用于多点激光探针的多芯光纤

文档序号:1301085 发布日期:2020-08-07 浏览:6次 >En<

阅读说明:本技术 用于多点激光探针的多芯光纤 (Multi-core optical fiber for multi-point laser probe ) 是由 刁晨光 A·米尔斯帕西 R·T·史密斯 M·H·法利 D·理查森 于 2018-12-12 设计创作,主要内容包括:本披露涉及一种多芯光纤缆线(MCF)。在一些实施例中,MCF包括被包层环绕的多个芯以及环绕所述包层的涂层,其中,所述多个芯中的一个或多个芯的折射率大于所述包层的折射率。所述MCF进一步包括探针,所述探针包括与所述MCF的远端联接的探针尖端;以及位于所述探针尖端的远端处的透镜。在一些实施例中,所述透镜被配置用于将激光束从所述MCF的远端平移以在目标表面上产生激光束多点图案;并且所述MCF的远端在与所述透镜的界面处终止。(The present disclosure relates to a multicore fiber cable (MCF). In some embodiments, an MCF includes a plurality of cores surrounded by a cladding and a coating surrounding the cladding, wherein a refractive index of one or more of the plurality of cores is greater than a refractive index of the cladding. The MCF further includes a probe including a probe tip coupled with a distal end of the MCF; and a lens located at a distal end of the probe tip. In some embodiments, the lens is configured to translate a laser beam from a distal end of the MCF to create a laser beam multi-spot pattern on a target surface; and the distal end of the MCF terminates at an interface with the lens.)

用于多点激光探针的多芯光纤

技术领域

本披露涉及一种多点激光探针、更具体地涉及用于将多点激光束经由具有多点光纤缆线的外科探针进行递送的系统和方法。

背景技术

在各种各样的医疗手术中,使用激光来辅助手术并治疗患者的解剖学结构。例如,在激光光凝术中,使用激光探针来在视网膜上的各个激光烧灼点处烧灼血管。某些类型的激光探针一次会烧灼多个点,这可以实现更快速且更有效的光凝。这些多点激光探针中的一些激光探针将单一激光束分成展现激光点图案的多个激光束、并且将这些束递送至展现对应光纤图案的光纤阵列。典型地,光纤应紧密堆积,以使光纤图案与激光点图案匹配。此外,激光点图案应与光纤图案准确地对准。

除了烧灼激光烧灼点处的血管外,激光还可能损坏视网膜中存在的提供视力的视杆细胞和视锥细胞,从而影响视力。由于在视网膜的中央黄斑处视力最敏锐,因此外科医生将激光探针布置成在视网膜周边区域中产生激光烧灼点。以这种方式,可以牺牲一些周边视力而保留中央视力。在手术期间,外科医生驱动带有非烧灼瞄准束的探针,使得待进行光凝的视网膜区域被照亮。由于低功率红色激光二极管的可用性,瞄准束通常为低功率红色激光。一旦外科医生已经将激光探针定位为照亮期望的视网膜点,外科医生就会通过脚踏板或其他手段激活激光,然后对被照亮的区域进行光凝。烧灼了视网膜点后,外科医生重新定位探针以用瞄准光来照亮新的点、激活激光器、重新定位探针,以此类推,直到在视网膜上分布期望数量的烧灼激光点。

对于糖尿病性视网膜病,可以进行全视网膜光凝(PRP)手术,并且PRP所需的激光光凝次数典型地大。例如,通常烧灼1,000到1,500个点。因此,可以很容易认识到,如果激光探针是能够同时烧灼多个点的多点探针,那么光凝过程将会更快(假设激光源功率足够)。相应地,已经开发了并且在美国专利号8,951,244和8,561,280中描述了多点/多光纤激光探针,所述专利的全部内容通过援引并入本文。

玻璃体视网膜手术还获益于将照明光引导到眼睛中和视网膜组织上。玻璃体视网膜术外科医生通常使用激光探针来递送激光瞄准束和激光治疗束,并且还使用额外的器械来将照明光束引导到视网膜表面上,以观察患者的解剖学结构。

发明内容

根据一个实施例,本披露涉及一种多点激光探针,所述探针包括:探针本体,所述探针本体的形状和大小被确定为供使用者抓握;探针尖端,所述探针尖端包括被配置为插入眼睛中的插管;布置在所述插管中、在其远端部分处的渐变折射率(GRIN)透镜;以及至少部分地延伸穿过所述插管的多芯光纤缆线(MCF)。所述MCF可以包括:由掺杂锗的二氧化硅形成的多个芯;由熔融二氧化硅形成包层;环绕所述包层的涂层;以及布置在与所述GRIN透镜的界面处的远端。所述包层可以环绕所述多个芯。所述多个芯中的一个或多个芯的折射率可以大于所述包层的折射率。可以从所述MCF的远端的一段长度省去所述涂层的一部分,并且所述GRIN透镜可以被配置用于将激光从所述MCF的远端平移以在目标表面上产生激光束多点图案。

另一实施例涉及一种包括MCF和探针的多点激光探针,所述MCF包括被包层环绕的多个芯以及环绕所述包层的涂层。所述探针可以包括与所述MCF的远端联接的探针尖端。所述多点激光探针还可以包括位于所述探针尖端的远端处的透镜。所述透镜可以被配置用于将激光从所述MCF的远端平移以在目标表面上产生激光束多点图案。所述MCF的远端可以在与所述透镜的界面处终止。所述多个芯中的一个或多个芯的折射率可以大于所述包层的折射率。

另外的实施例涉及一种用于施加多点激光束图案的方法。所述方法可以包括:通过激光源来生成激光束;将所述激光束准直;将经准直的激光束引导至衍射光学元件(DOE),该衍射光学元件被配置用于产生激光束的多点激光图案;以及将所述激光束多点图案聚焦到MCF的近端的界面平面中。所述激光束的多点激光图案中的每个激光束可以被传输至所述MCF的多个芯中的一个芯中。所述激光束可以沿着所述MCF的芯传播。所述多个芯可以被包层环绕,并且所述包层可以被涂层环绕。所述多个芯中的每个芯的折射率可以大于所述包层的折射率,并且可以从所述MCF的远端的一段长度省去所述涂层的一部分。所述方法还可以包括将所述激光束多点图案传输至所述MCF的远端,并且将所述激光束多点图案引导穿过透镜达到外科探针的远端。

本披露的各个实施例可以包括一个或多个以下特征。所述多个芯可以形成2X2阵列,所述阵列可以被配置为与来自激光系统的衍射光学元件(DOE)的2X2多点图案匹配。所述MCF的远端可以在所述界面处以正压抵接所述GRIN透镜。所述MCF的远端可以与GRIN透镜通过空气空隙分开。可以从所述MCF上移除所述涂层的一部分长度,并且该长度可以在从所述MCF的远端向近侧延伸的0.5mm至5.0mm的范围内。所述涂层的、从所述MCF上移除的这部分的长度可以在从所述MCF的远端向近侧延伸的1.0mm至3.0mm的范围内。

本披露的各个实施例还可以包括一个或多个以下特征。可以从所述MCF的远端的一段长度省去所述涂层的一部分。从所述MCF的远端的一段长度省去的所述涂层的长度可以在1.0mm至3.0mm的范围内。所述多个芯可以形成2X2阵列,所述阵列被配置为与来自激光系统的衍射光学元件(DOE)的2X2多点图案匹配。所述透镜可以包括GRIN透镜,并且所述MCF的远端可以以正压抵接所述GRIN透镜。所述透镜可以包括GRIN透镜,并且所述MCF的远端可以与所述GRIN透镜通过空隙分开。所述探针尖端可以包括被配置为插入眼睛中的插管。所述MCF的远端和所述透镜可以布置在所述插管中。可以在所述MCF处省去所述涂层的一部分,由此改善所述多点激光探针的功率操纵特征。可以位于所述探针尖端的远端处的所述透镜可以包括GRIN透镜。所述MCF的远端可以以正压力抵接所述GRIN透镜。所述MCF的远端可以与所述GRIN透镜通过空气空隙分开。所述涂层可以包括聚酰亚胺涂层。所述多个芯可以包括掺杂锗的二氧化硅。所述包层可以包括熔融二氧化硅。

附图说明

为了更加彻底地理解本技术、其特征及其优点,参考结合附图进行的以下说明,在附图中:

图1展示了根据本发明的特定实施例的、用于生成激光束多点图案以递送至手术对象的示例性系统。

图2展示了根据本发明的特定实施例的示例性多点激光探针。

图3和图4展示了根据本发明的特定实施例的、用于与非照明多点激光探针一起使用的示例性多芯光纤缆线(MCF)的一端。

图5示出了根据本发明的特定实施例的用于与照明多点激光探针一起使用的示例性MCF的一端。

图6是根据本发明的特定实施例的示例性多点激光探针尖端的远端部分的部分截面详细视图。

图7A至图7F2示出了根据本发明的特定实施例的、与MCF激光探针的多个方面相比的多点/多光纤激光探针的各个方面,以突显多芯光纤缆线激光探针的各个优点和益处。

图8展示了根据本发明的特定实施例的由外科激光系统执行的示例性操作。

图9示出了根据本发明的特定实施例的可操作来产生激光束多点图案的示例性多点激光探针的远端部分。

图10示出了根据本发明的特定实施例的另一示例性多点激光探针的远端部分,在所述多点激光探针中,具有凸形端的透镜布置在MCF的远端与保护窗口之间。

图11是根据本发明的特定实施例的示例性多点激光探针的暴露端的侧视图,示出了MCF的暴露端与透镜对准。

图12示出了MCF的暴露端与透镜由于在MCF与插管的内壁之间形成的环状空隙而不对准。

图13示出了根据本发明的特定实施例的环,所述环布置在围绕MCF的内包层形成的环状空隙内、在MCF的暴露端处。

图14示出了根据本发明的特定实施例的另一示例性多点激光探针的包括埋头孔的插管。

图15示出了根据本发明的特定实施例的示例性多点激光探针,其中,MCF的暴露端的对准由插管的减小的内直径提供。

图16展示了根据本发明的特定实施例的、在组装期间对MCF的远端造成损坏的潜在风险。

图17和图18展示了根据本发明的特定实施例的示例性多点激光探针的插管的颈缩部分的形成,用于维持MCF的远端与透镜的对准。

图19展示了根据本发明的特定实施例的、用于产生多点激光探针的示例性操作。

具体实施方式

在以下描述中,通过举例的方式来阐述细节以便于理解所披露的主题。然而,对于本领域普通技术人员而言明显的是,所披露的实施方式是示例性的并且不是所有可能的实施方式的穷举。因此,应理解的是,提及所描述的示例并非旨在限制本披露的范围。本披露所涉及的技术领域内的技术人员在正常情况下将完全能够想到对于所描述的装置、器械、方法的任何改变和进一步修改,以及对于本披露的原理的任何进一步应用。具体而言,完全可以想到,针对一种实现方式描述的特征、部件和/或步骤可以与针对本披露的其他实现方式描述的特征、部件和/或步骤相组合。

本披露描述了照明和非照明多芯激光探针和系统以及与之相关联的方法。图1展示了根据某些实施例的、用于产生激光束多点图案的示例性系统100。

系统100包括外科激光系统102,所述外科激光系统包括一个或多个激光源,用于生成可以在眼科手术期间使用的激光束。例如,眼外科激光系统102可以替代性地生成具有第一波长(例如,约532纳米(nm))的外科治疗束以及具有第二波长(例如,约635nm)的激光瞄准束。使用者、比如外科医生或外科工作人员可以控制外科激光系统102(例如,经由脚踏开关、声音命令等),以交替地发出激光瞄准束并且发射治疗束来治疗患者的解剖学结构、例如执行光凝。在一些情形下,外科激光系统102可以包括端口,并且可以穿过外科激光系统102中的端口而发出激光束。外科激光系统102可以包括激光系统端口适配器,所述适配器包含用于用来自激光源的激光束来产生激光束多点图案的光学元件(未示出)。

系统100可以将多路复用光束从所述端口经由多芯光纤缆线(MCF)110递送至外科探针108。探针108可以产生将被递送至患者眼睛125的视网膜120的激光束多点图案。探针108包括容纳并保护MCF 110的探针本体112和探针尖端140。探针尖端140的远端部分145还包含透镜(未示出,在下文更详细地描述),所述透镜将多路复用光束从MCF 110的远端平移到视网膜120上。

可以采用多种不同的系统和方法来创建激光束多点图案,并且将所述激光束多点图案与照明光束进行多路复用。在一些情况下,端口适配器可以包含可操作来产生多点图案和/或将光束进行多路复用的光学元件。在一些实现方式中,外科激光系统102还可以包括凹形烟囱端口(未示出),并且端口适配器可以包括套圈,所述套圈用作所述凹形烟囱端口的凸形联接件。套圈可以包括允许来自外科激光系统102的激光进入的开口、以及将从激光源接收到的激光准直的一个或多个光学元件。在一些示例中,套圈中的光学元件可以是渐变折射率(GRIN)透镜,其长度和节距被选择为使得光学元件将在套圈的开口处接收到的激光在邻近于衍射光学元件(DOE)的所选择距离处准直。在其他示例中,光学元件可以是若干其他类型的透镜(例如,球面、非球面、双凸玻璃透镜等)中的一种。DOE可以将激光束多点图案聚焦到MCF的近端的界面平面中,使得激光束的多点激光图案中的每个激光束沿着MCF内包含的多个芯中的所选择的芯的整个长度传播至外科探针的远端。

在操作中,外科激光系统102的激光源生成激光束。外科激光系统102中的准直光学器件将被引导至衍射光学元件的激光准直,所述衍射光学元件被配置用于产生激光束的多点激光图案。接着,所述多点激光图案被引导至外科激光系统102的聚光透镜以及聚焦光学器件,以将多点图案聚焦到MCF的近端的界面平面上,使得激光束的多点激光图案中的每个激光束沿着MCF 110内包含的多个芯中的所选择的芯的整个长度传播。激光束多点图案被MCF 110传输至布置在MCF 110的远端处的探针108。激光束多点图案离开MCF 110、并且被传输穿过探针108的远端部分145处的透镜。离开探针108的激光束多点图案可以投射到眼睛125的视网膜120上。

图2更详细地展示了图1的探针尖端140的实施例。如上文描述的,探针108包括探针本体112,所述探针本体的形状和大小被确定为供使用者抓握。探针尖端140从探针本体112延伸,所述探针尖端包括套管251和插管250。如图所示,插管250部分地被套管251容纳并且延伸超出其远端。在所展示的示例中,探针尖端140包括笔直部分216(例如,套管251和插管250的笔直部)和弯曲部分218(例如,插管250的弯曲部)。在其他实现方式中,探针尖端140可以具有其他形状。例如,在一些情形下,探针尖端140可以是完全笔直的,包括多于一个弯曲部分,是完全弯曲的,或者以任何期望的方式来成形。

探针尖端140可以由一种或多种材料形成,包括例如不锈钢、钛、镍钛诺和铂。在一些示例中,探针尖端140的第一部分(例如,笔直部分216)可以包括第一材料,而探针尖端140的第二部分(例如,弯曲部分218)可以包括第二材料。在一些情形下,第一材料可以与第二材料不同。例如,在一些情形下,第一材料可以包括不锈钢、例如管状不锈钢,而第二材料可以包括镍钛诺、例如管状镍钛诺。探针尖端140的远端部分145可以插入眼睛中以执行外科程序。

图3和图4从不同角度展示了示例性MCF 300(例如,类似于MCF 110)的远端。MCF300包括布置在包层304中的多个芯302,该包层可以由熔融二氧化硅形成。上文讨论的激光源、比如外科激光系统102所提供的激光可以分成多个束。每个束均被引导到MCF 300的其中一个芯302中。因此,每个芯302将光束之一沿着MCF 300的长度传导。在一些实现方式中,这些芯302可以例如由掺杂锗的二氧化硅构成,并且包层304可以由熔融二氧化硅构成,使得沿着芯302行进的激光被包含在芯302内并且被防止从芯302中逸出进入包层304中。例如,一个或多个芯302的折射率可以大于包层304的折射率。

虽然在所展示的示例中示出了四个芯302,但是本披露的范围并不限于此。而是,在其他实现方式中,MCF 300可以包括更少的芯302,而其他实现方式可以包括多于四个芯302。在一些实现方式中,MCF300可以包括两个、四个、或更多个内芯302,并且在一些示例中,这些芯302可以形成与可以布置在外科激光系统、比如外科激光系统102中的衍射光学元件生成的2x2多点图案相匹配的2x2阵列。在包层304上形成涂层306。在一些情形下,涂层306可以是聚酰亚胺涂层。在其他情形下,涂层306可以由其他材料、比如丙烯酸酯形成。在一些实现方式中,涂层306的折射率可以大于、小于、或等于包层304的折射率。

在某些实施例中,每个芯302的直径可以为约75+/-2μm,包层304的外直径可以为约295+/-5微米(μm),而涂层506的外直径可以为约325+/-5μm。在某些实施例中,两个相邻的芯302的中心可以彼此相距约126+/-5μm,而相对于彼此成对角的两个芯302的中心之间的距离可以为约178+/-5μm。

在图3和图4中,MCF 300是非照明MCF。即,虽然每个芯302被适配用于传导光、例如激光,但是包层304本身不用于传导用于在治疗部位处进行一般照明的光。

图5示出了照明MCF的示例,被示为MCF 500。MCF 500包括布置在内包层504中的多个芯502,该包层可以由熔融二氧化硅形成。这些芯502类似于上文描述的芯302起作用。虽然在所展示的示例中示出了四个芯502,但是本披露的范围并不限于此。而是,在其他实现方式中,MCF 500可以包括更少的芯502,而其他实现方式可以包括多于四个芯502。在一些实现方式中,MCF 500可以包括两个、四个、或更多个内芯502,并且在一些示例中,这些芯502可以形成与可以布置在外科激光系统、比如外科激光系统102中的衍射光学元件生成的2x2多点图案相匹配的2x2阵列。在内包层504上形成了外包层506。MCF 500还包括形成在外包层506上的涂层508。涂层508可以指代外套。在一些情形下,外包层504和涂层508可以由聚合物材料形成。

照明MCF是将用于一般照明的光(与用于治疗的针对性激光相反)传输穿过MCF的包层以在治疗部位处提供一般照明的一种MCF。因此,内包层504可以用于将光沿其传输以在治疗部位处提供一般照明(与用于治疗的激光相反)。在照明MCF 500中,外包层506的折射率可以小于内包层504的折射率。外包层506(可以是硬质二氧化硅包层)可以由在高温下可能不稳定的聚合物材料形成。因此,可以靠近与透镜的界面(例如,约0.5至5mm),从MCF500剥离或以其他方式移除外包层506的一部分,如下文描述的,以改善包含MCF500的探针的功率操纵能力。在某些实施例中,将涂层508移除从MCF500的远端测量为约50毫米(mm)的长度。这个长度可以对应于插管(例如,插管250)的长度。可以将涂层508移除以允许MCF500装配到插管中,因为当其上有涂层508时,MCF 500的外直径可以大于插管的内直径。

在某些实施例中,每个芯502的直径可以为大约75+/-2μm,内包层504的外直径可以为295+/-5μm,外包层506的外直径可以为325+/-5μm,并且涂层508的外直径可以为425+/-30μm。在某些实施例中,两个相邻的芯502的中心可以彼此相距大约126+/-5μm,而相对于彼此成对角的两个芯502的中心之间的距离可以为大约178+/-5μm。

图6是图2所示的探针尖端140的远端部分145的部分截面详细视图。注意,探针尖端140的远端部分145还可以是插管250的远端部分。如上文描述的,探针尖端140(包括插管250)可以由一种或多种材料形成,比如像不锈钢、钛、镍钛诺或铂。MCF 600(可以是照明MCF(例如,上文描述的MCF 500)或非照明MCF(例如,上文描述的MCF 300)延伸穿过探针尖端140的插管250、并且包括多个芯602,这些芯可以分别类似于图3和图5的芯302和502起作用。在所展示的示例中,MCF 600包括四个芯602,但是如上文解释的,MCF 600可以包括更少或额外的芯,例如以提供期望数量的激光束。出于展示的目的,将MCF 600描述为非照明MCF。然而,本披露的范围还包括照明MCF。

MCF 600的远端部分604布置在探针尖端140的远端部分145处并且下文进行更详细的描述。远端部分604在与透镜608的界面606处终止。界面606可以被配置用于将多路复用的多点激光图案的几何形状从MCF 600的远端、穿过透镜608平移到目标表面上、例如治疗部位处的组织上。

在MCF 600的外包层610的远端616处移除(例如,通过剥离)外包层的一部分,由此暴露包层612。因此,在界面606处,MCF 600的包层612暴露。在一些情形下,可以将外包层610移除或省略从MCF 600的远端616测量的一段长度L,以减轻或消除热问题(例如,在MCF600与透镜608界面处的温度升高),由此改善激光探针的性能。例如,在MCF 600与透镜608之间的界面606处移除外包层610改善了探针108的功率操纵特征。即,通过移除外包层610,穿过探针108的激光的功率水平可以大于没有在界面606处从MCF 600移除外包层610的情况下能够穿过探针108的激光的功率水平。因此,在如所描述的移除了外包层610的情况下,探针108的、尤其在界面606处的更高热负载是可能的。

在一些情形下,长度L可以在0.5mm至5.0mm的范围内。在一些情形下,长度L可以在1.0mm至3.0mm的范围内并且可以为其中的任何长度。特别地,在一些情形下,长度L可以为1.0mm、1.5mm、2.0mm、2.5mm、或3.0mm。另外,长度L可以为这些值之间的任何长度。在界面606处,MCF 600的远端面618可以抵接透镜608的近端面614。在其他情形下,MCF 600的远端面618可以与透镜608的近端面614偏离。

在某些实现方式中,在MCF 600的远端616处形成的远端面618可以以正压力抵接透镜608的近端面614。在其他实现方式,MCF 600的远端面618可以与透镜608的近端面614通过空气空隙分开。在还又其他实现方式中,一个或多个光学透射元件或材料可以位于MCF600与透镜608之间的界面606处。在一些实现方式中,透镜608可以是GRIN透镜、球面透镜或非球面透镜。在还又其他实现方式中,透镜608可以是一组由光学透明材料形成的透镜。

透镜608可以包括由可见的透明玻璃或陶瓷形成的一个或多个透镜。例如,用于形成这些透镜608中的一个或多个透镜的材料可以包括熔融二氧化硅、硼硅酸或蓝宝石。在一些实现方式中,透镜608可以包括单一元件圆柱形GRIN杆形透镜,其可操作来接收来自MCF600的远端616的一个或多个激光束、并且将所接收到的激光束朝向探针尖端140的远侧尖端620转送。在一些情形下,探针尖端140的远侧尖端620还可以对应于透镜608的远端。在其他情形下,保护窗口可以布置在透镜608的远端与探针尖端140的远侧尖端620之间。在还又其他实现方式中,所述窗孔可以从探针尖端140的远侧尖端620延伸。

虽然MCF 600是在非照明类型的背景下描述的,但是本披露的范围不限于此。而是,本文描述的概念同样适用于照明MCF。因此,MCF 600可以是照明MCF、类似于图5的MCF500。

图7A至图7D、图7E1至7E2、以及图7F1至7F2将如本文描述的多点/多光纤激光探针与MCF激光探针的实施例进行比较以突显MCF激光探针的多个不同的优点和益处。图7A至图7B展示了可以用于多点/多光纤激光探针(未示出)中的多个光纤710,其中每个光纤710用于传导单一激光束。更具体地,图7A展示了被容纳在多内腔管760(例如,微型间隔件)中的光纤710的前视图。如图所示,多内腔管760包括四个隧道形通路或孔洞716,其各自容纳光纤710。使用粘合剂715来将每个光纤710粘合至其对应的孔洞716。图7B展示了从插管750延伸的光纤710的侧视图。注意,图7B未示出图7A的多内腔管。

通常,在多点/多光纤激光探针的制造期间,难以精确地控制多个独立光纤710。多点/多光纤激光探针设计可能需要在套圈的内直径(ID)内将多个独立光纤710精确对准,以便以所需的高耦合效率来接纳所述多个激光束。例如,使用聚酰亚胺管来管理多个独立光纤710,并且分别剥离每个光纤710,这可能是耗时的。在剥离之后,将所述多个光纤710插入多内腔管760中的对应孔洞中,这可能是困难且缓慢的。另外,这些光纤710被单独劈开、缩回到聚酰亚胺管和多内腔管760、通过止挡件而变得齐平、并且在粘附期间通过UV粘合在一起。接着,这个组件经历二次热固化以改善在高温下的粘合稳定性。与多点/多光纤设计相关联的这种制造过程是复杂且缓慢的。在各个光纤与其在多内腔管760中的对应孔洞或壳体716之间使用的粘合剂715还可能易于受到热损坏并且可能引起探针失效。

与图7A和图7B相比,图7C和图7D展示了MCF 720,类似于图4至图6所示的MCF 300、MCF 500和MCF 600。更具体地,图7C展示了MCF 720的前视图,其包括嵌入在包层704中的多个芯702,所述包层被涂层724涂覆。图7D展示了从插管752延伸的MCF 720的侧视图。如图所示,与多点/多光纤激光探针的多个光纤710相比,MCF 720是具有多个芯702的单一光纤,每个芯传输激光束。

纳入了MCF、比如MCF 720的激光探针不需要在芯702之间使用粘合剂,因为芯702嵌入在包层704中并且被包含在单一光纤内。因此,包含MCF的激光探针可以具有显著改善的功率操纵能力。此外,MCF激光探针的组装比较简单,因为在制造期间仅需要对准并操纵单一光纤。相应地,不需要使用聚酰亚胺管和多内腔管来在组装期间管理多个独立光纤,并且剥离单一MCF 720花费的时间显著少于剥离多点/多光纤探针的多个独立光纤710花费的时间。

另外,在激光探针中利用MCF可以允许严格地控制传播束的方向。更具体地,使用MCF可以确保,激光探针所传播的束被严格控制并且不会指向插管的内表面。图7E1至图7E2和图7F1至图7F2展示了多点/多光纤激光探针的多个光纤所关联的激光束图案与MCF的芯所关联的激光束图案之间的比较。

图7E1描绘了在多内腔管760内、在包括多个光纤710的光纤组件的远端处的光纤图案。图7E2展示了包括激光束点772的、对应于图7E1的光纤图案的激光束图案770。如图所示,一些光纤710(例如,右上部芯和右下部芯)在多内腔管760的通路716内没有居中,这导致这些光纤710传播的束可能向外歪斜,如图7E2所示。在一些情况下,一些光纤710可能由于光纤710的外直径与多内腔管760的通路716的内直径之间的宽松公差而在其对应的通路716内没有居中,而使得光纤710代替地指向插管(未示出)的内表面。因此,光纤710传播的束也指向插管的内表面,而不是沿笔直方向指向患者的眼睛。这使得这些束逸出激光探针的透镜、例如透镜608,并且被插管的内表面吸收,这可能导致插管过热。此外,光纤710在其对应的通路716内不居中会导致在对应的四个束点之间存在不期望的均匀性。

与图7E1至图7E2相比,图7F1至图7F2分别展示了与MCF相关联的光纤图案和束图案。图7F1展示了MCF的芯702,这些芯指向笔直方向且不向外歪斜。这是因为这些芯702一起紧密地嵌入包层中。因此,芯702能够传播束点782(图7F2的束图案782所示),这些束点也指向笔直方向并且不朝向MCF被容纳于其中的插管(未示出)的内表面。这样,使用MCF改善了对激光探针的激光束图案(例如,在四个束点之间的期望均匀性)的控制,并且通过防止插管由于束指向插管的内表面而导致的过热而增大了功率操纵。

因此,所披露的MCF激光探针设计可以通过消除复杂且昂贵的制造要求来简化制造,通过在多个光纤的远端的粘合期间消除粘合剂失效或者消除将污染物引入多光纤探针的远侧光纤组件中来改善功率操纵,通过采用精确对准的MCF并且避免与在多光纤组件中将各个光纤与多个输入激光束对准相关联的困难来增大耦合效率,并且改善对激光束图案的控制(这还进一步改善了功率操纵)。鉴于本披露,这些和其他优点将是本领域技术人员所清楚的。

图8展示了根据本发明的特定实施例的示例性流程图800,该流程图展示了用于施加多点激光束图案的方法中的步骤。在某些实施例中,操作800由系统、比如图1的外科激光系统102执行,所述系统联接至MCF激光探针、比如图1的MCF激光探针108。

在框802,系统通过激光源来生成激光束。如上文描述的,激光源可以是外科激光系统102的一部分或与之联接。

在框804处,系统将激光束准直。经准直的激光束是指具有平行光线的激光束。

在框806处,系统将经准直的激光束引导至衍射光学元件(DOE),该衍射光学元件被配置用于产生激光束的多点激光图案。如本领域普通技术人员认识到的,DOE用于将激光束成形并拆分。

在框808处,系统将激光束多点图案引导至聚光透镜。

在框810处,系统将激光束多点图案聚焦到MCF的近端的界面平面中,使得激光束的多点激光图案中的每个激光束被传输到MCF的多个芯中的一个芯中并且沿着其传播,所述多个芯被包层环绕,并且包层被涂层环绕,所述多个芯中的每个芯的折射率大于包层的折射率,并且从MCF的远端的一段长度省去涂层的一部分。

例如,外科激光系统102将激光束多点图案聚焦到MCF(例如,MCF 110、MCF 300、MCF 500、MCF 600等)的近端的界面平面中,使得激光束的多点激光图案中的每个激光束被传输至MCF的多个芯(例如,芯302、502、602等)中的一个芯中并且沿其传播,所述多个芯被包层(例如,包层304、504、506、612)环绕,并且包层被涂层(例如,306、508等)环绕,所述多个芯中的每个芯的折射率大于包层的折射率,并且从MCF的远端的一段长度(例如,图6的长度L所示)省去涂层的一部分。

在框812处,系统将激光束多点图案传输至MCF的远端。例如,系统将激光束多点图案传输至MCF的远端(例如,远端616)。

在框814处,系统将激光束多点图案引导穿过透镜(例如,透镜608)到达外科探针(例如,探针108)的远侧尖端(例如,远侧尖端620)处。

图9示出了另一示例性探针901的、可操作来产生激光束多点图案的远端部分。所展示的示例性探针901包括照明MCF 900,其可以类似于上文描述的MCF 500。因此,探针901可操作来发射用于照亮手术区域的一般照明、以及用于对治疗部位、例如视网膜进行治疗的多个激光束两者。探针901在许多方面可以类似于探针108。如图所示,探针901包括插管902。插管902包括限定了内部通路942的内表面936。MCF 900延伸穿过插管902的至少一部分直至与透镜908的第一界面906。MCF 900可以抵接透镜908,或者可以在MCF 900的远端916与透镜908的近端914之间布置空隙、例如被空气填充的空隙。在一些情形下,MCF 900的远端916可以以正压力抵接透镜908的近端914。在一些情形下,透镜908可以由熔融二氧化硅、硼硅酸盐、或蓝宝石形成。在一些情形下,透镜908可以是球面透镜。透镜908可以是GRIN透镜、比如单一元件圆柱形GRIN杆形透镜,其可操作来接收来自MCF 900的远端的一个或多个激光束、并且将所接收到的激光束朝向探针901的远侧尖端920转送。

探针901还包括保护窗口918,该保护窗口从与透镜908的第二界面922延伸。如图9所示,保护窗口918抵接透镜908。在其他实现方式中,在保护窗口918与透镜908之间可以存在空隙、例如被空气填充的空隙。在所展示的示例中,保护窗口918向远侧延伸超过插管902的远端924,并且保护窗口918的远端926限定探针901的远侧尖端920。在其他实现方式中,保护窗口918的远端926可以与插管902的远端924的远端对准,使得插管902的远端924和保护窗口918的远端926基本上齐平。本领域普通技术人员认识到,插管902的远端924的端表面与保护窗口918的远端926的端表面的相对位置可能由于制造公差而略微改变。

保护窗口918可以由光学稳定且耐高温的材料形成。在一些情形下,保护窗口918可以由蓝宝石或石英形成。在一些情形下,保护窗口918可以具有平坦的近端表面,如图9所示。在其他情形下,保护窗口918可以具有凸形的近端表面928。图10示出了此类透镜的示例。

在图10中,透镜1008具有凸形的近端和远端。虽然透镜1008在纵向方向上是长形的,但是在其他示例中,代替地它可以是球面或球形透镜。在一些实现方式中,具有平坦的近端和/或平坦的远端的透镜、比如图9所示的透镜908可以与保护窗口1018结合使用,该保护窗口具有凸形近端、类似于图10所示。在还又其他实现方式中,探针可以包括具有凸形近端和/或凸形远端的透镜,例如球面透镜或图9所示的透镜,以与具有平坦的近端的保护窗口、比如图9所示的保护窗口918相结合。

返回参见图9,MCF 900包括外包层930,其可以类似于图5所示的外包层506。将外包层930从内包层932上剥离,例如剥离从MCF 900的远端916测量并且向近侧延伸的长度L,由此将下方的内包层932暴露。

在一些情形下,长度L可以在0.5mm至5.0mm的范围内。在一些情形下,长度L可以在1.0mm至3.0mm的范围内并且可以为其中的任何长度。特别地,在一些情形下,长度L可以为1.0mm、1.5mm、2.0mm、2.5mm、或3.0mm。另外,长度L可以为这些值之间的任何长度。如上文解释的,移除外包层的一部分可以改善探针的热操纵特性,从而可以增大传输穿过探针的激光能量的功率水平。示出了延伸穿过内包层932的芯933的一部分。

然而,在外包层930的一部分被移除的情况下,内包层932与插管902的内表面936之间存在环状空隙934。环状空隙934引入了MCF 900与透镜908之间不对准的风险(即,MCF900可能相对于透镜908偏心)。图11是探针901的暴露端938的侧视图,其中MCF 900的暴露端938与透镜908对准。MCF 900的暴露端938是MCF 900的被移除了外包层930的这部分。

然而,图12示出了MCF 900的暴露端938与透镜908由于环状空隙934而不对准。如图12所示,MCF 900的暴露端938与透镜908不同心。在MCF 900的暴露端938与透镜908不对准的情况下,所得的激光点和照明束图案不再与插管902同心。MCF 900与透镜908之间的这种不对准还可能导致一部分光被传播而用于一般照明并且穿过内包层932撞击插管902的内壁936。这降低了探针901的照明效率并且导致不期望的照明图案。

在某些实施例中,为了维持MCF 900与透镜908之间的对准,可以在环状空隙934中布置由热稳定材料形成的环,以维持MCF 900与插管的内部通路和透镜的同心度。在某些实施例中,材料可以包括例如聚酰亚胺、金属、不锈钢、镍、银、铜、黄铜等。虽然聚酰亚胺和金属是可以制造该环的可能材料,但是也可以使用其他材料。图13展示了用于维持MCF 900与透镜908之间的对准的环的示例。

图13展示了布置在围绕内包层932形成的环状空隙934内、在MCF 900的暴露端938处的环940。环940例如通过限制MCF 900的暴露端938的侧向移动来维持MCF 900与透镜908的同心度。在一些情形下,环940的内直径对应于MCF 900的暴露端938的外直径。在一些情形下,环940的外直径对应于内部通路942的内直径。环940可以横跨暴露端938的整个长度L或小于整个长度L。

图14示出了用于维持MCF 900与透镜900的对准的另一示例性实现方式。在图14所示的示例中,插管1402包括内部通路942,该内部通路具有更符合MCF 900的外直径的第一内直径1444。插管1402还包括埋头孔946,该埋头孔具有大于第一内直径1444的第二内直径1448。埋头孔946被设置用于在插管1402内容纳透镜908和保护窗口918(如果包括的话),这是因为这些部件的横向截面大小与MCF 900的横向截面大小相比更大。因此,沿着暴露端938,与在通路942的内直径1444为埋头孔946的内直径1448的大小的情况下相比,与埋头孔946相比具有减小的截面大小的通路942能够在更大程度上维持MCF 900的暴露端938与透镜908的对准。由此,改善了MCF 900与透镜908之间的对准。在一些情形下,埋头孔946从插管1402的远端向近侧延伸。

图15示出了以下示例:插管1502的减小的内直径1550提供MCF 900的暴露端938的对准。插管1502的颈缩部分1552(可能是卷缩的结果)提供了减小的直径1550。可以使得减小的内直径1550对应于MCF 900的暴露端938的外直径。减小的内直径1550维持暴露端938与透镜908的对准,由此实现改善的一般照明性能和激光点图案与插管1502的纵向轴线的对准。

图16展示了在图15所示的背景下在多点激光探针的组装期间对MCF 900造成损坏的潜在风险。如果插管1602的颈缩部分1652(比如由对插管1602施加的卷缩生成的)在将MCF 900引入颈缩部分1652中之前形成,则在试图将MCF 900的远端1654(尤其远端1654的边缘1656)插入穿过颈缩部分1652时,存在对远端1654造成损坏的风险。在组装期间,远端1654与颈缩部分1652的不对准可以产生力,这个力可能凿削和损坏MCF 900的远端1654。甚至对远端1654、尤其对其边缘1656施加的小的负载都可能造成损坏,比如对远端1654和边缘1656凿削,这种损坏无论是在不良的一般照明还是不精确或扭曲的激光点图案或这两种情况下均导致性能受损。这样的损坏可能使所得的激光探针无法使用。因此,可以在将MCF引入插管中之后在插管中形成颈缩部分,如图17和图18所示。

图17和图18示出了在第一界面906处MCF 800的远端1654抵接透镜908。然而,如上文解释的,可以在MCF 800的远端1654与透镜908之间布置空隙。在一些实现方式中,可以在组装MCF 900之前,将透镜908和窗口918中的一者或两者安装在插管1702中。在一些实现方式中,可以在透镜908和窗口918中的一者或两者之前安装MCF 900。

在MCF 900定位在插管1702内的期望位置处的情况下,可以比如通过卷缩来在插管1702中形成颈缩部分1752。颈缩部分1752维持MCF 900的暴露端938与透镜908同心。由此,消除了MCF 900的远端1654被颈缩部分1752损坏的风险。

在一些情形下,颈缩部分1752是完全包绕MCF 900的暴露端938的减小的环形体。由此,颈缩部分1752限定了内部通路942的、与暴露端938的外直径相符的减小的直径1858。在一些情形下,颈缩部分1752的减小的直径1858等于或略微大于暴露端938的外直径。作为示例,可以在颈缩部分1752处的该插管1702的内表面与暴露端938的外表面之间形成5μm环状空隙。在一些实施例中,暴露端938可以在一个或多个位置处接触颈缩部分1752的内表面。

在某些实施例中,颈缩部分1752可以在围绕插管1702的圆周的一个或多个位置处形成沿直径相对的突出部,由此使MCF 900的暴露端938与透镜908对中。例如,在一些情形下,颈缩部分1752可以包括彼此偏离90°的两组沿直径相对的突出部。在某些其他实现方式中,可以在插管中形成三个或更多个非沿直径相对的突出部以使MCF 900的暴露端938居中。在一些情形下,可以沿着插管1702的共用圆周形成突出部。在其他实现方式中,一个或多个突出部可以相对于一个或多个其他突出部纵向地偏离。

另外,虽然MCF 900被描述为照明MCF,但是在一些实现方式中,MCF 900可以是非照明MCF并且仍在本披露的范围内。

图19展示了根据本发明的特定实施例的示例性流程图1900,其展示了用于产生多点激光探针的方法中的步骤。

在框1902处,提供了探针尖端,该探针尖端包括被配置为插入眼睛中的插管。例如,技术人员或机器可以提供具有插管1702的探针尖端901,如图18所示。

在框1904处,将透镜插入插管中。例如,将透镜908插入插管1702中。

在框1906处,将MCF插入插管中、靠近透镜。例如,将MCF 900插入插管1702中、靠近透镜908,MCF 900包括多个芯933。如图所示,MCF 900包括包层932,在MCF 900的暴露端938处示出。

在框1908处,在插管中形成颈缩部分,所述颈缩部分形成减小的截面大小以维持MCF的暴露部分在插管内居中。例如,在插管1702中形成颈缩部分1752。

虽然本文描述的若干附图示出了具有保护窗口的探针,但是应理解的是,可以省略保护窗口。进一步在本披露的范围内的是,透镜和/或保护窗口的端部可以是除了平坦之外的形状。例如,透镜和/或保护窗口的远端和近端中的一者或多者可以具有凸形形状,如本文描述的。

以上披露的主题应认为是说明性而非限制性的,并且所附权利要求旨在覆盖所有此类修改、增强、以及落入本披露的真实精神和范围内的其他实施例。因此,为了被法律最大程度地允许,本披露的范围将由以下权利要求及其等效物的最广泛允许的解读来确定并且不应受限于或局限于前述具体实施方式。

37页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:具有组织标记组件的外科器械

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!