纳米多孔超吸收颗粒

文档序号:1301192 发布日期:2020-08-07 浏览:22次 >En<

阅读说明:本技术 纳米多孔超吸收颗粒 (Nanoporous superabsorbent particles ) 是由 W·李 Y·加拉鲁拉 A·N·皮克特 K·戈德尔斯 V·A·托波尔卡雷夫 D·瑟伦斯 T 于 2018-07-20 设计创作,主要内容包括:本发明提供了超吸收颗粒,其具有约50微米至约2,000微米的中值尺寸并包含平均横截面尺寸为约10纳米至约500纳米的纳米孔。所述超吸收颗粒表现出约80秒或更短的涡旋时间。(Superabsorbent particles having a median size of from about 50 microns to about 2,000 microns and comprising nanopores having an average cross-sectional dimension of from about 10 nanometers to about 500 nanometers are provided. The superabsorbent particles exhibit a vortex time of about 80 seconds or less.)

纳米多孔超吸收颗粒

相关申请

本申请要求美国临时申请序列号62/537,999(2017年7月28日提交)的优先权,该临时申请全文以引用方式并入本文。

背景技术

超吸收材料用于多种多样的应用中以帮助吸收流体。这些材料通常能够吸收其自身重量几倍的量的流体(例如,水、盐水等)。然而,与许多常规的超吸收材料相关联的一个问题是,当它们最初与流体接触时,吸收速率可能相对缓慢。因此,目前需要表现出相对快的吸收速率(特别是在最初与流体接触时)的超吸收材料。

发明内容

根据本发明的一个实施方案,公开了这样的超吸收颗粒:其具有约50微米至约2,000微米的中值尺寸并包含平均横截面尺寸为约10纳米至约500纳米的纳米孔。所述超吸收颗粒表现出约80秒或更短的涡旋时间。

本发明的其他特征和方面在下文更详细地讨论。

附图说明

针对本领域普通技术人员的本发明的完整且能够实现的公开内容(包括其最佳模式)在说明书的剩余部分中参照附图更具体地阐述,在附图中:

图1描绘了可以用于测量本发明的多孔超吸收颗粒的负荷下吸收性(“AUL”)的设备;

图2示出了图1的AUL组件;

图3示出了实施例1的超吸收颗粒的SEM显微照片,其中图3A(456X)、图3B(10,000X,断裂)和图3C(55,000X,断裂)示出了孔形成之前的颗粒,并且图3D(670X)、图3E(10,000X,断裂)和图3F(55,000X,断裂)示出了孔形成之后的颗粒;

图4示出了实施例1中提及的对照颗粒在溶剂交换之前的孔径分布;

图5示出了实施例1的颗粒在用甲醇进行溶剂交换之后的孔径分布;

图6示出了实施例2的颗粒在用乙醇进行溶剂交换之后的孔径分布;

图7示出了实施例3的颗粒在用异丙醇进行溶剂交换之后的孔径分布;并且

图8示出了实施例4的颗粒在用丙酮进行溶剂交换之后的孔径分布。

在本说明书和附图中对附图标记的反复使用旨在代表本发明的相同或类似的特征或元件。

具体实施方式

现在将详细参照本发明的各种实施方案,其一个或多个实例在下文示出。每个实例都以解释本发明而不是限制本发明的方式提供。事实上,对于本领域技术人员显而易见的是,在不背离本发明的范围或精神的情况下,可以在本发明中做出各种修改和变化。例如,作为一个实施方案的一部分而说明或描述的特征,可以用于另一个实施方案以产生另一个实施方案。因此,本发明打算覆盖落入所附权利要求书及其等同物的范围内的这样的修改和变化。

一般来讲,本发明涉及超吸收颗粒,这些超吸收颗粒典型地具有约50微米至约2,000微米、在一些实施方案中约100微米至约1,000微米、以及在一些实施方案中约200微米至约700微米的中值尺寸(例如,直径)。如本文所用的术语“中值”尺寸,是指所述颗粒的“D50”尺寸分布,这意味着至少50%的所述颗粒具有所指示的尺寸。所述颗粒同样可以具有在上述范围内的D90尺寸分布(至少90%的所述颗粒具有所指示的尺寸)。颗粒的直径可以使用已知的技术(诸如通过超速离心、激光衍射等)来测定。例如,可以根据诸如ISO 13320:2009的标准测试方法来测定颗粒尺寸分布。所述颗粒还可以具有任何所需的形状,诸如薄片、结节状、球形、管状等。可以控制所述颗粒的尺寸来优化具体应用的性能。所述颗粒的比表面积也可以相对大,诸如约0.2平方米/克(m2/g)或更大、在一些实施方案中约0.6m2/g或更大、以及在一些实施方案中约1m2/g至约5m2/g,诸如根据如ISO9277:2010中所述的B.E.T.测试方法所测定。

不管其具体的尺寸或形状是怎样的,超吸收颗粒在本质上都是多孔的,并且通常具有多孔网络,该多孔网络可以包含闭合孔和开放小室孔的组合。所述颗粒的总孔隙率可能相对高。例如,所述颗粒可以表现出约2平方米/克(m2/g)或更大、在一些实施方案中约5至约150m2/g、以及在一些实施方案中约15至约40m2/g的总孔面积。孔隙率百分比也可以为约5%或更大、在一些实施方案中为约10%至约60%,以及在一些实施方案中为约15%至约60%。作为孔隙率特征的另一个参数是堆积密度。就这一点而言,本发明的超吸收颗粒的堆积密度可以例如小于约0.7克/立方厘米(g/cm3)、在一些实施方案中为约0.1至约0.65g/cm3,以及在一些实施方案中为约0.2至约0.6g/cm3,如经由压汞法在0.58psi的压力下测定的。

为了获得所需的孔特性,该多孔网络典型地包含多个纳米孔,这些纳米孔具有约10至约500纳米、在一些实施方案中约15至约450纳米、以及在一些实施方案中约20至约400纳米的平均横截面尺寸(例如,宽度或直径)。术语“横截面尺寸”通常是指孔的基准尺寸(例如,宽度或直径),该基准尺寸与其长轴(例如,长度)基本上正交。应当理解,该网络内可以存在多种类型的孔。例如,还可以形成具有约0.5至约30微米、在一些实施方案中约1至约20微米、以及在一些实施方案中约2微米至约15微米的平均横截面尺寸的微孔。然而,纳米孔可以在该网络中以相对高的量存在。例如,纳米孔可以占颗粒的总孔体积的至少约25体积%、在一些实施方案中至少约40体积%、以及在一些实施方案中约40体积%至80体积%。在给定单位体积的该材料内,纳米孔所占据的平均体积百分比也可以是每cm3约15%至约80%、在一些实施方案中约20%至约70%、以及在一些实施方案中约30%至约60%每立方厘米所述颗粒。也可以采用多种亚型的纳米孔。例如,在某些实施方案中,第一纳米孔可以被形成为具有约80至约500纳米、在一些实施方案中约90至约450纳米、以及在一些实施方案中约100至约400纳米的平均横截面尺寸,而第二纳米孔可以被形成为具有约1至约80纳米、在一些实施方案中约5至约70纳米、以及在一些实施方案中约10至约60纳米的平均横截面尺寸。所述纳米孔可以具有任何规则或不规则的形状,诸如球形、细长形等。不管有多大,该多孔网络内的孔的平均直径典型地将为约1纳米至约1,200纳米、在一些实施方案中为约10纳米至约1,000纳米、在一些实施方案中为约50纳米至约800纳米,以及在一些实施方案中为约100纳米至约600纳米。

部分由于该多孔网络的特殊性质,本发明人已经发现,所得的超吸收颗粒在它们开始接触流体(诸如水、盐(例如氯化钠)的水性溶液、体液(例如尿液、血液等),诸如此类)的具体时间段期间可以表现出提高的吸收速率。这种增加的速率可以通过多种方式来表征。例如,所述颗粒可以表现出短涡旋时间,其中涡旋时间是指根据下文所述的测试,一定量的超吸收颗粒使通过搅拌一定量的0.9重量百分比(%)氯化钠溶液所形成的涡旋闭合所需要的时间量(以秒为单位)。更具体地,超吸收颗粒可以表现出约80秒或更短、在一些实施方案中约60秒或更短、在一些实施方案中约45秒或更短、在一些实施方案中约35秒或更短、在一些实施方案中约30秒或更短、在一些实施方案中约20秒或更短、以及在一些实施方案中约0.1秒至约10秒的涡旋时间。另选地,在被放置成与氯化钠的水性溶液(0.9重量%)接触0.015千秒(“ks”)之后,所述颗粒的吸收速率可以为约300g/g/ks或更高、在一些实施方案中约400g/g/ks或更高、在一些实施方案中约500g/g/ks或更高,以及在一些实施方案中约600至约1,500g/g/ks。高吸收速率甚至可以保留相对长的时间段。例如,在被放置成与氯化钠的水性溶液(0.9重量%)接触0.06ks或甚至最长达0.12ks之后,所述颗粒的吸收速率可以仍然为约160g/g/ks或更高、在一些实施方案中约180g/g/ks或更高、在一些实施方案中约200g/g/ks或更高,以及在一些实施方案中约250至约1,200g/g/ks。

值得注意的是,可以保持增加的吸收速率而不牺牲所述颗粒的总吸收容量。例如,在3.6ks之后,所述颗粒的总吸收容量可以为10g/g或更高、在一些实施方案中为约15g/g或更高、以及在一些实施方案中为约20至约100g/g。同样地,所述颗粒可以表现出约20g液体/g超吸收颗粒(g/g)或更高、在一些实施方案中约25g/g或更高、以及在一些实施方案中约30至约60g/g的离心保留容量(“CRC”)。最后,所述超吸收颗粒还可以表现出约40达西或更小、在一些实施方案中约25达西或更小、以及在一些实施方案中约0.1至约10达西的自由溶胀凝胶床渗透率(“GBP”)。

超吸收颗粒通常由三维交联聚合物网络形成,该三维交联聚合物网络包含衍生自一种或多种具有至少一个亲水基的烯键式(例如单烯键式)不饱和单体化合物的重复单元,所述亲水基诸如羧基、羧酸酐、羧酸盐、磺酸、磺酸盐、羟基、醚、酰胺、氨基或季铵盐基团。用于形成超吸收颗粒的合适的烯键式不饱和单体化合物的具体实例包括例如:羧酸(例如(甲基)丙烯酸(涵盖丙烯酸和/或甲基丙烯酸)、马来酸、富马酸、巴豆酸、山梨酸、衣康酸、肉桂酸等);羧酸酐(例如马来酸酐);羧酸的盐(碱金属盐、铵盐、胺盐等)(例如(甲基)丙烯酸钠、(甲基)丙烯酸三甲胺、(甲基)丙烯酸三乙醇胺、马来酸钠、马来酸甲胺等);乙烯基磺酸(例如乙烯基磺酸、烯丙基磺酸、乙烯基甲苯磺酸、苯乙烯磺酸等);(甲基)丙烯酸磺酸(例如(甲基)丙烯酸磺丙酯、2-羟基-3-(甲基)丙烯酰氧基丙基磺酸等);乙烯基磺酸或(甲基)丙烯酸磺酸的盐;醇(例如(甲基)烯丙醇);多元醇的醚或酯(例如(甲基)丙烯酸羟乙酯、(甲基)丙烯酸羟丙酯、(甲基)丙烯酸三甘醇酯、聚(氧乙烯-氧丙烯)二醇单(甲基)烯丙基醚(其中羟基基团可以被醚化或酯化)等);乙烯基甲酰胺;(甲基)丙烯酰胺、N-烷基(甲基)丙烯酰胺(例如N-甲基丙烯酰胺、N-己基丙烯酰胺等)、N,N-二烷基(甲基)丙烯酰胺(例如N,N-二甲基丙烯酰胺、N,N-二-正丙基丙烯酰胺等);N-羟烷基(甲基)丙烯酰胺(例如N-羟甲基(甲基)丙烯酰胺、N-羟乙基-(甲基)丙烯酰胺等);N,N-二羟烷基(甲基)丙烯酰胺(例如N,N-二羟乙基(甲基)丙烯酰胺);乙烯基内酰胺(例如N-乙烯基吡咯烷酮);羧酸的含氨基基团的酯(例如二烷基氨基烷基酯、二羟烷基氨基烷基酯、吗啉代烷基酯等)(例如(甲基)丙烯酸二甲氨基乙酯、(甲基)丙烯酸二乙氨基乙酯、(甲基)丙烯酸吗啉代乙酯、富马酸二甲氨基乙酯等);杂环乙烯基化合物(例如2-乙烯基吡啶、4-乙烯基吡啶、N-乙烯基吡啶、N-乙烯基咪唑)等);含季铵盐基团的单体(例如N,N,N-三甲基-N-(甲基)丙烯酰氧基乙基氯化铵、N,N,N-三乙基-N-(甲基)丙烯酰氧基乙基氯化铵、2-羟基-3-(甲基)丙烯酰氧基丙基三甲基氯化铵等);诸如此类,以及任何前述化合物的组合。在大多数实施方案中,采用(甲基)丙烯酸单体化合物及其盐来形成超吸收颗粒。

上文提到的单体化合物通常可溶于水。然而,应当理解,也可以采用通过水解可以变成水溶性的化合物。合适的可水解单体可以包括例如具有至少一个可水解基(诸如酯、酰胺和腈基团)的烯键式不饱和化合物。此类可水解单体的具体实例包括(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸2-乙基己酯、乙酸乙烯酯、(甲基)乙酸烯丙酯、(甲基)丙烯腈等。此外,应当理解,可以采用附加的单体,以便形成作为共聚物(诸如无规、接枝或嵌段共聚物)的所得颗粒。如果需要,所述一种或多种共聚单体可以选自上文列出的单体组。例如,所述一种或多种共聚单体可以是(甲基)丙烯酸、(甲基)丙烯酸的盐、马来酸酐等。例如,在一个具体实施方案中,共聚物可以由丙烯酸(或其盐)和马来酸酐形成。在其他实施方案中,如下文更详细描述的,也可以采用包含可交联官能度的共聚单体,诸如烷氧基硅烷。不管采用的是哪种或哪些共聚单体,通常都期望所述一种或多种主要烯键式不饱和单体占用于形成所述聚合物的单体的至少约50摩尔%、在一些实施方案中约55摩尔%至约99摩尔%、以及在一些实施方案中约60摩尔%至约98摩尔%,而一种或多种共聚单体占用于形成所述聚合物的单体的不超过约60摩尔%、在一些实施方案中约1摩尔%至约50摩尔%、以及在一些实施方案中约2摩尔%至约40摩尔%。

为了形成能够吸收水的网络,通常期望所述聚合物在聚合期间和/或之后交联。例如,在一个实施方案中,所述一种或多种烯键式不饱和单体化合物可以在交联剂的存在下聚合以提供交联聚合物。合适的交联剂典型地具有两个或更多个下述基团:其能够与烯键式不饱和单体化合物反应并且是至少部分水溶性或水分散性的,或者至少部分地可溶于或可分散于水性单体混合物中。合适的交联剂的实例可以包括例如四烯丙氧基乙烷、N,N'-亚甲基双丙烯酰胺、N,N'-亚甲基双甲基丙烯酰胺、三烯丙基胺、三羟甲基丙烷三丙烯酸酯、甘油丙氧基三丙烯酸酯、二乙烯基苯、N-羟甲基丙烯酰胺、N-羟甲基丙烯酰胺、甲基丙烯酸缩水甘油酯、聚乙烯多胺、乙二胺、乙二醇、甘油、四烯丙氧基乙烷和季戊四醇的三烯丙基醚、铝酸盐、二氧化硅、铝硅酸盐等,以及它们的组合。交联剂的量可以变化,但典型地以基于所述一种或多种烯键式不饱和单体化合物的摩尔数计为约0.005至约1.0摩尔%的量存在。

在上述实施方案中,交联通常在聚合期间发生。然而,在其他实施方案中,所述聚合物可以包含潜在官能度,当需要时,该官能度能够变得交联。例如,所述聚合物可以包含烷氧基硅烷官能度,该烷氧基硅烷官能度在暴露于水时形成硅烷醇官能团,该硅烷醇官能团缩合形成交联聚合物。这种官能度的一个具体实例是具有以下通式结构的三烷氧基硅烷:

其中R1、R2和R3是独立地具有1至6个碳原子的烷基基团。

为了将这种官能度引入到聚合物结构中,可以采用含有该官能度的单体化合物,诸如含有三烷氧基硅烷官能团的烯键式不饱和单体。特别合适的单体是(甲基)丙烯酸或其盐,诸如甲基丙烯酰氧基丙基三甲氧基硅烷、甲基丙烯酰氧基乙基三甲氧基硅烷、甲基丙烯酰氧基丙基三乙氧基硅烷、甲基丙烯酰氧基丙基三丙氧基硅烷、丙烯酰氧基丙基甲基二甲氧基硅烷、3-丙烯酰氧基丙基三甲氧基硅烷、3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷、3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基三(甲氧基乙氧基)硅烷,诸如此类。除了含有三烷氧基硅烷官能团的能够共聚的单体之外,还可以使用能够共聚、随后可以与含有三烷氧基硅烷官能团或与水反应形成硅烷醇基团的部分的化合物反应的单体。这样的单体可以包含但不限于胺或醇。结合到共聚物中的胺基随后可以与例如但不限于(3-氯丙基)三甲氧基硅烷反应。结合到共聚物中的醇基随后可以与例如但不限于四甲氧基硅烷反应。

本发明的超吸收聚合物颗粒可以通过任何已知的聚合方法来制备。例如,所述颗粒可以通过任何合适的本体聚合技术来制备,诸如溶液聚合、反相悬浮聚合或乳液聚合,诸如美国专利号4,076,663、4,286,082、4,340,706、4,497,930、4,507,438、4,654,039、4,666,975、4,683,274或5,145,906中所述的。例如,在溶液聚合中,所述一种或多种单体在水性溶液中聚合。在反相悬浮聚合中,在分散剂(诸如表面活性剂或保护胶体)的存在下,将所述一种或多种单体分散在脂环族或脂族烃悬浮介质中。如果需要,该聚合反应可以在自由基引发剂、氧化还原引发剂(还原剂和氧化剂)、热引发剂、光引发剂等的存在下进行。合适的还原剂的实例可以包括例如抗坏血酸、碱金属亚硫酸盐、碱金属亚硫酸氢盐、亚硫酸铵、亚硫酸氢铵、碱金属亚硫酸氢盐、亚硫酸氢铵、含铁金属盐(例如硫酸亚铁)、糖、醛、伯醇和仲醇,等等。合适的氧化剂的实例可以包括例如过氧化氢、过氧化辛酰、过氧化苯甲酰、过氧化异丙苯、二邻苯二甲酸叔丁酯、过苯甲酸叔丁酯、过碳酸钠、过乙酸钠、碱金属过硫酸盐、过硫酸铵、烷基氢过氧化物、过酸酯、过氧化二丙烯酰、银盐等。

如果需要,所得颗粒也可以缩小尺寸,以达到上述所需尺寸。例如,典型地采用具有旋转研磨元件的研磨机的冲击缩减尺寸可以用于形成所述颗粒。在旋转研磨元件与固定或反转研磨元件之间可以产生重复的冲击和/或剪切应力。冲击缩减尺寸也可以采用气流来携带材料并将材料碰撞到研磨盘(或其他剪切元件)中。一种特别合适的冲击缩减尺寸设备可从Pallmann Industries(Clifton,N.J.)商购获得,名称为型号为PLM。在该设备中,在冲击研磨机的固定研磨元件与旋转研磨元件之间的圆柱形研磨室内产生高活性空气旋流。由于空气体积大,所述颗粒可以被冲击并缩减尺寸至所需的颗粒尺寸。其他合适的冲击缩减尺寸方法可以在都授予Pallmann的美国专利号6,431,477和7,510,133中有所描述。另一种合适的微粒形成方法是冷挤压缩减尺寸,其通常采用剪切力和压缩力来形成具有所需尺寸的颗粒。例如,可以迫使材料在低于基体聚合物熔点的温度下通过模具。固态剪切粉碎是另一种可以使用的合适方法。此类方法通常涉及在高剪切条件和压缩条件下连续挤出材料,同时冷却挤出机料筒和螺杆以防止聚合物熔融。此类固态粉碎技术的实例在例如授予Khait的美国专利号5,814,673、授予Furgiuele等人的美国专利号6,479,003、授予Khait等人的美国专利号6,494,390、授予Khait的美国专利号6,818,173,以及授予Torkelson等人的美国公布号2006/0178465中有所描述。又一种合适的微粒形成技术被称为低温盘磨。低温盘磨通常在研磨之前和/或期间采用液体(例如液氮)来冷却或冷冻材料。在一个实施方案中,可以采用具有固定盘和旋转盘的单流道盘磨设备。材料经由靠近盘中心的通道进入盘之间,并通过盘之间产生的摩擦力形成颗粒。一种合适的低温盘磨设备可以名称低温研磨系统从ICO Polymers(Allentown,PA)获得。

尽管并不是必需的,但在聚合之前、期间或之后,也可以将附加的组分与超吸收聚合物结合。例如,在一个实施方案中,可以采用高长径比的夹杂物(例如纤维、管、片状物、线材等)来帮助产生内部互锁增强框架,该框架稳定溶胀的超吸收聚合物并提高其弹性。长径比(平均长度除以中值宽度)的范围可以例如为约1至约50、在一些实施方案中约2至约20、以及在一些实施方案中约4至约15。此类夹杂物可以具有约1至约35微米、在一些实施方案中约2至约20微米、在一些实施方案中约3至约15微米、以及在一些实施方案中约7至约12微米的中值宽度(例如直径),以及约1至约200微米、在一些实施方案中约2至约150微米、在一些实施方案中约5至约100微米、以及在一些实施方案中约10至约50微米的体积平均长度。此类高长径比夹杂物的实例可以包括衍生自碳化物(例如碳化硅)、硅酸盐(例如硅灰石)等的高长径比纤维(也称为“晶须”)。

如果需要,疏水性物质也可以与超吸收聚合物结合,诸如含有烃基的物质、含有具有氟原子的烃基的物质、具有聚硅氧烷结构的物质,等等。此类物质以及由其形成的超吸收颗粒的实例在例如授予Fujimura等人的美国专利号8,742,023中有所描述,该美国专利全文以引用方式并入本文。例如,合适的疏水性物质可以包括聚烯烃树脂、聚苯乙烯树脂、蜡、长链脂肪酸酯、长链脂肪酸及其盐、长链脂族醇、长链脂族酰胺等,以及它们的混合物。在一个具体实施方案中,可以采用长链脂肪酸酯,它是具有8至30个碳原子的脂肪酸和具有1至12个碳原子的醇的酯,诸如月桂酸甲酯、月桂酸乙酯、硬脂酸甲酯、硬脂酸乙酯、油酸甲酯、油酸乙酯、甘油单月桂酸酯、甘油单硬脂酸酯、甘油单油酸酯、季戊四醇单月桂酸酯、季戊四醇单硬脂酸酯、季戊四醇单油酸酯、山梨醇单月桂酸酯、山梨醇单硬脂酸酯、山梨醇单油酸酯、蔗糖单棕榈酸酯、蔗糖二棕榈酸酯、蔗糖三棕榈酸酯、蔗糖单硬脂酸酯、蔗糖二硬脂酸酯、蔗糖三硬脂酸酯、牛脂等。在另一个实施方案中,可以采用含有8至30个碳原子的长链脂肪酸或其盐,诸如月桂酸、棕榈酸、硬脂酸、油酸、二聚酸、山萮酸等,以及它们的锌、钙、镁和/或铝盐,诸如棕榈酸钙、棕榈酸铝、硬脂酸钙、硬脂酸镁、硬脂酸铝等。

不管形成颗粒的具体方式是怎样的,可以采用多种不同的技术来引发所需多孔网络的产生。在某些实施方案中,对聚合过程本身的控制可以导致在所得颗粒内形成孔。例如,聚合可以在非均相、两相或多相体系中进行,其中富单体连续相悬浮在富溶剂少数相中。当富单体相开始聚合时,富溶剂相可以诱导孔形成。当然,也可以采用在预先形成的颗粒内形成多孔网络的技术。例如,在一个具体实施方案中,可以采用称为“相转化”的技术,其中溶解或溶胀在连续相溶剂体系中的聚合物转化成由聚合物形成的连续相固体大分子网络。这种转化可以通过几种方法诱导,诸如通过经由干法(例如蒸发或升华)除去溶剂、添加非溶剂,或者经由湿法添加到非溶剂中。例如,在干法中,可以改变颗粒的温度(或压力),使得溶剂体系(例如水)可以转变为另一种物质状态,该物质状态可以在不发生过度收缩的情况下,通过排空或用气体吹扫来除去。例如,冷冻干燥涉及将溶剂体系冷却至低于其凝固点,然后允许其在减压下升华,以便形成孔。另一方面,超临界干燥涉及在压力下将溶剂体系加热至高于超临界点,以便形成孔。

然而,湿法是特别合适的,因为它们不依赖于相当程度的能量来实现所需的转化。在湿法中,超吸收聚合物和溶剂体系可以以单相均质组合物的形式提供。聚合物的浓度典型地在约0.1%至约20%重量/体积所述组合物、以及在一些实施方案中约0.5%至约10%重量/体积所述组合物的范围内。然后使用任何已知的技术,诸如通过浸入到浴中、逆流洗涤、喷雾洗涤、带式喷雾和过滤,来使所述组合物与非溶剂体系接触。溶剂体系与非溶剂体系之间的化学势的差异导致溶剂分子扩散出超吸收聚合物,而非溶剂分子则扩散到聚合物中。最终,这导致所述聚合物组合物经历从单相均质组合物到含有富聚合物级分和贫聚合物级分的不稳定两相混合物的转变。富聚合物相中的非溶剂体系的胶束液滴还充当成核位点并变得被聚合物包覆,并且在某个特定的点,这些液滴沉淀形成连续的聚合物网络。聚合物基体内部的溶剂组合物还自行塌缩并形成空隙。然后可以干燥基体以除去溶剂体系和非溶剂体系并形成稳定的多孔颗粒。

用于完成相转化的确切的溶剂体系和非溶剂体系并不是特别关键的,只要它们基于其混溶性协同选择就可以。更具体地,可以选择溶剂体系和非溶剂体系,使得它们在其希尔德布兰德(Hildebrand)溶解度参数δ上具有特定差值,其中δ是两种液体的混溶性的预测性指标,较高的值通常表示亲水性较高的液体,较低的值则表示疏水性较高的液体。通常期望溶剂体系和非溶剂体系在希尔德布兰德溶解度参数上的差值(例如δ溶剂–δ非溶剂)为约1至约15卡路里1/2/cm3/2、在一些实施方案中约4至约12卡路里1/2/cm3/2、以及在一些实施方案中约6至约10卡路里1/2/cm3/2。在这些范围内,溶剂/非溶剂将具有足够大的混溶性,以允许溶剂萃取发生,但混溶性又不过大,以致不能实现相转化。在溶剂体系中使用的合适溶剂可以包括例如水、水性醇、盐水、甘油等,以及它们的组合。同样,在非溶剂体系中使用的合适非溶剂可以包括丙酮、正丙醇、乙醇、甲醇、正丁醇、丙二醇、乙二醇等,以及它们的组合。

典型地,溶剂体系与非溶剂体系的体积比的范围为约50:1至约1:200(体积/体积)、在一些实施方案中约10:1至约1:180(体积/体积)、在一些实施方案中约1:1至约1:160(体积/体积)、在一些实施方案中约1:60至约1:150(体积/体积)、在一些实施方案中约1:1至约1:60(体积/体积),以及在一些实施方案中约1:1至约1:2(体积/体积)。在与非溶剂接触并完成相转化之后,可以使用任何合适的技术,诸如通过使用任何合适的设备(例如鼓风烘箱和真空烘箱)来增加对温度、时间、真空和/或流速的控制,来干燥和/或除去液相。例如,在一个实例中,在高达约175℃的温度下高温干燥可以在样品中留下最多约16重量%的乙醇。然后可以将样品放置于69℃和50%相对湿度的湿度室中,以将乙醇含量降低至小于0.13%。

通过参照以下实例可以更好地理解本发明。

测试方法

孔特性

超吸收颗粒的孔特性(例如,平均孔径、总孔面积、堆积密度、孔径分布和孔隙率百分比)可以使用如本领域所熟知的汞孔隙率法(也称为压汞法)测定。例如,可以采用可商购获得的孔隙率计,诸如来自Micrometrics的AutoPore IV9500。这种装置通常通过向浸入汞中的样品施加各种水平的压力来表征孔隙率。将汞压入样品的孔中所需的压力与孔的尺寸成反比。测量可以在0.58psi的初始压力和约60,000psi的最终压力下进行。平均孔径、总孔面积和堆积密度可以在压汞法测试期间直接测量。总孔径分布可以由差异压入和孔直径(μm)的图得到。同样,考虑到由于颗粒堆积而使大约50%的体积被空的空间占据,可以基于堆积密度减少的减少(假设颗粒的尺寸、堆积和形状恒定)来计算孔隙率百分比。更具体地,孔隙率百分比可以根据以下公式确定:

100x 0.5x[(对照样品的堆积密度–测试样品的堆积密度)/对照样品的堆积密度]

其中堆积密度(g/cm3)是通过压汞法在0.58psi的压力下测定的。

吸收容量

超吸收颗粒的吸收容量可以使用负荷下吸收性(“AUL”)测试来测量,该测试是用于测量超吸收颗粒在材料处于负荷下的同时吸收0.9重量%氯化钠蒸馏水溶液(测试溶液)的能力的熟知测试。例如,0.16克的超吸收颗粒可以被局限在0.01psi、0.3psi或0.9psi标称压力下的5.07cm2面积的负荷下吸收性(“AUL”)圆筒内。使样品从容纳过量流体的皿中吸收测试溶液。在预定的时间间隔处,在真空设备已经移除圆筒内任何过量的间隙流体之后,对样品称重。然后,使用该重量对时间的数据在各个时间间隔处确定吸收速率。

例如,参见图1,示出了可以用于测定吸收容量的设备910的一个实施方案。设备910包括具有圆筒920、活塞930和配重990的AUL组件925。配重990可以是100克配重。可以采用侧臂烧瓶960,其在烧瓶顶部配有橡胶塞945和管955,以帮助在样品进入真空系统之前捕集从样品中移除的任何流体。橡胶或塑料管材970可以用于侧臂烧瓶960和AUL室940。附加的管材970也可以用于将真空源(未示出)和烧瓶960的侧臂980连接。参见图2,圆筒920可以用于容纳超吸收颗粒950,并且可以由内径为一英寸(2.54cm)的丙烯酸管材制成,该丙烯酸管材被略微机加工以确保同心度。在机加工之后,可以使用适当的溶剂将网布414(例如400目)附接到圆筒920的底部,该溶剂使筛牢固地附着到圆筒。活塞930可以是由1英寸(2.5cm)直径的固体材料(例如丙烯酸)制成的4.4g活塞,并且可以被机加工成紧密配合而不粘结在圆筒920中。如上所述,设备910还包括AUL室940,该AUL室除去在超吸收颗粒950溶胀期间收集的间隙液体。该测试设备类似于可从M/K Systems获得的GATS(重量分析吸收性测试系统),以及Lichstein在1974年3月的INDA Technological Symposium Proceedings的第129至142页描述的系统。还利用了具有局限在2.5厘米直径区域内的孔口的开孔盘935。

为了进行该测试,可以执行以下步骤:

(1)用防静电布擦拭AUL圆筒920的内部,并称量圆筒920、配重990和活塞930的重量;

(2)将重量记录为容器重量(以克为单位),精确到最接近的毫克;

(3)将0.16±0.005克超吸收颗粒950的样品缓慢地倒入圆筒920中,使得这些颗粒不与圆筒的侧面接触或者可以附着到AUL圆筒的壁上;

(4)称量圆筒920、配重990、活塞930和超吸收颗粒950的重量,记录天平上的值,作为干重(以克为单位),精确到最接近的毫克;

(5)轻轻地叩击AUL圆筒920,直到超吸收颗粒950均匀地分布在圆筒的底部上;

(6)将活塞930和配重990轻轻地放置到圆筒920中;

(7)将测试流体(0.9重量%水性氯化钠溶液)放置在底部具有大网筛的流体浴中;

(8)启动计时器,同时将超吸收颗粒950和圆筒组件925放置到流体浴中的筛上。浴中的液位高度应当在圆筒的基座上方提供至少1cm的正压头;

(9)轻轻地漩涡样品以释放任何截留的空气并确保超吸收颗粒与流体接触。

(10)在指定的时间间隔处从流体浴中移出圆筒920,立即将该圆筒放置在真空设备(在AUL室940的顶部上的开孔盘935)上并移除过量的间隙流体10秒;

(11)用纸巾或薄纸擦拭圆筒的外部;

(12)立即称量具有超吸收颗粒和任何所吸收的测试流体的AUL组件(即,圆筒920、活塞930和配重990)的重量,并记录重量和时间间隔,其中该重量为湿重(以克为单位),精确到最接近的毫克;以及

(13)针对所有需要的时间间隔重复测试。

通常在每个预定的时间间隔处测试至少两(2)个样品。所述时间间隔典型地为15、30、60、120、300、600、1800和3600秒(或0.015、0.030、0.060、0.120、0.300、0.600、1.8或3.6千秒)。超吸收颗粒在指定的时间间隔处的“吸收容量”通过下式,以液体克数/超吸收材料克数计算:

(湿重-干重)/(干重-容器重量)

吸收速率

超吸收颗粒的“吸收速率”可以在指定的时间间隔处通过将上述吸收容量(g/g)除以所关注的具体时间间隔(千秒,ks)(诸如0.015、0.030、0.060、0.120、0.300、0.600、1.8或3.6千秒)来测定。

离心保留容量(CRC)

离心保留容量(CRC)测试测量了超吸收颗粒在被饱和并在受控条件下经受离心之后保留液体的能力。所得的保留容量被表示为每克重量样品保留的液体克数(g/g)。待测试样品由通过美国标准30目筛预筛并保留在美国标准50目筛上的颗粒制备。所述颗粒可以用手或自动地预筛,并储存在密封的气密容器中直到测试。测量保留容量,方式为:将0.2±0.005克预筛样品放置到将容纳该样品的水可渗透的袋中,同时允许测试溶液(0.9重量%氯化钠蒸馏水溶液)被样品自由吸收。可热封的茶袋材料(诸如型号名称为1234T的可热封滤纸)可能是合适的。通过将5英寸×3英寸的袋材料样品对折并热封开放边缘中的两个以形成2.5英寸×3英寸的矩形小袋,来形成袋。热封可以在材料边缘内约0.25英寸。在将样品放置于小袋中之后,也可以将小袋的剩余开放边缘热封。空袋可以充当对照。准备三个样品(例如,填充的袋和密封的袋)用于测试。在制备后的三分钟内测试填充的袋,除非立即放置在密封容器中,在后一种情况下,填充的袋必须在制备后的三十分钟内测试。

将这些袋放置于两个具有3英寸开口的带涂层的玻璃纤维筛(Taconic Plastics,Inc.,Petersburg,N.Y.)之间,并在23℃下浸入测试溶液的盘中,确保将筛压住,直到这些袋被完全润湿。润湿之后,样品在溶液中保持约30±1分钟,此时将它们从溶液中移出并暂时铺放在非吸收性平坦表面上。对于多次测试,在24个袋已经在盘中饱和之后,应当将盘清空并用新鲜的测试溶液再填充。

然后将润湿的袋放置到能够使样品经受约350g-力的合适离心机的篮中。一种合适的离心机是Heraeus LaboFuge 400,其具有集水篮、数字转速计,以及适于容纳袋样品并对其进行排水的机加工排水篮。在离心多个样品的情况下,这些样品可以被放置于离心机内的对置位置,以便在旋转时平衡篮。将袋(包括润湿的空袋)以约1,600rpm离心(例如,以实现约350的目标g-力)3分钟。移出袋并称重,首先称量空袋(对照)的重量,然后称量容纳样品的袋的重量。考虑到袋本身保留的溶液,样品保留的溶液的量是样品的离心保留容量(CRC),表示为每克样品的流体克数。更具体地,离心保留容量被确定为:

离心后的样品袋重量–离心后的空袋重量–干燥样品重量

干燥样品重量

测试三个样品,并将结果平均以确定超吸收材料的保留容量(CRC)。样品在23℃和50%相对湿度下测试。

涡旋时间

涡旋时间是预定质量的超吸收颗粒使通过在磁力搅拌板上以600转/分钟搅拌50毫升0.9重量%氯化钠溶液所形成的涡旋闭合所需要的时间量(以秒为单位)。使涡旋闭合所花费的时间是所述颗粒的自由溶胀吸收速率的指示。该涡旋时间测试可以在23℃的温度和50%的相对湿度下根据以下过程进行:

(1)将50毫升(±0.01毫升)0.9重量%氯化钠溶液量取到100毫升烧杯中。

(2)将没有环的7.9毫米x 32毫米覆盖的磁力搅拌棒(诸如可以商品名品牌商购获得的具有可移除的枢轴环的单包圆形搅拌棒)放置到烧杯中。

(3)将磁力搅拌板(诸如以商品名型号721商购获得的那种)编程为600转/分钟。

(4)将烧杯放置于磁力搅拌板的中心,使得磁力搅拌棒被激活。涡旋的底部应当靠近搅拌棒的顶部。超吸收颗粒通过美国标准#30目筛(0.595毫米开口)预筛,并保留在美国标准#50目筛(0.297毫米开口)上。

(5)在称量纸上称出待测试的超吸收颗粒的所需质量。

(6)在搅拌氯化钠溶液的同时,将待测试的吸收聚合物快速倒入盐水溶液中并启动秒表。将待测试的超吸收颗粒添加到涡旋中心与烧杯侧面之间的盐水溶液中。

(7)当盐水溶液的表面变得平坦时停止秒表,并记录时间。时间(以秒记录)被报告为涡旋时间。

自由溶胀凝胶床渗透率(GBP)测试

如本文所用,自由溶胀凝胶床渗透率(GBP)测试测定超吸收材料的溶胀床在通常称为“自由溶胀”条件的条件下的渗透率。术语“自由溶胀”意味着允许超吸收材料在吸收测试溶液时在没有溶胀约束负荷的情况下溶胀,如将描述的。该测试在授予Qin的美国专利公布号2010/0261812中有所描述,该专利公布以引用方式并入本文。例如,可以采用包含样品容器和活塞的测试设备,其可以包括圆柱形的LEXAN轴,该轴具有沿该轴的纵向轴线向下钻出的同心圆柱形孔。该轴的两个端部都可以被机加工,以提供上端和下端。配重可以搁置在一个端部上,该端部具有穿过其中心的至少一部分钻出的圆柱形孔。圆形活塞头可以定位在另一个端部上,并且具有由七个孔构成的同心内环(每个孔都具有约0.95cm的直径),以及由十四个孔构成的同心外环(每个孔都具有约0.95cm的直径)。这些孔从活塞头的顶部钻到底部。活塞头的底部也可以覆盖双轴向拉伸网不锈钢筛。样品容器可以包含圆筒和100目不锈钢布筛,该布筛被双轴向拉伸至拉紧并且附接到圆筒的下端。在测试期间,超吸收颗粒可以被支撑在圆筒内的筛上。

该圆筒可以由透明的LEXAN杆或等效材料钻出,或者可以由LEXAN管材或等效材料切割而成,并且具有约6cm的内径(例如,约28.27cm2的横截面积)、约0.5cm的壁厚和约5cm的高度。排水孔可以形成在圆筒的侧壁中,在筛上方大约4.0cm的高度处,以允许液体从圆筒排出,从而将样品容器中的流体液位保持在筛上方大约4.0cm处。活塞头可以由LEXAN杆或等效材料机加工而成,并且具有大约16mm的高度和尺寸被确定成使得其以最小壁间隙配合在圆筒内但仍自由滑动的直径。轴可以由LEXAN杆或等效材料机加工而成,并且具有约2.22cm的外径和约0.64cm的内径。轴的上端大约2.54cm长,并且直径大约1.58cm,从而形成环形肩部以支撑环形配重。该环形配重的内径继而为约1.59cm,使得它滑到轴的上端上并搁置在形成于其上的环形肩部上。该环形配重可以由不锈钢或在测试溶液的存在下耐腐蚀的其他合适材料制成,该测试溶液是0.9重量%氯化钠蒸馏水溶液。活塞和环形配重的组合重量等于大约596克,这对应于在约28.27cm2的样品面积上施加于样品的约0.3磅每平方英寸或约20.7达因/cm2的压力。当测试溶液在如下所述的测试期间流过测试设备时,样品容器通常搁置在16目刚性不锈钢支撑筛上。另选地,样品容器可以搁置在支撑环上,该支撑环沿直径的尺寸被确定成与圆筒基本上相同,使得支撑环不会限制来自容器底部的流动。

为了在“自由溶胀”条件下进行凝胶床渗透率测试,将其上坐置配重的活塞放置于空的样品容器中,并且使用精确到0.01mm的卡尺或合适的量规测量从配重底部到圆筒顶部的高度。每个样品容器的高度可以被测得为空,并且当使用多个测试设备时,可以跟踪使用的是哪个活塞和配重。当样品在饱和之后随后溶胀时,可以使用相同的活塞和配重来进行测量。待测试样品由通过美国标准30目筛预筛并保留在美国标准50目筛上的超吸收颗粒制备。所述颗粒可以用手或自动地预筛。将约0.9克样品放置于样品容器中,然后将其中没有活塞和配重的容器浸没在测试溶液中约60分钟的时间段,以使样品饱和并使样品能够在没有任何约束负荷的情况下溶胀。在该阶段结束时,将活塞和配重组件放置于样品容器中的饱和样品上,然后从溶液中移出样品容器、活塞、配重和样品。饱和样品的厚度通过使用先前使用的相同卡尺或量规再次测量从配重底部到圆筒顶部的高度来确定,前提是零点相对于初始高度测量不变。从使样品饱和之后获得的高度测量值中减去测量空样品容器、活塞和配重获得的高度测量值。所得的值是溶胀样品的厚度,或高度“H”。

渗透率测量通过以下方式发起:将测试溶液的液流输送到内部具有饱和样品、活塞和配重的样品容器中。调节进入容器中的测试溶液的流量,以保持流体高度在样品容器底部上方约4.0cm。通过重量分析法测量相对于时间穿过样品的溶液的量。一旦流体液位已稳定并保持在约4.0cm高度处,则每秒收集一次数据点,持续收集至少二十秒。通过穿过样品的流体(以克为单位)对时间(以秒为单位)的线性最小二乘拟合,以克/秒(g/s)为单位确定穿过溶胀样品的流量Q。

渗透率通过以下公式获得:

K=(1.01325x 108)*[Q*H*Mu]/[A*Rho*P]

其中

K=渗透率(达西),

Q=流量(g/s),

H=样品高度(cm),

Mu=液体粘度(泊)(该测试所用的测试溶液为约1厘泊),

A=液流的横截面积(cm2),

Rho=液体密度(g/cm3)(该测试所用的测试溶液为约1g/cm3),并且

P=流体静压力(达因/cm2)(通常为约3,923达因/cm2),其可以由Rho*g*h计算,其中Rho=液体密度(g/cm3),g=重力加速度,通常为981cm/s2,并且h==流体高度,例如4.0cm。

测试最少三个样品,并将结果平均以确定样品的自由溶胀凝胶床渗透率。样品在23℃和50%相对湿度下测试。

实施例1

首先提供15.00克可商购获得的交联聚丙烯酸酯超吸收颗粒。这些颗粒以如授予Fujimura等人的美国专利号8,742,023中所述的方式形成,初始涡旋时间为35秒,并且CRC为约27.5g/g。使颗粒在过量的良溶剂(即盐水)中溶胀60分钟,以达到平衡溶胀容量。然后,排出过量盐水,并使用真空过滤技术移除间隙液体。真空过滤系统由布氏漏斗、湿润的滤纸、布氏烧瓶、橡胶塞和真空管材构成。然后在恒定搅拌下,将溶胀的超吸收颗粒手动地转移到2L Pyrex烧杯中的1kg高纯度ACS级甲醇中。用具有以下尺寸的磁棒进行搅拌:L=5cm,D=0.9cm,并且搅拌速率为800–1000rpm。30分钟后,排出溶剂混合物,并将另外1kg新鲜甲醇添加到超吸收颗粒中。30分钟后,再次排出溶剂混合物,将超吸收颗粒转移到Teflon皮氏培养皿中,在鼓风烘箱中在85℃下干燥1小时。然后,将超吸收颗粒转移到真空烘箱中,以完成干燥并移除残余甲醇。在120至140℃的温度和30英寸Hg的压力下干燥4小时。然后使用一组目尺寸为45至850微米的筛子调节干燥的超吸收颗粒。收集直径为300至600微米尺寸的颗粒用于进一步评估。

实施例2

如实施例1中所述形成颗粒,不同的是在溶剂/非溶剂交换步骤期间使用了ACS级200酒精度高纯度乙醇。

实施例3

如实施例1中所述形成颗粒,不同的是在溶剂/非溶剂交换步骤期间使用了异丙醇。

实施例4

如实施例1中所述形成颗粒,不同的是在溶剂/非溶剂交换步骤期间使用了丙酮。

还使用上文提到的测试测定了实施例1至4的各种孔特性。样品的孔径分布在图4至图8中示出,结果列于下表中。

实施例5

如实施例2中所述形成颗粒,不同的是颗粒最初在5重量%氯化钠溶液中溶胀。

实施例6

如实施例2中所述形成颗粒,不同的是颗粒最初在10重量%氯化钠溶液中溶胀。

实施例7

如实施例2中所述形成颗粒,不同的是颗粒最初在15重量%氯化钠溶液中溶胀。

实施例8

如实施例2中所述形成颗粒,不同的是颗粒最初在20重量%氯化钠溶液中溶胀。

实施例9

如实施例2中所述形成颗粒,不同的是颗粒最初在30重量%ACS级200酒精度高纯度乙醇的去离子水中溶胀。

实施例10

如实施例2中所述形成颗粒,不同的是颗粒最初在40重量%ACS级200酒精度高纯度乙醇的去离子水中溶胀。

实施例11

如实施例2中所述形成颗粒,不同的是颗粒最初在50重量%ACS级200酒精度高纯度乙醇的去离子水中溶胀。

实施例12

如实施例2中所述形成颗粒,不同的是颗粒最初在60重量%ACS级200酒精度高纯度乙醇的去离子水中溶胀。

实施例13

如实施例2中所述形成颗粒,不同的是颗粒最初在80重量%ACS级200酒精度高纯度乙醇的去离子水中溶胀。

实施例14

如实施例1中所述形成颗粒,不同的是溶剂/非溶剂交换的时间从每步30min减少到15min。

实施例15

如实施例1中所述形成颗粒,不同的是溶剂/非溶剂交换的时间从每步30min减少到5min。

实施例16

如实施例1中所述形成颗粒,不同的是甲醇的量从每步1kg减少到0.5kg。

实施例17

如实施例16中所述形成颗粒,不同的是溶剂/不良溶剂交换的时间从30分钟缩短到15分钟。

实施例18

如实施例16中所述形成颗粒,不同的是溶剂/不良溶剂交换的时间从30分钟缩短到5分钟。

实施例19

在恒定搅拌下,将15.00克与实施例1中所提供的相同的超吸收颗粒手动地转移到2L Pyrex烧杯中的1kg高纯度ACS级甲醇中。用具有以下尺寸的磁棒进行搅拌:L=5cm,D=0.9cm,并且搅拌速率为800–1000rpm。30分钟后,排出溶剂混合物,并将另外1kg新鲜甲醇添加到超吸收颗粒中。30分钟后,再次排出溶剂混合物,将超吸收颗粒转移到Teflon皮氏培养皿中,在鼓风烘箱中在85℃下干燥1小时。然后,将超吸收颗粒转移到真空烘箱中,以完成干燥并移除残余甲醇。在120至140℃的温度和30英寸Hg的压力下干燥4小时。然后使用一组目尺寸为45至850微米的筛子调节干燥的超吸收颗粒。收集直径为300至600微米尺寸的颗粒用于进一步评估。

实施例20

如实施例19中所述形成颗粒,不同的是使用高纯度乙醇来洗涤超吸收颗粒。

实施例21

如实施例19中所述形成颗粒,不同的是使用高纯度异丙醇来洗涤超吸收颗粒。

实施例22

如实施例19中所述形成颗粒,不同的是使用高纯度丙酮来洗涤超吸收颗粒。

如上文所讨论测试实施例1至22的样品的涡旋时间和CRC。结果如下所示。

实施例 涡旋时间(s) CRC(g/g)
1 8 29.9
2 11 28.1
3 13 30.0
4 18 29.6
5 14 27.4
6 34 18.2
7 55 15.7
8 83 13.5
9 13 30.0
10 15 30.5
11 18 30.8
12 18 31.7
13 32 30.9
14 9 27.3
15 9 28.9
16 22 30.3
17 21 29.6
18 30 30.7
19 35 20.3
20 35 29.3
21 36 30.3
22 37 28.0

还在进行溶剂交换过程之前和之后测试了实施例1的超吸收颗粒的AUL(在0.01psi下)。所得的特性在下面列出。

图3还包括示出了溶剂交换过程之前和之后的颗粒的SEM显微照片。如所指出的那样,溶剂交换产生含有包括多个纳米孔的多孔网络的颗粒。

实施例23

颗粒以如授予Fujimura等人的美国专利号8,742,023中所述的方式形成,初始涡旋时间为35秒,并且CRC为约27.5g/g。将颗粒筛至600至1,000微米,然后使用搅拌机缩小尺寸,再次筛分以收集300至600微米。

实施例24

颗粒以如授予Fujimura等人的美国专利号8,742,023中所述的方式形成,初始涡旋时间为35秒,并且CRC为约27.5g/g。如本文所述,用溶剂处理颗粒,然后用非溶剂洗涤以产生有空隙的超吸收颗粒。然后将颗粒筛至600至850微米,然后使用搅拌机缩小尺寸,再次筛分以收集300至600微米。

根据ISO 9277:2010测试来自实施例23和实施例24的样品的比表面积(B.E.T.)。结果如下所示。

实施例 B.E.T.表面积(m<sup>2</sup>/g)
23 0.16
24 2.43

虽然本发明已经就其具体实施例进行了详细描述,但是将领会的是,本领域技术人员在获得前述内容的理解后可以容易地设想出这些实施例的替代形式、变型形式和等同方案。因此,本发明的范围应被评估为所附权利要求及其任何等同方案的范围。

27页详细技术资料下载
上一篇:一种医用注射器针头装配设备
下一篇:水胶体组合物和包含该水胶体组合物的生物贴片

网友询问留言

已有0条留言

还没有人留言评论。精彩留言会获得点赞!

精彩留言,会给你点赞!