 1.4%, 0.01 to 5% of Fe, C: 0.2-1.0% and other impurities less than or equal to 0.5%. The invention has the advantages of effectively improving the problems of low cladding efficiency and the like, reducing the production cost, improving the wear resistance and the service life of the cladding layer and obtaining obvious economic benefit.)

一种适用于激光熔覆用的高钨镍基合金粉末

技术领域

本发明涉及镍基合金粉末和激光熔覆技术领域,特别涉及一种适用于激光熔覆用的高钨镍基合金粉末。

背景技术

3D打印是一种利用激光或电子束等手段,依据三维建模,在计算机控制下逐层添加堆积材料直接快速精确形成零件的制造技术,也称“ 增材制造”。增材制造技术不需要传统的刀具、夹具及多道加工工序,利用三维设计数据在一台设备上可快速而精确地制造出任意复杂形状的零件,相较于材料去除(或变形)的传统加工和常见的特种加工技术,增材制造技术有着极高的材料利用率。激光熔覆(Laser Cladding)作为一种新的表面改性技术,通过在基底合金表面上预置或同步送给所选择的金属熔覆材料,然后经激光处理使之与基底表层同时熔化,并快速凝固成与基底材料呈冶金结合的表面层,从而显著改变基底材料的耐磨、耐蚀、耐热等特性的工艺方法。在工业领域和民用的金属材料中,镍基合金的比例是较大的,是工业最重要的基础材料之一,它的附加价值也很大,尤其是高钨镍基合金。它具有以下特性:(1)外观质量干燥,无明显氧化色颗粒,无目视可见夹杂;(2)耐腐蚀性能好,特别是耐点蚀性能优秀;(3)高温强度优秀,加工硬化性、抗蠕变性能优秀;(4)所形成的熔覆层具有高强度,可塑性强,良好的耐高温,抗氧化性能,制备的熔覆层致密好,无气孔、无杂质、组织致密、晶粒细化等优点;(5)塑韧性好,成本低等优点。可有效提高熔覆效率;(6)固溶状态无磁性。高钨镍基合金集性能、外观与使用特性于一身,所以它未来仍将是最佳的工业和民用材料之一。采用铸造和锻造等传统工艺制造的镍基合金零件,分别存在宏观成分偏析和材料利用率低、氧化严重,且形状不规则,压制后综合性能并不理想 ,而采用3D打印技术,可有效克服上述缺点。用于3D打印技术的高钨镍基合金粉末具有不同于传统粉末冶金所需要的粉末特性,不仅要求粉末纯度高、氧含量低,还要求粉末球形度高、粒度分布均匀,以及良好的流动性和松装密度。高钨镍基合金粉末主要用途在涡轮增压器、微型燃气轮机喷嘴环、发动机气门座圈、工业电炉等方面。目前,金属粉末的主要制备方法是气雾化法,其基本原理是用高速气流将液态金属流破碎成小液滴并快速凝固成粉末的过程,由于气雾化法制备的粉末具有纯净度高、氧含量低、粉末粒度可控、生产成本低以及球形度高等优点,特别能够满足3D打印技术对于金属粉末性能的要求,已成为高性能及特种合金粉末制备技术的主要发展方向。

发明内容

本发明的目的是为了克服传统镍基合金粉末在激光熔覆技术上存在的耐磨性和耐蚀性不足,激光熔覆过程中易发生开裂等使用性能及工艺性能问题,开发出一种用于激光熔覆技术的高钨镍基合金粉末,从而提升熔覆层的耐磨性及使用寿命。

本发明的上述技术目的是通过以下技术方案得以实现的:

一种适用于激光熔覆用的高钨镍基合金粉末,其特征在于,包含以下质量百分比的各组分:Ni:余量、B:1.0~1.5%、Si:1.0~2.5%、Cr:12.5~18%、W:14.5~18%、Nb:0.2~1.4%、Fe:0.01~5%、C:0.2~1.0%、其他杂质≤0.5%。

优选的,所述高钨镍基合金粉末的粒度分布为38~150μm,D50在80~110um。

优选的,所述高钨镍基合金粉末外貌球形或近球形,显微颗粒球形度ψ≥80%,松装密度≥4.50g/cm³ ,振实密度≥5.20g/cm³。

优选的,所述高钨镍基合金粉末流动性为≤20s/50g,氧含量≤200ppm。

优选的,所述高钨镍基合金粉末采用气雾化制备,主要为在真空气雾化炉中用高速气流将液态金属流破碎成小液滴并快速凝固成粉末。

优选的,采用半导体激光器,所述激光熔覆工艺参数为:激光功率3000W,光斑直径1.2mm,扫描线速度为60m/min,真空环境≤0.2pa,送粉速率为50g/min,工作气体为氩气。

综上所述,本发明具有以下有益效果:

1.本发明的高钨镍基合金粉末的粒度分布为38~150μm,D50在80~110um,流动性为≤20s/50g,外貌球形或近球形,显微颗粒球形度ψ ≥80%,氧含量≤200ppm,松装密度≥4.50g/cm³ ,振实密度≥5.20g/cm³,提高了粉末在激光熔覆的各项性能,通过3D打印得到的成形件组织均匀、致密,尺寸精度高,力学性能优良。

2.本发明的高钨镍基合金粉末硬度可达50HRC~60HRC,且熔覆层强度、硬度和耐磨性高,塑韧性好,成本低等优点,能够克服传统镍基合金金属粉末在激光熔覆技术上存在的耐磨性、耐蚀性、硬度不足,激光熔覆过程中易发生开裂等使用性能及工艺性能问题;从而提升熔覆层的耐磨性及使用寿命。

3.本发明的高钨镍基合金粉末主要是通过在真空气雾化炉中用高速气流将液态金属流破碎成小液滴并快速凝固成粉末,气雾化法制备的高钨镍基合金粉末具有纯净度高、氧含量低、粉末粒度可控、生产成本低以及球形度高等优点。

附图说明

图1是本发明的高钨镍基合金粉末颗粒形貌图;

图2是本发明中实施例1激光熔覆制备熔覆层表面宏观图;

图3是本发明中对比例1激光熔覆制备熔覆层表面宏观图。

具体实施方式

下面结合附图对本发明的具体实施方式作进一步说明,本实施例不构成对本发明的限制。

实施例1:

按质量百分比计,配料成份(烧损后)为Ni:余量、B:1.2%、Si:1.5%、Cr:13.4%、W:15.8%、Nb:0.4%、Fe:2.2%、C:0.4%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在94um,流动性为≤18s/50g,显微颗粒球形度ψ ≥82%,氧含量157ppm,松装密度4.67g/cm³ ,振实密度5.2g/cm³。

实施例2;

按质量百分比计,配料成份(烧损后)为Ni:余量、B:1.4%、Si:2.0%、Cr:17.7%、W:17.1%、Nb:1.1%、Fe:4.2%、C:0.8%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在94um,流动性为≤18s/50g,显微颗粒球形度ψ ≥83%,氧含量161ppm,松装密度4.61g/cm³ ,振实密度5.4g/cm³。

对比例1

按质量百分比计,配料成份(烧损后)为Ni:余量、B:0.8%、Si:0.8%、Cr:18.7%、W:19%、Nb:1.6%、Fe:6%、C:1.1%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在89um,流动性为≤19s/50g,显微颗粒球形度ψ≥83%,氧含量186ppm,松装密度4.58g/cm³,振实密度5.2g/cm³。

对比例2

按质量百分比计,配料成份(烧损后)为Ni:余量、B:1.9%、Si:2.8%、Cr:10.1%、W:12.3%、Nb:0.1%、Fe:3.2%、C:0.4%、其他杂质≤0.5%,经真空气雾化制粉得到所需激光熔覆用高钨镍基合金粉末。高钨镍基合金粉末的粒度分布为38~150μm,D50在93um,流动性为≤18.9s/50g,显微颗粒球形度ψ ≥82%,氧含量178ppm,松装密度4.65g/cm³ ,振实密度5.3g/cm³。

实施例1和实施例2粉末成分均在优选范围之内,对比例1和对比例2粉末成分未在优选范围之内,取得以上四种粉末后,分别做以下四个步骤:

(1)对上述四种高钨镍基合金粉末进行筛分、分级、干燥处理。(2)采用车床加工清除转轴类工件表面氧化层和其他杂质,转轴类工件尺寸为Φ13mm×72mm,其中工件熔覆面积为0.3125㎡。(3)在步骤(2)所述工件表面采用激光熔覆制备熔覆层,所用激光器为半导体激光,激光熔覆工艺参数为:激光功率3000W,光斑直径1.2mm,扫描线速度为60m/min,真空环境≤0.2pa,送粉速率为50g/min,工作气体为氩气。

(4)在机床上对步骤(3)所得的工件按设计尺寸进行最终精加工,得到高钨镍基合金粉末的激光熔覆层。

[0001] 序号 [0002] 熔覆层硬度HRC [0003] 熔覆层及送粉情况
[0004] 实施例1 [0005] 57.2 [0006] 未开裂、未堵粉
[0007] 实施例2 [0008] 59.4 [0009] 未开裂、未堵粉
[0010] 对比例1 [0011] 52.4 [0012] 有未熔合现象、小裂缝、未堵粉
[0013] 对比例2 [0014] 46.7 [0015] 小裂缝、未堵粉

表1具体实施例及对比例熔覆层性能及熔覆层质量对比

结果分析

由表1和图1可以看出,本发明的高钨镍基合金粉末送粉情况均良好,其中不存在大量形状不规则的粉末颗粒,可以表明,采用本发明真空气雾化制备的镍基合金粉末微观形貌主要为规则的球形,少量的棒状结构,外观质量干燥,无明显氧化色颗粒,无目视可见夹杂,表面光滑,具有粒度分布均匀,杂质含量低等性能特点,实施例1和实施例2粉末成分均在优选范围之内,在60m/min的扫描线速度下得到的熔覆层性能优异,具有良好的硬度和熔覆层的质量。

由表1和图2能看出,对比例1得到的熔覆层的耐磨性能较差,存在未熔化颗粒和熔覆层有小裂缝的现象,导致激光熔覆60m/min的扫描线速度下熔覆层出现气孔等未熔合缺陷。而对比例2得到的熔覆层硬度偏低,并且熔覆层有小裂缝现象,两者均未达到使用要求。

本发明的高钨镍基合金粉末粉末进行筛分、分级、干燥处理,高钨镍基合金粉末的粒度分布为38~150μm,D50在80~110um,流动性为≤20s/50g,外貌球形或近球形,显微颗粒球形度ψ≥80%,氧含量≤200ppm,松装密度≥4.50g/cm³,振实密度≥5.20g/cm³,提高了粉末在激光熔覆的各项性能,克服了传统镍基合金金属粉末在激光熔覆技术上存在的耐磨性和耐蚀性不足,激光熔覆过程中易发生开裂等使用性能及工艺性能问题,可有效提高熔覆效率低等缺陷的问题,降低了生产成本,从而提升熔覆层的耐磨性及使用寿命,取得了明显的经济效益。

以上所述,仅是本发明的较佳实施例而已,不用于限制本发明,本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明技术方案的保护范围内。

8页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种热加工态钴基合金棒丝材的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!