一种芦荟大黄素氮杂环衍生物及其制备方法和用途

文档序号:1282259 发布日期:2020-08-28 浏览:22次 >En<

阅读说明:本技术 一种芦荟大黄素氮杂环衍生物及其制备方法和用途 (Aloe-emodin nitrogen heterocyclic derivative and preparation method and application thereof ) 是由 黎勇 于 2020-05-29 设计创作,主要内容包括:本发明提供了一种芦荟大黄素氮杂环衍生物及其制备方法和用途,属于化学医药领域。该一种芦荟大黄素氮杂环衍生物是式I所示的化合物、或其盐、或其立体异构体、或其溶剂合物、或其前药、或其代谢产物。本发明化合物可有效抑制巨噬细胞产生NO和炎性因子,还可有效抑制iNOS和COX-2的表达,进而抑制NF-κB信号通路的激活,减轻炎症反应或抑制炎症反应的发生;同时,本发明化合物对于结肠炎,特别是急性溃疡性结肠炎有良好的治疗效果;其中,本发明化合物5r的生物活性显著优于芦荟大黄素。此外,本发明化合物安全性良好,代谢稳定,对抗炎药物的研发具有重要的应用价值。&lt;Image he="381" wi="700" file="DDA0002516759580000011.GIF" imgContent="drawing" imgFormat="GIF" orientation="portrait" inline="no"&gt;&lt;/Image&gt;(The invention provides an aloe-emodin azacyclic derivative and a preparation method and application thereof, belonging to the field of chemical medicine. The aloe-emodin azacyclic derivative is a compound shown in a formula I, or a salt, a stereoisomer, a solvate, a prodrug or a metabolite thereof. The compound can effectively inhibit macrophage from generating NO and inflammatory factors, and also can effectively inhibit the expression of iNOS and COX-2, so as to inhibit the activation of NF-kB signal channel, reduce inflammatory reaction or inhibit the generation of inflammatory reaction; meanwhile, the compound has good treatment effect on colitis, particularly acute ulcerative colitis; wherein, the biological activity of the compound 5r of the invention is obviously better than that of aloe-emodin. In addition, the compound has good safety and stable metabolism, and has important application value in the research and development of anti-inflammatory drugs.)

一种芦荟大黄素氮杂环衍生物及其制备方法和用途

技术领域

本发明属于化学医药领域,具体涉及一种芦荟大黄素氮杂环衍生物及其制备方法和用途。

背景技术

炎症是具有血管系统的活体组织对各种损伤因子的刺激所产生的一种防御反应为主的基本病理过程。急性炎症典型的症状为红、肿、热、痛和功能障碍等,也伴有发热、末梢血白细胞数改变等全身反应。在炎症的发生发展过程中,NF-κB信号通路扮演着重要的角色,在休眠细胞中,NF-κB局部细胞质和抑制剂结合为IκB。而促炎细胞因子,如IL-1和TNF-α可以触发NF-κB信号通路激活,进而导致磷酸化和后续蛋白酶体介导的退化。一旦退化,抑制剂和NF-κB不再结合为IκB,自由NF-κB进入核诱发多种基因的表达,包括编码细胞因子(如IL-1、2和6)、TNF-α和其他蛋白质,刺激炎症反应。

过度的炎症反应会引发多种疾病,包括炎性肠病,类风湿性关节炎,阿尔茨海默症等。其中,溃疡性结肠炎是一种影响全球数百万人的自身免疫炎性疾病,其特征是肠粘膜的慢性炎症失控。目前尚无完全治愈的方法,主要治疗目标是减少复发和提高患者的生活质量。氨基水杨酸和糖皮质激素类药物是目前治疗溃疡性结肠炎的首选,然而,这些药物也可能会导致严重的副作用,包括腹泻,痉挛,腹痛伴随发烧,并在持续用药的情况下,会有引发高血压的风险。

天然动植物一直以来都是生物活性成分发掘的宝库。近年来,有越来越多的学者从天然活性成分中开发出新型抗炎药物。芦荟大黄素就是一种从中药大黄、芦荟中提取的蒽醌类生物活性物质。最新研究表明,芦荟大黄素具有抗癌、抗病毒、抗炎、抗菌等多种药理作用。但芦荟大黄素具有肠道吸收不良、半衰期短、生物利用度低等特点,其临床开发应用因此受到了限制,因此对芦荟大黄素进行结构修饰改造,即保留其生物活性,又克服现在存在的问题是很有必要的。

发明内容

本发明的目的是提供一种芦荟大黄素氮杂环衍生物及其制备方法和用途。

本发明提供了式I所示的化合物、或其盐、或其立体异构体、或其溶剂合物、或其前药、或其代谢产物:

其中,

R1、R2分别独立选自氢、C1~C6烷基、C1~C6烷氧基;

A环为3~8元饱和杂环基,所述饱和杂环基的杂原子个数为1~3个,所述饱和杂环基的杂原子为N、O或S,且所述饱和杂环基中至少有一个杂原子为N;

所述A环上被n个R3取代;

n为0~6的整数;

R3各自独立选自卤素、取代或未取代的C1~C6烷基、C2~C6烯基、取代或未取代的C1~C6烷氧基、羟基、氰基、酯基、-N(H)C(O)OR4、-C(O)R5、取代或未取代的3~8元不饱和环烷基、3~8元不饱和杂环基,所述不饱和杂环基的杂原子个数为1~3个,所述不饱和杂环基的杂原子为N、O或S;

或者相邻两个碳原子上的两个R3形成3~8元饱和环烷基、取代或未取代的3~8元不饱和环烷基;

或者同一个碳原子上的两个R3形成双键并连接O原子、取代或未取代的3~8元饱和杂环基,所述饱和杂环基的杂原子个数为1~3个,所述饱和杂环基的杂原子为N、O或S;

所述烷基的取代基为-N(H)C(O)OR4、羟基、取代或未取代的C1~C6烷氧基、取代或未取代的3~8元不饱和环烷基;

所述不饱和环烷基的取代基为卤素、C1~C6烷氧基;

所述饱和杂环基同一个碳原子上的两个取代基形成双键并连接O原子;

所述烷氧基的取代基为羟基;

R4、R5分别独立选自C1~C6烷基。

进一步地,

R1、R2分别独立选自氢、C1~C3烷基;

A环为4~6元饱和杂环基,所述饱和杂环基的杂原子个数为1~2个,所述饱和杂环基的杂原子为N或O,且所述饱和杂环基中至少有一个杂原子为N;

所述A环上被n个R3取代;

n为0~4的整数;

R3各自独立选自卤素、取代或未取代的C1~C3烷基、C2~C3烯基、取代或未取代的C1~C3烷氧基、羟基、氰基、甲酸甲酯基、甲酸乙酯基、乙酸乙酯基、-N(H)C(O)OR4、-C(O)R5、取代或未取代的苯基、5~6元不饱和杂环基,所述不饱和杂环基的杂原子个数为1~2个,所述不饱和杂环基的杂原子为N或O;

或者相邻两个碳原子上的两个R3形成5~6元饱和环烷基、取代或未取代的苯基;

或者同一个碳原子上的两个R3形成双键并连接O原子、取代或未取代的5~6元饱和杂环基,所述饱和杂环基的杂原子个数为1~2个,所述饱和杂环基的杂原子为N或O;

所述烷基的取代基为-N(H)C(O)OR4、羟基、取代的C1~C3烷氧基、取代或未取代的苯基;

所述苯基的取代基为卤素、C1~C3烷氧基;

所述饱和杂环基同一个碳原子上的两个取代基形成双键并连接O原子;

所述烷氧基的取代基为羟基;

R4、R5分别独立选自C1~C4烷基。

进一步地,所述化合物如式II所示:

其中,

R1、R2分别独立选自氢、C1~C3烷基;

n为0~1的整数;n为0时,N连接氢;

R3各自独立选自卤素、取代或未取代的C1~C3烷基、C2~C3烯基、取代或未取代的C1~C3烷氧基、羟基、氰基、甲酸甲酯基、甲酸乙酯基、乙酸乙酯基、-N(H)C(O)OR4、-C(O)R5、取代或未取代的苯基、5~6元不饱和杂环基,所述不饱和杂环基的杂原子个数为1~2个,所述不饱和杂环基的杂原子为N或O;

所述烷基的取代基为-N(H)C(O)OR4、羟基、取代的C1~C3烷氧基、取代或未取代的苯基;

所述苯基的取代基为卤素、C1~C3烷氧基;

所述烷氧基的取代基为羟基;

R4、R5分别独立选自C1~C4烷基;

优选地,

R1、R2分别独立选自氢、C1~C3烷基;

n为0~1的整数;n为0时,N连接氢;

R3各自独立选自卤素、取代或未取代的C1~C3烷基、C2~C3烯基、取代或未取代的C1~C3烷氧基、羟基、氰基、甲酸甲酯基、甲酸乙酯基、乙酸乙酯基、-N(H)C(O)OR4、-C(O)R5、取代或未取代的苯基、吡啶基、嘧啶基;

所述烷基的取代基为-N(H)C(O)OR4、羟基、取代的C1~C3烷氧基、取代或未取代的苯基;

所述苯基的取代基为卤素、C1~C3烷氧基;

所述烷氧基的取代基为羟基;

R4、R5分别独立选自C1~C4烷基。

进一步地,所述化合物如式II-A所示:

其中,

n为0~1的整数;n为0时,N连接氢;

R3各自独立选自卤素、取代或未取代的C1~C3烷基、C2~C3烯基、取代或未取代的C1~C3烷氧基、羟基、氰基、甲酸甲酯基、甲酸乙酯基、乙酸乙酯基、-N(H)C(O)OR4、-C(O)R5、取代或未取代的苯基、吡啶基、嘧啶基;

所述烷基的取代基为-N(H)C(O)OR4、羟基、取代的C1~C3烷氧基、取代或未取代的苯基;

所述苯基的取代基为卤素、C1~C3烷氧基;

所述烷氧基的取代基为羟基;

R4、R5分别独立选自C1~C4烷基。

进一步地,所述化合物如式II-B所示:

其中,

n为0~1的整数;n为0时,N连接氢;

R3各自独立选自卤素、取代或未取代的C1~C3烷基、C2~C3烯基、取代或未取代的C1~C3烷氧基、羟基、氰基、甲酸甲酯基、甲酸乙酯基、乙酸乙酯基、-N(H)C(O)OR4、-C(O)R5、取代或未取代的苯基、吡啶基、嘧啶基;

所述烷基的取代基为-N(H)C(O)OR4、羟基、取代的C1~C3烷氧基、取代或未取代的苯基;

所述苯基的取代基为卤素、C1~C3烷氧基;

所述烷氧基的取代基为羟基;

R4、R5分别独立选自C1~C4烷基。

进一步地,所述化合物如式III所示:

其中,

A环为4~6元饱和杂环基,所述饱和杂环基的杂原子个数为1~2个,所述饱和杂环基的杂原子为N或O,且所述饱和杂环基中至少有一个杂原子为N;

所述A环上被n个R3取代;

n为0~4的整数;

R3各自独立选自卤素、取代或未取代的C1~C3烷基、C2~C3烯基、取代或未取代的C1~C3烷氧基、羟基、氰基、甲酸甲酯基、甲酸乙酯基、乙酸乙酯基、-N(H)C(O)OR4、-C(O)R5、取代或未取代的苯基、5~6元不饱和杂环基,所述不饱和杂环基的杂原子个数为1~2个,所述不饱和杂环基的杂原子为N或O;

或者相邻两个碳原子上的两个R3形成5~6元饱和环烷基、取代或未取代的苯基;

或者同一个碳原子上的两个R3形成双键并连接O原子、取代或未取代的5~6元饱和杂环基,所述饱和杂环基的杂原子个数为1~2个,所述饱和杂环基的杂原子为N或O;

所述烷基的取代基为-N(H)C(O)OR4、羟基、取代的C1~C3烷氧基、取代或未取代的苯基;

所述苯基的取代基为卤素、C1~C3烷氧基;

所述饱和杂环基同一个碳原子上的两个取代基形成双键并连接O原子;

所述烷氧基的取代基为羟基;

R4、R5分别独立选自C1~C4烷基。

进一步地,所述化合物为如下化合物之一:

本发明还提供了一种制备前述的化合物的方法,它包括如下步骤:

步骤a:化合物1溶于有机溶剂中,与硫酸二甲酯和碳酸钾反应,即得化合物2;

步骤b:氯化亚砜与化合物2反应,即得化合物3;

步骤c:化合物3、碳酸钾溶于溶剂后,在催化量的催化剂作用下反应,得到化合物4;

其中,A环、R3和n与前述相同;

优选地,

步骤a中,所述有机溶剂为丙酮;

和/或,步骤a中,化合物1、硫酸二甲酯和碳酸钾的摩尔比为1:2.5:4;

和/或,步骤a中,所述反应为60~100℃回流10~12h;

和/或,步骤b中,所述氯化亚砜与化合物2的体积质量比为10mL:1mmol;

和/或,步骤b中,所述反应为90~100℃回流8~10h;

和/或,步骤c中,化合物3、和碳酸钾的摩尔比为1:1:2;

和/或,步骤c中,所述催化剂为碘化钾;

和/或,步骤c中,所述溶剂为DMF和MeCN混合溶液,所述DMF和MeCN的体积比为1:4;

和/或,步骤c中,所述反应为在70~100℃下加热8~10h;

更优选地,

步骤a中,还包括对化合物2提纯,提纯方法为反应结束后,将混合物冷却至室温,过滤,残留物用水清洗并在空气中干燥,即可;

和/或,步骤b中,还包括对化合物3提纯,提纯方法为反应后将溶剂旋干,残渣用冰水淬灭,用乙酸乙酯萃取,合并有机相,洗涤,干燥,经硅胶柱层析法纯化,即可;进一步优选所述硅胶柱层析法使用体积比95:5的DCM和MeOH梯度洗脱;

和/或,步骤c中,还包括对化合物4提纯,提纯方法为反应完成后,用乙酸乙酯稀释,加水萃取,将有机相洗涤,干燥,用柱层析法纯化,即可;进一步优选所述柱层析法使用体积比97:3的DCM和MeOH梯度洗脱。

本发明还提供了一种制备前述的化合物的方法,它包括如下步骤:

步骤A:将化合物1溶于有机溶剂中,加入氯化亚砜,反应,得化合物6;

步骤B:将化合物6、碳酸钾溶于溶剂后,在催化量的催化剂作用下反应,得到化合物7;

其中,R3和n与前述相同;

优选地,

步骤A中,所述有机溶剂为DMF;

和/或,步骤A中,所述化合物1和氯化亚砜的摩尔体积比为1mmol:2mL;

和/或,步骤A中,所述反应为室温下反应;

和/或,步骤B中,所述化合物6、碳酸钾的摩尔比为1:1:2;

和/或,步骤B中,所述催化剂为碘化钾;

和/或,步骤B中,所述溶剂为DMF和MeCN混合溶液,所述DMF和MeCN的体积比为1:4;

和/或,步骤B中,所述反应为在70~100℃下加热8~10h;

更优选地,

步骤A中,还包括对化合物6提纯,提纯方法为反应完成后,加入冰水搅拌,得到橙色沉淀,沉淀物经过过滤、洗涤和干燥即可;

和/或,步骤B中,还包括对化合物7提纯,提纯方法为反应完成后,用乙酸乙酯稀释,加水萃取,将有机相洗涤,干燥,用柱层析法纯化,即可;进一步优选所述柱层析法使用体积比97:3的DCM和MeOH梯度洗脱。

本发明还提供了前述的化合物、或其盐、或其立体异构体、或其溶剂合物、或其前药、或其代谢产物在制备抗炎药物中的用途;

优选地,所述药物为治疗结肠炎的药物;

更优选地,所述药物为治疗溃疡性结肠炎的药物;

进一步优选地,所述药物为治疗急性溃疡性结肠炎的药物。

本发明还提供了前述的化合物、或其盐、或其立体异构体、或其溶剂合物、或其前药、或其代谢产物在制备NO抑制剂、IL-1β抑制剂、TNF-α抑制剂、PGE2抑制剂、iNOS抑制剂、COX-2抑制剂或NF-κB抑制剂中的用途。

本发明还提供了一种药物,它是以前述的化合物、或其盐、或其立体异构体、或其溶剂合物、或其前药、或其代谢产物为活性成分,加上药学上可接受的辅料制备而成的制剂。

本发明中室温是指25±5℃;过夜是指12±2h。

本发明中提供的化合物和衍生物可以根据IUPAC(国际纯粹与应用化学联合会)或CAS(化学文摘服务社,Columbus,OH)命名系统命名。

关于本发明的使用术语的定义:除非另有说明,本文中基团或者术语提供的初始定义适用于整篇说明书的该基团或者术语;对于本文没有具体定义的术语,应该根据公开内容和上下文,给出本领域技术人员能够给予它们的含义。

“取代”是指分子中的氢原子被其它不同的原子或分子所替换。

本发明中所述化合物的结构均是指能够稳定存在的结构。

本发明中碳氢基团中碳原子含量的最小值和最大值通过前缀表示,例如,前缀(Ca~Cb)烷基表明任何含“a”至“b”个碳原子的烷基。因此,例如,C1~C6烷基是指包含1~6个碳原子的直链或支链烷基;C2~C6烯基是指包含2~6个碳原子的烯基;C1~C6烷氧基是指包含1~6个碳原子的烷氧基。

本发明中,3~8元饱和环烷基是指由3~8个碳原子组成的单环环烷基,其中该环烷基中无双键;3~8元不饱和环烷基是指由3~8个碳原子组成的单环环烷基,其中该环烷基中含有一个或多个双键;3~8元饱和杂环基是指没有双键的单环杂环基,其中该杂环基中至少一个杂原子,杂原子为O、S或N,其余环原子为碳;3~8元不饱和杂环基是指含有至少一个双键的单环杂环基,其中该杂环中至少有一个杂原子,杂原子选自O、S或N,其余环原子为碳。

本发明中,卤素为氟、氯、溴或碘。

本发明取代基“-N(H)C(O)OR4”的结构式为本发明取代基“-C(O)R5”的结构式为

本发明中,“同一个碳原子上的两个取代基形成双键并连接O原子”即形成结构

本发明化合物的有益效果如下:

(1)本发明化合物对巨噬细胞NO生成具有抑制作用,其中化合物5r、7a、7b和7c抑制效果显著,明显优于芦荟大黄素,可用于制备NO抑制剂;而其中化合物5r的细胞相容性最好;

(2)本发明化合物还可以抑制巨噬细胞产生细胞因子L-1β、TNF-α和PGE2;以及抑制iNOS和COX-2的表达,能在一定程度上抑制NF-κB的激活和有关促炎因子的表达;进而减轻炎症反应;本发明化合物可以制备NO抑制剂、IL-1β抑制剂、TNF-α抑制剂、PGE2抑制剂、iNOS抑制剂、COX-2抑制剂或NF-κB抑制剂。

(3)本发明化合物能够有效改善急性溃疡性结肠炎病变和炎症细胞数量,防治结肠长度缩短;可治疗急性溃疡性结肠炎,用于制备治疗急性溃疡性结肠炎的药物。

总之,本发明化合物可有效抑制巨噬细胞产生NO和炎性因子,还可有效抑制iNOS和COX-2的表达,进而抑制NF-κB信号通路的激活,减轻炎症反应或抑制炎症反应的发生;同时,本发明化合物对于结肠炎,特别是急性溃疡性结肠炎有良好的治疗效果;其中,本发明化合物5r的生物活性显著优于芦荟大黄素。此外,本发明化合物安全性良好,代谢稳定,对抗炎药物的研发具有重要的应用价值。

显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。

以下通过实施例形式的

具体实施方式

,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。

附图说明

图1为化合物5r、7a、7b和7c的细胞毒性评价结果。

图2为化合物5r对细胞因子TNF-α、IL-1β、IL-6、PGE2产生的抑制活性。

图3为化合物5r对NF-κB信号通路及相关促炎因子的影响。

图4为化合物5r在DSS-诱导的小鼠结肠炎模型上的抗炎活性。

图5为化合物5r对DSS-诱导的小鼠结肠炎模型的病理学改变图片。

具体实施方式

本发明具体实施方式中使用的原料、设备均为已知产品,通过购买市售产品获得。

化合物4a-4t以及化合物5a-5r的合成路线如下:

实施例1、中间体3-(羟甲基)-1,8-二甲氧基蒽-9,10-二酮的制备

将芦荟大黄素(10.8g,40mmol)溶于300mL丙酮中,加入硫酸二甲酯(9.5mL,100mmol),碳酸钾(22.1g,160mmol),60℃回流12h。反应结束后,将混合物冷却至室温,过滤。残留物用水清洗并在空气中干燥,得到黄色固体化合物2(产率:78%)。1H NMR(400MHz,DMSO-d6)δ7.78–7.73(m,1H),7.71–7.66(m,2H),7.54(dd,J=8.2,1.3Hz,1H),7.46(d,J=1.5Hz,1H),5.54(s,1H),4.64(s,2H),3.92(s,6H).

实施例2、中间体3-(氯甲基)-1,8-二甲氧基蒽-9,10-二酮的制备

向100mL氯化亚砜中加入化合物2(3g,10mmol),90℃回流8h。反应后将溶剂旋干,残渣用冰水淬灭,用乙酸乙酯萃取3次,每次50mL。合并有机相,用NaHCO3溶液洗涤,再用无水Na2SO4干燥。经硅胶柱层析法(DCM和MeOH体积比为95:5,梯度洗脱)纯化得到亮黄色固体化合物3(产率:65%)。1H NMR(400MHz,DMSO-d6)δ7.78–7.72(m,2H),7.69(dd,J=7.6,1.2Hz,1H),7.60(d,J=1.6Hz,1H),7.54(dd,J=8.3,1.3Hz,1H),4.90(s,2H),3.92(d,J=6.5Hz,6H).

实施例3、3-((3-氟丫丁啶-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(4a)的制备

将化合物3(158mg,0.5mmol)、3-氟氮杂环丁烷盐酸盐(126mg,0.5mmol)、碘化钾(催化量)和碳酸钾(138mg,1mmol)溶于15mL的DMF/MeCN混合溶液中(DMF和MeCN的体积比为1:4),在70℃下加热8h。TLC监测反应完成后,用20mL乙酸乙酯稀释,加水萃取两次,每次15mL。有机相用饱和盐水洗涤,再用无水Na2SO4干燥。用柱层析法(DCM和MeOH体积比为97:3,梯度洗脱)纯化得到化合物4a。化合物4a为黄色固体,产率为63%;m.p:143-144℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.2Hz,1H),7.71(d,J=1.5Hz,1H),7.63(t,J=8.0Hz,1H),7.33–7.27(m,2H),5.17(dp,J=57.3,5.4Hz,1H),4.01(d,J=3.9Hz,6H),3.77(s,2H),3.75–3.66(m,2H),3.32–3.25(m,1H),3.25–3.19(m,1H);13C NMR(101MHz,Chloroform-d)δ184.08,182.66,159.92,159.52,144.75,134.81,134.73,133.84,124.03,118.96,118.52,118.17,117.53,83.24,81.20,63.33,61.84,61.64,56.60,56.55,29.70;HRMS(ESI):calcd for C20H18FNO4[M+Na]+378.1118,found:378.1113.

实施例4、1,8-二甲氧基-3-((3-甲氧基丫丁啶-1-基)甲基)蒽-9,10-二酮(4b)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为3-甲氧基氮杂环丁烷盐酸盐,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4b。化合物4b为黄色固体,产率为60%;m.p:145-147℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.1Hz,1H),7.71(d,J=1.5Hz,1H),7.62(t,J=8.0Hz,1H),7.32–7.28(m,2H),4.08(p,J=5.8Hz,1H),4.01(d,J=4.2Hz,6H),3.74(d,J=3.8Hz,2H),3.65(td,J=6.1,1.9Hz,2H),3.27(s,3H),3.01(td,J=5.9,1.9Hz,2H);13C NMR(101MHz,Chloroform-d)δ184.12,159.89,159.51,145.19,134.84,134.66,133.79,122.96,118.95,118.63,118.13,117.65,70.00,63.52,61.56,56.61,56.54,56.05;HRMS(ESI):calcd for C21H21NO5[M+H]+368.1499,found:368.1494.

实施例5、1,8-二甲氧基-3-(吡咯啉-1-基甲基)蒽-9,10-二酮(4c)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为吡咯烷,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4c。化合物4c为黄色固体,产率为77%;m.p:180-181℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.71–7.63(m,2H),7.54(d,J=8.2Hz,1H),7.47(s,1H),3.92(d,J=1.4Hz,6H),3.78(s,2H),2.56(s,4H),1.76(d,J=6.0Hz,4H);13C NMR(101MHz,DMSO-d6)δ183.83,181.50,159.37,159.19,134.66,134.54,134.43,123.92,122.83,119.44,118.95,118.60,118.46,59.38,56.79,54.00,23.6;HRMS(ESI):calcd for C21H21NO4[M+H]+352.1550,found:352.1552.

实施例6、1,8-二甲氧基-3-((八氢-2H-异吲哚-2基)甲基)蒽-9,10-二酮(4d)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为全氢异吲哚,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4d。化合物4d为棕色固体,产率为76%;m.p:83-84℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=7.9Hz,1H),7.68(dd,J=7.7,1.2Hz,1H),7.66(s,1H),7.53(dd,J=8.3,1.3Hz,1H),7.46(s,1H),3.91(s,6H),3.85(s,2H),2.73(s,2H),2.58(s,2H),2.14(s,2H),1.60–1.51(m,2H),1.46(m,4H),1.29(s,2H);13C NMR(101MHz,Chloroform-d)δ184.19,182.66,160.01,159.52,134.80,134.58,133.81,118.92,118.83,118.50,118.18,60.83,58.10,56.82,56.54,37.20,26.62,22.71;HRMS(ESI):calcd for C25H27NO4[M+H]+406.2019,found:406.2021.

实施例7、3-(吲哚啉-1-基甲基)-1,8-二甲氧基蒽-9,10-二酮(4e)的制备

将吲哚啉(29.8mg,0.25mmol)、化合物2(149mg,0.5mmol)和PPh3(118mg,0.45mmol)溶解于20mL无水四氢呋喃中,缓慢加入DIAD(76mg,0.38mmol),在-10℃和惰性气体中搅拌1h。随后将得到的混合物加热到室温并搅拌8小时。将溶剂蒸干,用柱层析法对残渣进行纯化,得到棕色固体(收率60%)。m.p:197-198℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.70–7.64(m,2H),7.53(dd,J=8.4,1.2Hz,1H),7.51(d,J=1.6Hz,1H),7.08(d,J=7.2Hz,1H),7.03–6.96(m,1H),6.66–6.55(m,2H),4.40(s,2H),3.91(d,J=2.8Hz,6H),3.34(t,J=8.8Hz,2H),2.95(t,J=8.3Hz,2H);13C NMR(101MHz,Chloroform-d)δ184.15,133.86,127.42,124.73,119.00,118.19,118.09,58.46,54.15,30.90,28.63,18.43;HRMS(ESI):422.1372(C25H21NO4,[M+Na]+).

实施例8、1,8-二甲氧基-3-(吗啉基甲基)蒽-9,10-二酮(4f)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为吗啉,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4f。化合物4f为黄色固体,产率为74%;m.p:185-186℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.1Hz,1H),7.77(d,J=1.5Hz,1H),7.63(t,J=8.0Hz,1H),7.36(s,1H),7.30(dd,J=8.4,1.2Hz,1H),4.01(d,J=4.8Hz,6H),3.73(t,J=4.6Hz,4H),3.59(s,2H),2.48(t,J=4.6Hz,4H);13C NMR(101MHz,Chloroform-d)δ184.16,182.69,159.82,159.49,145.16,134.81,134.62,133.84,123.07,119.22,118.94,118.18,118.15,66.92,62.96,56.58,56.53,53.65;HRMS(ESI):calcdforC21H21NO5[M+H]+368.1499,found:368.1498.

实施例9、3-(((2R,6S)-2,6-二甲基吗啉基)甲基)-1,8-二甲氧基蒽-9,10-二酮(4g)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为(2R,6S)-2,6-二甲基吗啉,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4g。化合物4g为黄色固体,产率为75%;m.p:196-197℃;1H NMR(400MHz,Chloroform-d)δ7.87–7.80(m,1H),7.76(s,1H),7.63(t,J=8.1Hz,1H),7.35(s,1H),7.30(d,J=8.4Hz,1H),4.01(d,J=4.1Hz,6H),3.72(d,J=10.7Hz,2H),3.56(s,2H),2.68(d,J=10.9Hz,2H),1.82(t,J=10.5Hz,2H),1.15(d,J=6.3Hz,6H);13C NMR(101MHz,Chloroform-d)δ184.20,159.81,159.49,145.35,134.84,134.62,133.83,124.03,123.11,119.25,118.95,118.23,118.14,71.67,62.58,59.45,56.59,56.54,19.09;HRMS(ESI):calcd for C23H25NO5[M+H]+396.1802,found:396.1807.

实施例10、1,8-二甲氧基-3-(哌啶-1-基甲基)蒽-9,10-二酮(4h)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为哌啶,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4h。化合物4h为黄色固体,产率为73%;m.p:163-164℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.68(dd,J=7.7,1.3Hz,1H),7.64(d,J=1.4Hz,1H),7.53(dd,J=8.4,1.3Hz,1H),7.43(d,J=1.6Hz,1H),3.91(s,6H),3.56(s,2H),2.37(m,4H),1.53(m,4H),1.41(m,2H);13C NMR(101MHz,DMSO-d6)δ183.90,181.52,159.33,159.18,146.59,134.62,134.57,134.34,123.94,122.70,119.41,118.91,118.59,118.45,62.71,56.77,56.74,54.42,26.04,24.33;HRMS(ESI):calcd for C22H23NO4[M+H]+366.1706,found:366.1703.

实施例11、3-((4-羟基哌啶-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(4i)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为4-羟基哌啶,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4i。化合物4i为黄色固体,产率为72%;m.p:152-153℃;1H NMR(400MHz,Chloroform-d)δ7.82(dd,J=7.8,1.1Hz,1H),7.74(d,J=1.5Hz,1H),7.62(t,J=8.1Hz,1H),7.37(d,J=1.5Hz,1H),7.30(dd,J=8.5,1.1Hz,1H),4.01(d,J=3.7Hz,6H),3.74(qd,J=7.0,5.5,2.7Hz,1H),3.58(s,2H),2.76(dt,J=10.4,4.4Hz,2H),2.30–2.14(m,2H),1.91(dt,J=12.3,3.4Hz,2H),1.81(s,1H),1.62(dtd,J=12.9,9.3,3.7Hz,2H);13C NMR(101MHz,Chloroform-d)δ184.25,182.77,159.83,159.48,145.93,134.83,134.54,133.82,124.01,122.93,119.12,118.94,118.14,62.41,56.55,56.52,34.40;HRMS(ESI):calcd for C22H23NO5,[M+H]+382.1655,found:382.1651.

实施例12、1-((4,5-二甲氧基-9,10-二氧代-9,10-二氢蒽-2-基)甲基)哌啶-4-甲腈(4j)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为4-氰基哌啶,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4j。化合物4j为黄色固体,产率为77%;m.p:173-174℃;1H NMR(400MHz,Chloroform-d)δ7.83(d,J=7.6Hz,1H),7.75(s,1H),7.63(t,J=8.0Hz,1H),7.37–7.28(m,2H),4.07–3.95(m,6H),3.59(s,2H),2.78–2.59(m,3H),2.37(t,J=9.8Hz,2H),2.01–1.85(m,4H);13C NMR(101MHz,Chloroform-d)δ184.17,159.85,159.51,145.30,134.81,134.68,133.86,121.64,119.03,118.96,118.18,117.96,62.63,56.59,56.55,51.43,28.79,26.03;HRMS(ESI):calcd for C23H22N2O4[M+Na]+413.1478,found:413.1476.

实施例13、1,8-二甲氧基-3-((2,2,6,6-四甲基哌啶-1-基)甲基)蒽-9,10-二酮(4k)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为2,2,6,6-四甲基哌啶,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4k。化合物4k为黄色固体,产率为77%;m.p:109-110℃;1H NMR(400MHz,DMSO-d6)δ7.82(s,1H),7.74(t,J=7.9Hz,1H),7.68(d,J=7.5Hz,1H),7.62(s,1H),7.52(d,J=8.2Hz,1H),3.91(d,J=2.6Hz,6H),1.60(s,2H),1.55–1.48(m,4H),0.99(s,12H);13C NMR(101MHz,Chloroform-d)δ184.52,182.93,159.66,159.44,153.81,135.01,134.34,133.60,124.20,121.90,121.65,120.01,118.87,118.04,117.01,116.93,56.52,56.38,54.95,48.20,41.27,29.68,17.72,16.88;HRMS(ESI):calcd for C26H31NO4[M+H]+422.2332,found:422.2331.

实施例14、1,8-二甲氧基-3-((八氢喹啉-1(2H)-基)甲基)蒽-9,10-二酮(4l)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为十氢喹啉,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4l。化合物4l为黄色固体,产率为72%;m.p:179-180℃;1H NMR(400MHz,DMSO-d6)δ7.74(t,J=8.0Hz,1H),7.68(dd,J=7.6,1.2Hz,1H),7.65(d,J=1.5Hz,1H),7.53(dd,J=8.3,1.2Hz,1H),7.42(d,J=1.5Hz,1H),4.10(d,J=14.9Hz,1H),3.91(d,J=3.1Hz,6H),3.26(d,J=14.9Hz,1H),2.75(d,J=11.5Hz,1H),2.06(m,2H),1.79(m,1H),1.73(m,1H),1.64–1.46(m,5H),1.23(m,3H),1.05–0.89(m,3H);13C NMR(101MHz,Chloroform-d)δ184.39,159.73,159.48,148.07,134.93,134.42,133.71,118.98,118.93,118.08,67.40,57.34,56.54,54.65,42.17,33.18,32.62,31.01,26.02,25.82,25.68;HRMS(ESI):calcd for C26H29NO4[M+H]+420.2176,found:420.2173.

实施例15、3-((3,4-二氢异喹啉-2(1H)-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(4m)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为四氢异喹啉,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4m。化合物4m为黄色固体,产率为72%;m.p:178-179℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.71(d,J=1.4Hz,1H),7.68(dd,J=7.7,1.2Hz,1H),7.57–7.52(m,1H),7.51(d,J=1.5Hz,1H),7.12(dd,J=4.1,1.7Hz,2H),7.11–7.06(m,1H),7.02(d,J=7.0Hz,1H),3.92(s,6H),3.79(s,2H),3.62(s,2H),2.85(t,J=5.9Hz,2H),2.73(t,J=5.8Hz,2H);13C NMR(101MHz,DMSO-d6)δ183.88,181.53,159.43,159.20,146.33,135.09,134.64,134.57,134.46,128.96,126.85,126.50,125.98,122.86,119.43,118.91,118.61,118.46,61.70,56.78,55.90,50.73,29.12;HRMS(ESI):calcd for C26H23NO4[M+H]+414.1706,found:414.1701.

实施例16、3-((6,7-二甲氧基-3,4-二氢异喹啉-2(1H)-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(4n)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为6,7-二甲氧基-1,2,3,4-四氢异喹啉盐酸盐,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4n。化合物4n为黄色固体,产率为78%;m.p:156-157℃;1HNMR(400MHz,DMSO-d6)δ7.75(t,J=7.9Hz,1H),7.71–7.63(m,2H),7.56–7.51(m,1H),7.51–7.45(m,1H),6.68(s,1H),6.60(s,1H),3.92(s,6H),3.76(s,2H),3.71(s,3H),3.66(s,3H),3.50(s,2H),2.72(dt,J=19.9,6.0Hz,4H);13C NMR(101MHz,DMSO-d6)δ183.86,181.52,159.41,159.19,147.70,147.44,146.37,134.63,134.54,134.42,126.79,126.12,122.82,119.41,118.95,118.60,118.51,112.32,110.45,61.77,56.76,55.94,55.92,55.47,50.99,28.70;HRMS(ESI):calcd forC28H27NO6[M-H]-472.1759,found:472.1758.

实施例17、3-((1,4--二氧杂-8-氮杂螺[4.5]癸烷-8基)甲基)-1,8-二甲氧基蒽-9,10-二酮(4o)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为4-哌啶酮缩乙二醇,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4o。化合物4o为黄色固体,产率为79%;m.p:182-183℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.68(dd,J=7.7,1.2Hz,1H),7.64(d,J=1.5Hz,1H),7.53(dd,J=8.3,1.3Hz,1H),7.45(d,J=1.5Hz,1H),3.91(s,6H),3.86(s,4H),3.63(s,2H),2.49(t,J=6.3Hz,4H),1.65(t,J=5.5Hz,4H);13C NMR(101MHz,Chloroform-d)δ184.21,182.74,162.52,159.81,159.46,146.04,134.84,134.55,133.78,124.02,122.94,119.07,118.92,118.11,118.05,107.04,64.21,62.14,56.53,51.37,36.45,34.85;HRMS(ESI):calcd forC24H25NO6[M+H]+424.1761,found:424.1760.

实施例18、1,8-二甲氧基-3-((1-氧代-2,8-二氮杂[4.5]癸烷-8-基)甲基)蒽-9,10-二酮(4p)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为2,8-二氮杂螺[4,5]癸烷-1-酮,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4p。化合物4p为黄色固体,产率为81%;m.p:247-248℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.1Hz,1H),7.71(d,J=1.5Hz,1H),7.62(t,J=8.0Hz,1H),7.45(s,1H),7.29(dd,J=8.5,1.1Hz,1H),5.79(s,1H),4.01(d,J=5.7Hz,6H),3.61(s,2H),3.33(t,J=6.9Hz,2H),2.84(s,2H),2.15(d,J=12.0Hz,2H),2.00(d,J=10.2Hz,2H),1.67(s,2H),1.45(d,J=12.9Hz,2H);13C NMR(101MHz,Chloroform-d)δ184.26,182.79,182.18,159.93,159.47,134.84,134.52,133.77,124.08,122.97,118.94,118.92,118.13,117.88,62.67,56.60,56.54,50.05,41.89,38.74,32.20,31.78;HRMS(ESI):calcd for C25H26N2O5[M+H]+435.1921,found:435.1921.

实施例19、1-((4,5-二甲氧基-9,10-二氧代-二氢蒽-2-基)甲基)-4氧代哌啶-3-甲酸乙酯(4q)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为4-哌啶酮-3-甲酸乙酯盐酸盐,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4q。化合物4q为黄色固体,产率为72%;m.p:89-90℃;1H NMR(400MHz,Chloroform-d)δ7.84(dd,J=7.6,1.0Hz,1H),7.78(dd,J=6.4,1.5Hz,1H),7.63(td,J=8.1,1.9Hz,1H),7.42–7.36(m,1H),7.30(dt,J=8.4,1.5Hz,1H),4.26–4.17(m,2H),4.06–3.99(m,6H),3.77–3.66(m,2H),3.47(dt,J=13.0,6.4Hz,1H),3.22(s,1H),2.94–2.82(m,1H),2.65(t,J=5.7Hz,1H),2.43(d,J=6.1Hz,1H),1.56(s,2H),1.30–1.24(m,3H);13C NMR(101MHz,Chloroform-d)δ170.91,170.08,159.96,159.54,134.82,134.69,133.90,133.86,119.09,118.96,118.81,118.17,117.98,61.54,60.43,56.55,49.93,48.86,29.25,14.29,14.12;HRMS(ESI):calcd forC25H25NO7[M+Na]+474.1529,gound:474.1527.

实施例20、((1-((4,5-二甲氧基-9,10-二氧代-9,10-二氢蒽-2-基)甲基)哌啶-4-基)甲基)甲酸叔丁酯(4r)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-甲基-N-(哌啶-4-基甲基)氨基甲酸叔丁酯,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4r。化合物4r为黄色固体,产率为69%;m.p:91-92℃;1H NMR(400MHz,Chloroform-d)δ7.83(ddd,J=7.7,2.6,1.1Hz,1H),7.78–7.72(m,1H),7.63(td,J=8.0,4.1Hz,1H),7.37(d,J=5.9Hz,1H),7.32–7.27(m,1H),4.59(s,1H),4.02–3.98(m,6H),3.58(s,2H),3.03(t,J=6.5Hz,2H),2.87(d,J=11.0Hz,2H),2.04(d,J=12.0Hz,2H),1.68(d,J=12.8Hz,2H),1.59(s,2H),1.44(s,9H);13C NMR(101MHz,Chloroform-d)δ184.24,159.81,159.47,156.09,145.92,134.84,134.50,133.79,119.19,118.93,118.21,118.12,116.45,115.69,79.14,64.18,62.80,56.57,56.53,53.48,36.34,29.77,28.41,28.37;HRMS(ESI):calcd forC28H34N2O6[M+H]+495.2496,found:495.2491.

实施例21、(S)-(1-((4,5-二甲氧基-9,10-二氧代-9,10-二氢蒽-2-基)甲基)哌啶-3-基)甲酸叔丁酯(4s)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为(S)-3-Boc-氨基哌啶,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4s。化合物4s为黄色固体,产率为62%;m.p:98-99℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.1Hz,1H),7.70(d,J=1.5Hz,1H),7.63(t,J=8.0Hz,1H),7.37(s,1H),7.30(dd,J=8.5,1.1Hz,1H),4.02(d,J=7.8Hz,6H),3.79(s,1H),3.67–3.50(m,2H),3.49–3.43(m,1H),2.67–2.21(m,4H),1.86–1.51(m,4H),1.43(s,9H);13C NMR(101MHz,Chloroform-d)δ184.22,182.71,159.92,159.53,155.12,134.84,134.61,133.82,123.09,119.07,118.96,118.17,118.00,79.23,77.25,62.54,58.69,56.62,56.56,53.72,28.43;HRMS(ESI):calcd for C27H32N2O6[M+H]+481.2339,found:481.2340.

实施例22、(R)-(1-((4,5-二甲氧基-9,10-二氧代-9,10-二氢蒽-2-基)甲基)哌啶-3-基)甲酸叔丁酯(4t)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为(R)-3-Boc-氨基哌啶,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物4t。化合物4t为黄色固体,产率为60%;m.p:73-74℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.1Hz,1H),7.70(d,J=1.5Hz,1H),7.63(t,J=8.0Hz,1H),7.37(s,1H),7.32–7.28(m,2H),4.96(s,1H),4.02(d,J=7.4Hz,6H),3.78(s,1H),3.66–3.52(m,2H),3.48(dd,J=7.5,4.4Hz,1H),2.50(d,J=49.4Hz,2H),2.34(s,2H),1.77–1.57(m,4H),1.43(s,9H);13C NMR(101MHz,Chloroform-d)δ184.20,159.87,159.50,155.10,145.62,134.82,134.57,133.80,129.12,128.25,119.00,118.93,118.15,117.91,79.18,62.94,62.56,58.73,58.43,56.56,56.53,53.72,53.30,29.67,28.41,22.39.;HRMS(ESI):calcd forC27H32N2O6[M+H]+481.2339,found:481.2335.

实施例23、1,8-二甲氧基-3-(哌嗪-1-基甲基)蒽-9,10-二酮(5a)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5a。化合物5a为黄色固体,产率为62%;m.p:234-235℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.69(d,J=7.6Hz,1H),7.65(d,J=1.4Hz,1H),7.53(d,J=8.4Hz,1H),7.44(s,1H),3.91(s,6H),3.56(s,2H),2.72(t,J=4.8Hz,4H),2.34(t,J=4.7Hz,4H),2.03(d,J=41.7Hz,1H);13C NMR(101MHz,DMSO-d6)δ183.86,181.51,159.36,159.19,145.68,134.65,134.56,134.40,123.93,122.83,119.43,119.16,118.64,118.60,66.67,62.32,56.78,53.64.HRMS(ESI):calcd for C21H22N2O4[M+H]+367.1659,found:367.1663.

实施例24、1,8-二甲氧基-3-((4甲基哌嗪-1-基)甲基)蒽-9,10-二酮(5b)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-甲基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5b。化合物5b为黄色固体,产率为74%;m.p:186-187℃;1H NMR(400MHz,Chloroform-d)δ7.76(dd,J=7.7,1.1Hz,1H),7.74(d,J=1.5Hz,1H),7.58(dd,J=8.4,7.7Hz,1H),7.20(s,1H),7.17(s,1H),3.95(d,J=2.0Hz,6H),3.66(s,2H),3.17(m,4H),2.96(m,4H),2.71(s,3H);13C NMR(101MHz,DMSO-d6)δ183.86,181.52,159.39,159.20,134.77,134.53,134.48,123.88,122.98,119.52,119.31,118.71,118.61,60.82,56.88,56.83,53.37,50.12,43.03;HRMS(ESI):calcd for C22H24N2O4[M+H]+381.1815,found:381.1811.

实施例25、3-((4-乙基哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5c)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-乙基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5c。化合物5c为黄色固体,产率为78%;m.p:211-212℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.0Hz,1H),7.79(d,J=1.5Hz,1H),7.63(t,J=8.0Hz,1H),7.35–7.28(m,2H),4.01(d,J=1.7Hz,6H),3.65(s,2H),2.72(s,10H),1.24(t,J=6.8Hz,3H);13C NMR(101MHz,Chloroform-d)δ184.16,159.81,159.49,145.06,134.80,134.70,133.86,123.09,119.07,118.94,118.21,118.18,62.19,56.62,56.55,52.28,52.26,51.81,10.99;HRMS(ESI):calcd for C23H26N2O4[M+H]+395.1972,found:395.1969.

实施例26、3-((4-异丙基哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5d)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-异丙基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5d。化合物5d为黄色固体,产率为76%;m.p:231-232℃;1H NMR(400MHz,Chloroform-d)δ7.87–7.77(m,2H),7.64(t,J=8.0Hz,1H),7.37–7.26(m,2H),4.01(d,J=1.5Hz,6H),3.69(s,2H),3.29(s,1H),3.13–2.89(m,8H),1.38(d,J=6.6Hz,6H);13C NMR(101MHz,Chloroform-d)δ184.14,159.74,159.44,145.53,134.79,134.55,133.80,123.96,122.90,119.18,118.90,118.24,118.11,62.46,56.56,56.50,54.61,53.06,48.45,29.65,18.41;HRMS(ESI):calcd for C24H28N2O4[M+H]+409.2128,found:409.2126.

实施例27、3-((4-烯丙基哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5e)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-烯丙基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5e。化合物5e为黄色固体,产率为72%;m.p:126-127℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.1Hz,1H),7.77(d,J=1.5Hz,1H),7.63(t,J=8.0Hz,1H),7.39–7.28(m,2H),5.99–5.82(m,1H),5.30–5.12(m,2H),4.01(d,J=2.6Hz,6H),3.62(s,2H),3.09(s,2H),2.59(s,8H);13C NMR(101MHz,Chloroform-d)δ184.21,182.73,159.81,159.49,145.56,134.85,134.60,134.41,133.80,124.03,119.17,118.94,118.52,118.19,118.13,62.45,61.60,56.58,56.54,52.92,52.90;HRMS(ESI):calcd for C24H26N2O4[M+H]+407.1972,found:407.1968.

实施例28、3-((4-(2-羟基乙基)哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5f)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-羟乙基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5f。化合物5f为黄色固体,产率为66%;m.p:150-151℃;1H NMR(400MHz,Chloroform-d)δ7.81(dd,J=7.7,1.2Hz,1H),7.75(d,J=1.5Hz,1H),7.61(t,J=8.0Hz,1H),7.33(d,J=1.6Hz,1H),7.28(dd,J=8.5,1.1Hz,1H),3.99(d,J=3.3Hz,6H),3.64–3.59(m,2H),3.58(s,2H),2.60–2.54(m,6H),2.54–2.47(m,4H).13C NMR(101MHz,DMSO-d6)δ183.41,181.05,158.87,158.71,145.69,134.17,134.09,133.90,123.45,122.27,118.95,118.52,118.12,118.02,61.48,60.21,58.47,56.29,53.16,52.66.HRMS(ESI):calcd for C23H26N2O5[M+H]+411.1921,found:411.1920.

实施例29、3-((4-(3-羟基丙基)哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5g)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-哌嗪基丙醇,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5g。化合物5g为黄色液体,产率为70%;1H NMR(400MHz,DMSO-d6)δ7.73(td,J=7.9,1.5Hz,1H),7.66(dt,J=7.5,1.3Hz,1H),7.62(d,J=1.8Hz,1H),7.51(d,J=8.2Hz,1H),7.41(s,1H),3.90(d,J=1.6Hz,6H),3.57(s,2H),3.42(t,J=6.3Hz,3H),3.38(s,4H),2.40(s,4H),2.33(t,J=7.2Hz,2H),1.55(p,J=6.6Hz,2H);13C NMR(101MHz,DMSO-d6)δ183.66,181.34,159.30,159.13,145.99,134.43,134.26,123.80,122.63,119.21,118.77,118.50,118.41,61.94,59.97,56.67,56.63,55.62,53.30,53.19,30.02;HRMS(ESI):calcd for C24H28N2O5[M+H]+425.2075,found:425.2068.

实施例30、3-((4-(2-(2-羟基乙氧基)乙基)哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5h)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为2-[2-(1-哌嗪基)乙氧基]乙醇,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5h。化合物5h为棕色固体,产率为77%;m.p:54-55℃;1H NMR(400MHz,Chloroform-d)δ7.86–7.77(m,2H),7.63(t,J=8.0Hz,1H),7.35–7.28(m,2H),4.01(d,J=2.9Hz,6H),3.84(t,J=5.1Hz,2H),3.74(m,2H),3.67(s,2H),3.66–3.62(m,2H),2.99(s,4H),2.94(t,J=5.0Hz,2H),2.81(d,J=5.0Hz,4H);13C NMR(101MHz,Chloroform-d)δ184.09,182.69,159.71,159.41,145.50,134.74,134.54,133.83,123.90,122.88,119.14,118.88,118.20,118.13,72.42,67.35,62.34,61.80,57.80,56.53,56.49,53.13,52.65;HRMS(ESI):calcdfor C25H30N2O6[M+H]+455.2183,found:455.2175.

实施例31、3-((4-乙酰基哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5i)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-乙酰基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5i。化合物5i为黄色固体,产率为82%;m.p:166-167℃;1H NMR(400MHz,Chloroform-d)δ7.83(dd,J=7.7,1.1Hz,1H),7.77(d,J=1.5Hz,1H),7.64(t,J=8.0Hz,1H),7.34(s,1H),7.31(dd,J=8.4,1.1Hz,1H),4.01(d,J=2.9Hz,6H),3.71–3.57(m,4H),3.49(dt,J=6.7,4.1Hz,2H),2.46(t,J=5.0Hz,4H),2.09(s,3H);13CNMR(101MHz,Chloroform-d)δ184.14,182.66,168.98,159.85,159.50,144.93,134.78,134.70,133.88,123.20,119.11,118.95,118.19,118.08,62.42,56.60,56.55,53.11,52.88,46.24,41.38,21.31;HRMS(ESI):calcd for C23H24N2O5[M+Na]+431.1583,found:431.1586.

实施例32、4-((4,5-二甲氧基-9,10-二氧代-9,10-二氢蒽-2-基)甲基)哌嗪-1-甲酸乙酯(5j)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-哌嗪羧酸乙酯,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5j。化合物5j为黄色固体,产率为74%;m.p:180-181℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.68(dd,J=7.7,1.2Hz,1H),7.65(d,J=1.4Hz,1H),7.57–7.52(m,1H),7.45(d,J=1.6Hz,1H),4.03(q,J=7.1Hz,2H),3.92(d,J=1.3Hz,6H),3.63(s,2H),3.39(t,J=3.8,2.6Hz,4H),2.39(t,J=5.0Hz,4H),1.17(t,J=7.1Hz,3H);13C NMR(101MHz,DMSO-d6)δ183.85,181.50,159.37,159.19,155.06,145.71,134.66,134.55,134.42,123.91,122.85,119.44,119.13,118.60,61.81,61.16,56.78,52.77,15.03;HRMS(ESI):calcd for C24H26N2O6[M+Na]+461.1689,found:461.1687.

实施例33、3-((4-(4-氟苯基)哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5k)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-(4-氟苯基)哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5k。化合物5k为黄色固体,产率为72%;m.p:210-212℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.69(dd,J=6.0,1.5Hz,2H),7.53(dd,J=8.3,1.3Hz,1H),7.48(d,J=1.5Hz,1H),7.03(t,J=8.9Hz,2H),6.98–6.94(m,1H),6.93(dd,J=4.8,2.1Hz,1H),3.92(d,J=2.8Hz,6H),3.67(s,2H),3.11(t,J=4.8Hz,4H),2.57(t,J=5.0Hz,4H);13C NMR(101MHz,DMSO-d6)δ183.90,159.39,159.20,148.37,145.93,134.67,134.58,122.84,119.45,119.13,118.62,117.65,117.57,115.80,115.59,61.85,56.79,53.04,49.50;HRMS(ESI):calcd for C27H25FN2O4[M+H]+461.1877,found:461.1872.

实施例34、3-((4-(2-氟苯基)哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5l)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-(2-氟苯基)哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5l。化合物5l为黄色固体,产率为78%;m.p:197-198℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.69(td,J=3.8,1.2Hz,2H),7.54(dd,J=8.3,1.3Hz,1H),7.49(d,J=1.5Hz,1H),7.16–7.07(m,2H),7.04(td,J=8.6,2.0Hz,1H),6.96(m,1H),3.92(d,J=5.3Hz,6H),3.69(s,2H),3.05(t,J=4.7Hz,4H),2.60(t,J=4.8Hz,4H);13C NMR(101MHz,DMSO-d6)δ183.91,159.39,159.20,154.22,145.93,134.68,134.59,134.44,125.29,122.85,122.73,119.74,119.46,119.20,118.65,118.62,116.46,116.26,61.91,56.80,53.13,50.60;HRMS(ESI):calcd forC27H25FN2O4[M+H]+461.1877,461.1870.

实施例35、1,8-二甲氧基-3-((4-(吡啶-2-基)哌嗪-1-基)甲基)蒽-9,10-二酮(5m)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-(吡啶-2-基)哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5m。化合物5m为黄色固体,产率为75%;m.p:257-258℃;1H NMR(400MHz,DMSO-d6)δ8.09(dd,J=4.9,2.0Hz,1H),7.75(t,J=8.0Hz,1H),7.71–7.69(m,1H),7.68(d,J=2.2Hz,1H),7.54(dd,J=4.8,1.6Hz,1H),7.53–7.50(m,1H),7.49(d,J=1.7Hz,1H),6.80(d,J=8.6Hz,1H),6.62(dd,J=7.1,4.9Hz,1H),3.92(d,J=3.5Hz,6H),3.66(s,2H),3.51(t,J=5.0Hz,4H),2.52(t,J=5.5Hz,4H);13CNMR(101MHz,Chloroform-d)δ184.21,159.87,159.53,159.51,147.95,145.40,137.47,134.85,134.66,133.83,119.21,118.97,118.17,118.15,113.37,107.14,62.61,56.60,56.55,53.01,45.25;HRMS(ESI):calcd for C26H25N3O4[M+H]+444.1924,found:444.1918.

实施例36、1,8-二甲氧基-3-((4-(嘧啶-2-基)哌嗪-1-基)甲基)蒽-9,10-二酮(5n)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-(嘧啶-2-基)哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5n。化合物5n为黄色固体,产率为74%;m.p:215-216℃;1H NMR(400MHz,Chloroform-d)δ8.30(d,J=4.8Hz,2H),7.84(dd,J=7.7,1.1Hz,1H),7.79(d,J=1.5Hz,1H),7.63(t,J=8.0Hz,1H),7.41(s,1H),7.30(dd,J=8.5,1.1Hz,1H),6.48(t,J=4.8Hz,1H),4.02(d,J=7.4Hz,6H),3.85(t,J=5.2Hz,4H),3.64(s,2H),2.54(t,J=5.0Hz,4H);13C NMR(101MHz,Chloroform-d)δ184.19,161.67,159.86,159.50,157.70,134.84,134.66,133.83,123.13,119.23,118.96,118.20,118.14,109.91,62.65,56.60,56.54,53.05,43.66;HRMS(ESI):calcd for C25H24N4O4[M+Na]+467.1696,found:467.1696.

实施例37、3-((4-苄基哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5o)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为N-苄基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5o。化合物5o为黄色固体,产率为74%;m.p:178-179℃;1H NMR(400MHz,DMSO-d6)δ7.75(t,J=8.0Hz,1H),7.68(dd,J=7.7,1.2Hz,1H),7.65–7.59(m,1H),7.53(dd,J=8.4,1.3Hz,1H),7.43(d,J=1.4Hz,1H),7.35–7.30(m,2H),7.29(d,J=1.7Hz,2H),7.24(dt,J=6.5,2.7Hz,1H),3.91(dd,J=1.9Hz,6H),3.61(s,2H),3.50–3.44(s,2H),2.43(m,8H);13C NMR(101MHz,Chloroform-d)δ184.23,159.81,159.50,145.71,138.01,134.87,134.57,133.80,129.22,128.22,127.07,119.22,118.95,118.21,118.12,63.02,62.53,56.59,56.54,53.15,53.04;HRMS(ESI):calcd forC28H28N2O4[M+H]+457.2126,found:457.2125.

实施例38、3-((4-二苯甲基哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5p)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为二苯甲基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5p。化合物5p为黄色固体,产率为81%;m.p:117-118℃;1H NMR(400MHz,DMSO-d6)δ7.74(t,J=8.0Hz,1H),7.67(d,J=7.5Hz,1H),7.60(d,J=13.1Hz,1H),7.53(d,J=8.3Hz,1H),7.49(d,J=5.5Hz,1H),7.41(d,J=7.0Hz,4H),7.28(t,J=7.5Hz,4H),7.17(t,J=7.3Hz,2H),4.29(s,1H),3.90(d,J=3.4Hz,6H),3.61(s,2H),2.35(s,4H);13C NMR(101MHz,Chloroform-d)δ184.24,159.80,159.50,145.44,142.72,134.87,134.55,133.79,128.47,127.92,126.93,119.29,118.95,118.27,118.12,76.23,62.49,56.55,53.41,51.83;HRMS(ESI):calcd for C34H32N2O4[M+H]+533.2441,found:533.2437.

实施例39、3-((4-((3-氯苯基)(苯基)甲基)哌嗪)-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5q)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-(3-氯苯基)(苯基)甲基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5q。化合物5q为黄色固体,产率为75%;m.p:122-123℃;1H NMR(400MHz,DMSO-d6)δ7.74(t,J=8.0Hz,1H),7.67(dd,J=7.7,1.2Hz,1H),7.62(d,J=1.4Hz,1H),7.53(dd,J=8.4,1.2Hz,1H),7.47–7.42(m,3H),7.42–7.39(m,1H),7.39–7.37(m,1H),7.34(d,J=8.4Hz,2H),7.29(t,J=7.5Hz,2H),7.22–7.15(m,1H),4.34(s,1H),3.90(d,J=3.8Hz,6H),3.61(s,2H),2.46(m,4H),2.34(m,4H);13C NMR(101MHz,DMSO-d6)δ181.52,159.33,159.18,145.93,142.75,142.38,134.65,134.56,134.37,131.76,129.82,129.06,128.94,128.02,127.47,119.43,119.02,118.59,118.54,74.57,61.81,56.78,56.74,53.17,51.88.HRMS(ESI):calcd forC34H31ClN2O4[M+H]+567.2051,found:567.2047.

实施例40、3-((4-(双(4-氟苯基)甲基)哌嗪-1-基)甲基)-1,8-二甲氧基蒽-9,10-二酮(5r)的制备

仅仅将实施例3中的3-氟氮杂环丁烷盐酸盐替换为1-(双(4-氟苯基)甲基)哌嗪,原料的摩尔比以及化合物的制备方法均同实施例3。制备得到化合物5r。化合物5r为黄色固体,产率为85%;m.p:105-106℃;1H NMR(400MHz,Chloroform-d)δ7.82(dd,J=7.7,1.1Hz,1H),7.74(d,J=1.5Hz,1H),7.62(t,J=8.0Hz,1H),7.37–7.27(m,6H),6.99–6.92(m,4H),4.23(s,1H),4.00(d,J=2.4Hz,6H),3.60(s,2H),2.45(d,J=38.4Hz,8H);13C NMR(101MHz,Chloroform-d)δ182.75,163.04,159.80,159.51,145.23,138.21,138.18,134.85,134.57,133.82,129.28,129.20,119.30,118.95,118.29,118.14,115.50,115.29,74.48,62.43,56.55,53.30,51.64;HRMS(ESI):calcd for C34H30F2N2O4[M+Na]+568.2174,found:591.2073.

化合物7a-7f的合成路线如下:

实施例41、中间体3-(氯甲基)-1,8-二羟基蒽-9,10-二酮(6)的制备

将芦荟大黄素(0.27g,1.0mmol)溶于DMF(20mL)中,室温下搅拌12h,滴加2mL氯化亚砜,TLC监测反应完成后,加入60mL冰水搅拌,得到橙色沉淀。沉淀物经过过滤、洗涤和干燥得到红棕色固体(产率为90%)。1H NMR(400MHz,DMSO-d6)δ11.92(s,2H),7.83(dd,J=8.4,7.5Hz,1H),7.79(d,J=1.7Hz,1H),7.74(dd,J=7.5,1.2Hz,1H),7.46(d,J=1.7Hz,1H),7.41(dd,J=8.3,1.2Hz,1H),4.91(s,2H).

实施例42、1,8-二羟基-3-((4-(2-羟基乙基)哌嗪-1-基)甲基)蒽-9,10-二酮(7a)的制备

将化合物6(144mg,0.5mmol)、N-羟乙基哌嗪(65mg,0.5mmol)、碘化钾(催化量)和碳酸钾(138mg,1mmol)溶于15mL的DMF/MeCN混合溶液中(DMF和MeCN的体积比为1:4),在70℃下加热8h。TLC监测反应完成后,用20mL乙酸乙酯稀释,加水萃取两次,每次15mL。有机相用饱和盐水洗涤,再用无水Na2SO4干燥。用柱层析法(DCM和MeOH体积比为97:3,梯度洗脱)纯化得到化合物7a。化合物7a为浅棕色固体,产率为63%;m.p:145-146℃;1H NMR(400MHz,Chloroform-d)δ12.07(d,J=19.4Hz,2H),7.88–7.80(m,2H),7.68(dd,J=8.5,7.5Hz,1H),7.35–7.28(m,2H),3.67–3.62(m,2H),3.60(s,2H),2.70–2.48(m,10H);13C NMR(101MHz,Chloroform-d)δ192.62,181.85,162.78,162.48,149.79,137.10,133.65,133.49,124.61,123.99,120.54,120.00,115.86,114.80,62.20,59.29,57.69,53.05,52.82,29.70;HRMS(ESI):calcd for C21H22N2O5[M+H]+383.1608,found:383.1605.

实施例43、1,8-二羟基-3-((4-(2-羟基乙基)哌嗪-1-基)甲基)蒽-9,10-二酮(7b)的制备

仅仅将实施例42中的N-羟乙基哌嗪替换为N-羟丙基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例42。制备得到化合物7b。化合物7b为黄色固体,产率为64%;m.p:174-175℃;1H NMR(400MHz,Chloroform-d)δ12.08(d,J=20.9Hz,2H),7.88–7.78(m,2H),7.68(dd,J=8.4,7.5Hz,1H),7.30(dd,J=8.3,1.2Hz,2H),3.85–3.76(m,2H),3.58(s,2H),2.80–2.29(m,10H),1.72(p,J=5.3Hz,2H);13C NMR(101MHz,Chloroform-d)δ192.63,181.85,162.79,162.48,149.84,137.10,133.67,133.50,124.59,123.94,120.51,120.00,115.87,114.79,64.66,62.13,58.80,53.26,53.18,27.06;HRMS(ESI):calcd forC22H24N2O5[M+H]+397.1764,found:397.1763.

实施例44、1,8-二羟基-3-((4-(2-(2羟基乙氧基)乙基)哌嗪-1-基)甲基)蒽-9,10-二酮(7c)的制备

仅仅将实施例42中的N-羟乙基哌嗪替换为2-[2-(1-哌嗪基)乙氧基]乙醇,原料的摩尔比以及化合物的制备方法均同实施例42。制备得到化合物7c。化合物7c为黄色固体,产率为64%;m.p:135-136℃;1H NMR(400MHz,Chloroform-d)δ12.08(d,J=22.2Hz,2H),7.87–7.80(m,2H),7.68(dd,J=8.4,7.5Hz,1H),7.34–7.28(m,2H),3.72–3.65(m,4H),3.63(q,J=3.9,3.4Hz,2H),3.59(s,2H),2.61(dd,J=14.6,9.2Hz,10H);13C NMR(101MHz,Chloroform-d)δ192.63,181.86,162.79,162.48,149.97,137.09,133.68,133.49,124.58,123.97,120.55,120.00,114.78,72.42,67.52,62.16,62.07,57.89,53.24,52.85;HRMS(ESI):calcd forC23H26N2O6[M+Na]+449.1689,found:449.1682.

实施例45、3-((4-二苯甲基哌嗪-1-基)甲基)-1,8-二羟基蒽-9,10-二酮(7d)的制备

仅仅将实施例42中的N-羟乙基哌嗪替换为二苯甲基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例42。制备得到化合物7d。化合物7d为黄色固体,产率为80%;m.p:212-213℃;1H NMR(400MHz,Chloroform-d)δ12.10(s,1H),12.02(s,1H),7.83(dd,J=7.5,1.2Hz,1H),7.79(d,J=1.6Hz,1H),7.67(t,J=8.0Hz,1H),7.47–7.36(m,4H),7.29(dt,J=9.6,1.6Hz,4H),7.24(d,J=1.5Hz,1H),7.20–7.12(m,2H),4.25(s,1H),3.59(s,2H),2.48(d,J=28.6Hz,8H);13C NMR(101MHz,Chloroform-d)δ192.66,162.78,162.48,149.98,142.71,137.07,133.42,128.47,127.95,126.92,124.57,124.06,120.66,119.99,76.20,62.30,53.47,51.87;HRMS(ESI):calcd for C32H28N2O4[M+H]+505.2128,found:505.2130.

实施例46、3-((4-((3氯苯基)(苯基)甲基)哌嗪-1-基)甲基)-1,8-二羟基蒽-9,10-二酮(7e)的制备

仅仅将实施例42中的N-羟乙基哌嗪替换为1-(3-氯苯基)(苯基)甲基哌嗪,原料的摩尔比以及化合物的制备方法均同实施例42。制备得到化合物7e。化合物7e为黄色固体,产率为81%;m.p:115-116℃;1H NMR(400MHz,Chloroform-d)δ12.09(s,1H),12.03(s,1H),7.83(dd,J=7.5,1.2Hz,1H),7.79(d,J=1.7Hz,1H),7.67(dd,J=8.4,7.5Hz,1H),7.39–7.32(m,4H),7.29(dd,J=8.4,1.2Hz,4H),7.25–7.21(m,2H),7.21–7.15(m,1H),4.23(s,1H),3.59(s,2H),2.47(d,J=33.1Hz,8H);13C NMR(101MHz,Chloroform-d)δ192.65,181.91,162.78,162.49,149.90,142.13,141.32,137.08,133.69,133.44,132.56,129.21,128.66,128.59,127.86,127.17,124.59,124.04,120.62,119.99,115.90,75.43,62.26,53.41,51.78;HRMS(ESI):calcd for C32H27ClN2O4[M+H]+539.1736,found:539.1737.

实施例47、3-((4-(双(4-氟苯基)甲基)哌嗪-1-基)甲基)-1,8-二羟基-蒽-9,10-二酮(7f)的制备

仅仅将实施例42中的N-羟乙基哌嗪替换为1-(双(4-氟苯基)甲基)哌嗪,原料的摩尔比以及化合物的制备方法均同实施例42。制备得到化合物7f。化合物7f为黄色固体,产率为82%;m.p:210-211℃;1H NMR(400MHz,Chloroform-d)δ12.09(s,1H),12.03(s,1H),7.83(dd,J=7.6,1.2Hz,1H),7.79(d,J=1.5Hz,1H),7.68(t,J=8.0Hz,1H),7.39–7.27(m,6H),6.96(t,J=8.7Hz,4H),4.24(s,1H),3.59(s,2H),2.46(d,J=39.0Hz,8H);13C NMR(101MHz,Chloroform-d)δ192.63,181.87,163.06,162.76,162.49,138.13,137.10,133.45,129.31,129.24,124.61,124.11,120.64,120.00,115.87,115.51,115.30,74.45,62.18,53.35,51.64,29.71;HRMS(ESI):calcd for C32H26F2N2O4[M+H]+541.1940,found:541.1938.

以下通过具体是试验例证明本发明的有益效果

试验例1、体外细胞实验

一、实验方法

(1)细胞培养

细胞复苏:将冻存的巨噬细胞从-80℃的液氮罐中取出后,置于37℃水浴锅中融化,期间不断摇动冻存管,加快细胞的融化速度,注意避免冻存管浸入水中;取出后吸取冻存管内的全部液体,转移至15mL离心管中并加入适量培养液混匀,在室温下,放置于离心机内以1000rpm的转速离心5min;更换培养液,尽量吹散使细胞悬浮于培养液中,然后转入培养皿中;将培养皿置于37℃,5%CO2恒温箱中培养,6h观察细胞贴壁情况,并更换新的培养液继续培养。RAW264.7细胞均采用含10%胎牛血清(FBS)的DMEM高糖培养液,培养基中含100U/mL青霉素和100U/mL链霉素。

细胞传代:显微镜下观察细胞,待皿底细胞覆盖率达到70%-80%时,可考虑进行细胞传代。首先更换成新的培养液,随后用细胞刮板将培养皿底的细胞轻轻刮至与培养皿底分离,将细胞悬液移入50mL离心管汇总加入一定量的新培养液,用吸管吹散细胞使之均匀分布在培养基中。之后将细胞浓度调整为5×104个/mL,转移至培养皿中,放在CO2恒温箱中培养。

细胞计数:用细胞刮板轻刮培养皿底部,将细胞与皿底分离,移入离心管,吹散细胞,形成细胞悬液;用微量移液器吸取10μL细胞悬液,使之均匀充满计数板和盖玻片之间。然后将计数板置于显微镜下观察,视野中可以看到四个大计数格,并且每个大计数格包括16个小格,将视野内细胞数计做N。计上不计下,计左不计右,未吹散的细胞团块按1-2个细胞计数。

(2)MTT法检测细胞毒性

MTT实验可用于检测药物的无细胞毒性浓度范围。通过细胞的存活率确定药物的细胞毒性作用。MTT中文名为噻唑蓝,是一种黄色或橙黄色的粉末,可使用PBS进行配制。MTT法常用于检测细胞增殖,细胞活性,肿瘤放射敏感性测定以及大规模抗肿瘤药物的筛选。其特点是敏感度高且经济性好,使用快速便捷易于操作。

A.铺板:将细胞按照细胞密度为5×104个/mL,接种于96孔板中,200μL/孔,最左侧一列加2个孔的空白培养液作为对照,右下角选取3个孔加入DMSO,96孔板最外圈各加入200μL/孔的PBS,以保持96孔板中的环境相对稳定,放于37℃,5%CO2恒温箱中培养24h,观察细胞生长状况。

B.加药:观察细胞正常均匀生长后,将不同浓度的药物按照0.2μL/孔加至各个孔的细胞中,轻轻晃匀,使药物和细胞充分均匀接触,再放于37℃,5%CO2恒温箱中培养24h。

C.检测:先将分装好的MTT(5mg/mL)从冰箱中取出,用锡箔纸包好避光,待MTT融化接近室温后,向各孔中加入MTT,20μL/孔,注意加样速度要迅速,避免因反应时间的不同而造成的误差。轻轻晃均匀后放置于37℃,5%CO2恒温箱中培养4h后,取出孔板,利用排枪从各个加药孔中吸出150μL上清液,再加入150μLDMSO,利用排枪使甲瓒得到充分溶解,观察孔底部没有沉淀后,再用酶标仪在570nm处检测OD值。通过三个独立实验计算细胞存活率。空白组形成的福尔马散密度为100%。细胞存活率(%)=化合物(OD570)/空白(OD570)100%。空白:仅用新鲜培养基培养。化合物:用化合物或脂多糖处理。

(3)Griess法测定NO产量

利用Griess法研究芦荟大黄素衍生物对NO的抑制作用,检测NO的释放量。

A.铺板:按照1×104个/mL细胞密度铺板,放于37℃,5%CO2恒温箱中培养24h;观察细胞生长状况。

B.加药:待观察到细胞均匀生长后,用不同浓度的药物预处理细胞一个小时后,再用脂多糖(LPS,1μg/mL)刺激18h。

C.检测:取上清液,利用Griess Reagen测定上清液中的亚硝酸盐水平来检测NO的释放,用酶标仪在540nm下检测各孔的OD值。NO抑制率=[对照组(OD540)-实验组(OD540)]/[对照组(OD540)-空白(OD540)]×100%.

对照组:仅用LPS处理的DMSO溶液;

实验组:以LPS和化合物处理;

空白组:不含LPS的DMSO溶液。

(4)实验材料

DMEM无血清培养基:购自美国Hyclone公司;

MTT(四甲基偶氮唑盐):购自美国sigma公司;

二甲基亚砜(DMSO):购自美国sigma公司;

FBS:购自以色列Kibbutz Beit-Haemek公司;

盘尼西林和链霉素均购自Thermo-fisher公司;

氧化氮检测试剂盒购自Beyotime Biotechnology;

96孔酶标板,购自Nest公司;

RAW264.7巨噬细胞小鼠细胞购买自ATCC。

(5)实验仪器

(1)移液器:eppendorf;tegent beta;

(2)CO2培养箱:新加坡ESCO CCL-170B-8;

(3)酶标仪:美国Molecular Device公司M5;

(4)常温离心机:美国Thermo Scientific,Thermo SORV ALL Legend micro 17;

(5)高速冷冻离心机:美国Thermo Scientific,HERAEVS FRESCO 17;

(6)超净工作台:新加坡ESCOBiological Safety Cabinets AC2-L1S1,Class II;

(7)纯水仪:美国Milli-Q公司产品,FTSN97007;

(8)立式高压灭菌锅:上海中安医疗器械厂生产,LD2H-200KBS;

(9)恒温水浴箱:PolyScience 9505;

(10)旋涡混匀器:Type 16700Mixer,Thermolyne;

(11)pH计:METTLER TOLEDO公司,DEL T A320;

(12)温湿度计:河北衡水市武强温湿表制造中心,GJWS-A5。

二、实验结果

1、本发明化合物对RAW264.7小鼠巨噬细胞NO生成的抑制作用

本发明化合物对RAW264.7小鼠巨噬细胞NO生成的抑制作用如表1~表4所示。

表1.化合物4a~4t对RAW264.7小鼠巨噬细胞NO生成的抑制作用

表1中AE为芦荟大黄素。表1结果表明:浓度为10μM的芦荟大黄素衍生物4a-4t对RAW264.7细胞的NO生成有抑制作用,但是抑制率较低,浓度为10μM时,抑制率低于50%,其有抗炎活性,但抗炎活性较弱。

表2.化合物5a~5r对RAW264.7小鼠巨噬细胞NO生成的抑制作用

表2中AE为芦荟大黄素。表2结果表明:浓度为10μM的芦荟大黄素衍生物5a-5r对RAW264.7细胞的NO生成有抑制作用。其中5f、5g、5p、5q、5r对RAW264.7细胞的NO生成抑制显著,浓度为10μM时,5f、5g、5p、5q、5r对NO的生成抑制率超过了50%,活性显著强于芦荟大黄素本身;特别是化合物5r,抑制率高达78%。

表3.化合物7a~7f对RAW264.7小鼠巨噬细胞NO生成的抑制作用

表3中AE为芦荟大黄素。表3结果表明:浓度为10μM的芦荟大黄素衍生物7a-7f对RAW264.7细胞的NO生成有抑制作用。其中7a、7b、7c对RAW264.7细胞的NO生成抑制显著,浓度为10μM时,7a、7b、7c对NO的生成抑制率大于80%,活性显著强于芦荟大黄素本身;特别是化合物7a和7b,抑制率高达100%。

表4.化合物5r、7a、7b和7c对NO抑制作用的IC50

表4中AE为芦荟大黄素。表4结果表明:化合物5r、7a、7b和7c对NO的抑制活性明显优于芦荟大黄素本身,这些化合物的NO生成抑制活性是芦荟大黄素的6倍左右。可用于制备NO生成抑制剂。化合物5r、7a、7b和7c的IC50值接近。

2、细胞毒性评价

使用MTT法利用RAW264.7巨噬细胞检测本发明化合物的细胞毒性。本发明化合物5r、7a、7b和7c的细胞毒性评价结果如图1所示。试验结果表明,化合物5r、7a、7b和7c对RAW264.7巨噬细胞的毒性都较小,其中以化合物5r为最优。

试验例2、抗炎机制研究

一、实验方法

(1)ELISA检测

RAW264.7细胞加上不同浓度的化合物或LPS(1μg/毫升)处理24h,并收集上层的培养液。培养基汇总IL-1β、IL-6、TNF-α和PGE2的水平按照标准程序用ELISA试剂盒测定(北京生物技术有限公司,北京,中国)。结果采用GraphPad Prism 7.0软件进行分析。

(2)Western-blotting检测

用PBS冰水洗涤细胞三次,在含10mm Tris-Cl、pH 7.4、3mm CaCl2、2mm MgCl2、1%NP-40、0.5mM苯基甲基磺酰氟(PMSF)和蛋白酶抑制剂混合物的裂解缓冲液中冰上溶解30min。裂解液15min,15000rpm离心,收集上清液。使用Bio-Rad蛋白检测试剂(Bio-Rad,Hercules,CA)测定蛋白浓度。用8%SDS-PAGE分离总蛋白当量,电印迹到PVDF膜上。用TBST对反式吸湿膜进行两次洗涤。用含5%脱脂牛奶的TBST阻断2小时后,用适当的抗体在4℃条件下轻轻摇匀,过夜。用TBST洗涤3次,30min,然后与辣根过氧化物酶(HRP)标记的二抗在室温下孵育40min。增强化学发光系统显示免疫反应条带。

(3)实验材料

溴化噻唑基四唑蓝(MTT)试剂,LPS(大肠杆菌血清型0111:B4),角叉菜胶从海藻(λ,κ-carrageenans的混合物)和4,6-diamidino-2-phenylindole(DAPI)染料从西格玛化工有限公司购买(圣路易斯,密苏里州)。

Western Blotting所用的一抗和二抗均来自Cell Signaling Technology,Inc.(Beverly,MA)。

IL-1β、IL-6、TNF-α和PGE2ELISA试剂盒从北京生物科技有限公司购买(中国,北京)。

ELISA试剂盒购买自美国Bio-Techne公司。

(4)实验仪器

(1)移液器:eppendorf;tegent beta;

(2)CO2培养箱:新加坡ESCO CCL-170B-8;

(3)常温离心机:美国Thermo Scientific,Thermo SORV ALL Legend micro 17;

(4)高速冷冻离心机:美国Thermo Scientific,HERAEVS FRESCO 17;

(5)超净工作台:新加坡ESCOBiological Safety Cabinets AC2-L1S1,Class II;

(6)纯水仪:美国Milli-Q公司产品,FTSN97007;

(7)立式高压灭菌锅:上海中安医疗器械厂生产,LD2H-200KBS;

(8)恒温水浴箱:PolyScience 9505;

(9)pH计:METTLER TOLEDO公司,DEL T A320;

(10)温湿度计:河北衡水市武强温湿表制造中心,GJWS-A5;

(11)蛋白电泳系统:美国Bio-Rad公司或北京凯元(cavoy)公司。

二、实验结果

LPS是革兰氏阴性菌外膜的主要组成部分,是炎症的最有效的微生物引发剂之一,激活巨噬细胞产生细胞因子如TNF-α、IL-1β、IL-6,反过来,这些细胞因子作为内源性介质通过受体介导的炎症与各种靶细胞的相互作用。这些介质的不受控制的分泌会导致炎症性疾病,而抑制促炎介质对抑制炎症性疾病具有重要作用。因此,LPS刺激的RAW264.7巨噬细胞被用来研究化合物5r对促炎细胞因子的抑制作用。如图2所示,化合物5r呈现剂量依赖型抑制LPS诱导RAW264.7细胞产生的IL-1β、TNF-α和PGE2,而对IL-6的抑制作用不太明显。这些结果表明,化合物5r可以减轻LPS刺激的RAW264.7巨噬细胞的免疫反应。

对NF-κB信号通路的影响:NF-κB是一个在各种生物过程中扮演着关键角色的核转录因子,NF-κB通常有大量的激活效应在其他信号转导蛋白,包括iNOS和COX-2。为了研究化合物5r的可能作用机制,采用了蛋白质免疫印迹分析和评估了NF-κB的表达,结果见图3所示。化合物5r在10μM浓度下能抑制LPS诱导的磷酸化NF-κB、p65、IκB-α和IKKα/β。而诱导型一氧化氮合酶(iNOS)和环氧合酶-2(COX-2)分别负责NO和PGE2的产生。化合物5r对iNOS和COX-2表达的影响结果表明:化合物5r明显抑制了iNOS和COX-2的表达。总的来说。化合物5r能在一定程度上抑制NF-κB的激活和有关促炎因子的表达。

试验例3、体内抗炎活性研究

一、试验方法

(1)小鼠急性UC模型的建立和治疗

将24只C57BL/6J雌性小鼠随机分为正常组、DSS模型组、芦荟大黄素组(100mg/kg)和化合物5r组(100mg/kg)(n=6)。除正常组外,所有组均给予2.5%DSS水溶液自由饮用,连续饮用6天,形成急性UC模型;正常组给予不含DSS的无菌水连续饮用6天。通过体重减轻、DAI值增加、结肠明显挛缩等生物标志物评价UC模型是否成功建立。UC模型生成后第1天,治疗组口服相应的化合物进行治疗。给药第8天处死所有实验小鼠,切除每只小鼠结肠末端长度,纵向切开,用生理盐水冲洗。取组织标本行肉眼及组织病理学检查。

(2)模型的检测

从建模之日起,每日观察小鼠进食、活动、毛发情况,称量动物体重,观察小鼠粪便性状及粪便隐血,出血状况,评估结肠炎严重程度。疾病活动情况按表5的评分标准进行评分,疾病活动指数(disease activity index,DAI)评分=体重下降评分+大便性状评分+大便隐血评分+毛色状态评分,计算得出每只小鼠的疾病活动指数,总分为16分。

表5.疾病活动指数(DAI)评分标准

(3)组织病理学分析方法

实验结束后,剖取组织,将结肠组织用10%甲醛固定,进行脱水透明,石蜡包埋,切成补5μm的薄片固定在载玻片上,进行脱腊-苏木精和伊红染色-脱水、透明、封固实验步骤,在光学显微镜下观察并描述,并拍摄对应主要描述中不同种类的病变部位。

(4)数据分析方法

数据以至少三个独立实验的平均标准差表示。使用GraphPad Prism软件7.00版(GraphPad software Inc.,San Diego,CA,USA)进行统计分析,采用单因素方差分析(ANOVA),然后进行Tukey的多重比较测试。P<0.05为差异有统计学意义。

(5)实验材料

1)DSS,MW:36000-50000:MP Biomedicals;

2)PEG 400:成都科伦试剂有限公司;

3)丙二醇:成都科伦试剂有限公司;

4)Tween 80:成都科伦试剂有限公司;

5)PBS:博士德生物工程有限公司,武汉;

其他化学试剂均购于成都科龙化学试剂厂。

(6)实验仪器

微量移液器(2.5μl,10μl,100μl,200μl,1ml):德国Eppendorf公司;

低速离心机:V arifuge 3.0;Megafuge 1.0,Heraeus;

高速低温离心机:Biofuge 28RS,Heraeus Sepatech;

恒温混匀器:Thermomixer comfort,Eppendorf,Germany;

电子天平:JD200-3型,沈阳龙腾电子秤量仪器公司;

纯水仪:EASY pure UF 07412,Millipore;

旋涡混匀器:Type 16700Mixer,Thermolyne;

pH计:pH meter 345Coring;

37℃摇床:ROSI 1000Reciprocating/orbital shaking incubator,Thermolyne;

普通光学显微镜:NIKON Eclipse ci,成像系统:NIKON digital sight DS-FI2,MADE IN JAPAN;

石蜡包埋机:Leica公司,德国;

病理切片机:RM2125,LEICA;

石蜡漂片机:Leica公司,德国。

二、试验结果

对化合物5r在DSS诱导的C57BL/6J小鼠急性UC动物模型中的体内活性进行了研究,结果如图4和图5所示。

如图4A所示,前3天,正常组体重值稳定增加,模型组体重值明显下降10%。试验组以100mg/kg剂量口服芦荟大黄素或化合物5r,继续观察体重下降情况。在实验的最后一天,试验组两组(芦荟大黄素组和化合物5r组)的体重值都回到了初始水平。

本研究通过对疾病活动指数(DAI)的一般特征、体重减轻、大便稠度、出血现象进行评分,计算疾病活动指数(DAI),评分标准见表5。根据这种评分方法,记录了实验动物的身体状况,并得出各组的DAI评分,如图4B所示。图4B显示模型组的DAI评分从第2天开始急剧升高,100mg/kg芦荟大黄素组治疗效果不佳。而剂量为100mg/kg的化合物5r明显抑制了DAI指数的升高,说明化合物5r对于急性溃疡性结肠炎有治疗作用。

同时,通过观察和比较每个实验动物在实验结束后7天内的结肠长度,结果表明,化合物5r对DSS诱导的急性溃疡性结肠炎C57BL/6J小鼠结肠长度有一定程度的影响,结果如图4C所示。由图4C可知:正常对照组平均体长6.16cm,模型组平均体长4.97cm。100mg/kgAE处理组效果不明显(P>0.5vs模型组)。100mg/kg化合物5r处理可防止UC小鼠结肠长度缩短(P<0.5vs模型组)。

为了进一步观察结肠组织的病理变化,使用H&E染色后进行了组织病理学检查,并在光学显微镜下进行了观察,结果如图5所示。与正常组(图5A)比较,模型组(图5B)结肠细胞基本结构丢失,可见大面积溃疡,组织增生(黑色箭头)、炎性细胞浸润(红色箭头)明显。这些观察证明了动物模型是成功的。AE处理组(图5C)与模型组(图5B)结果一致,出现大量炎症浸润。而化合物5r对DSS诱导的急性溃疡性结肠炎的C57BL/6J小鼠的结肠病变和炎症细胞数量有较好的改善作用(图5D)。

上述试验说明:

(1)本发明化合物对巨噬细胞NO生成具有抑制作用,其中化合物5r、7a、7b和7c抑制效果显著,明显优于芦荟大黄素;而其中化合物5r的细胞相容性最好;

(2)研究表明本发明化合物可以抑制巨噬细胞产生细胞因子L-1β、TNF-α和PGE2;还可以抑制iNOS和COX-2的表达,能在一定程度上抑制NF-κB的激活和有关促炎因子的表达;进而减轻炎症反应;

(3)本发明化合物能够有效改善急性溃疡性结肠炎病变和炎症细胞数量,防治结肠长度缩短;可治疗急性溃疡性结肠炎,用于制备治疗急性溃疡性结肠炎的药物。

综上,本发明化合物可有效抑制巨噬细胞产生NO和炎性因子,还可有效抑制iNOS和COX-2的表达,进而抑制NF-κB信号通路的激活,减轻炎症反应或抑制炎症反应的发生;同时,本发明化合物对于结肠炎,特别是急性溃疡性结肠炎有良好的治疗效果;其中,本发明化合物5r的生物活性显著优于芦荟大黄素。此外,本发明化合物安全性良好,代谢稳定,对抗炎药物的研发具有重要的应用价值。

53页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:一种头孢吡普酯中间体(R)-1-叔丁氧基羰基-3-氨基吡咯烷的制备方法

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!